簡易檢索 / 詳目顯示

研究生: 黃國晏
Guo-Yan Huang
論文名稱: 鎢釕混合氧化物擔載Pt觸媒製備參數對其氫氣氧化反應的CO耐受性探討
Preparation of Tungsten Ruthenium mixed oxide supported Pt catalysts for CO tolerance in Hydrogen Oxidation Reaction
指導教授: 林昇佃
Shawn D. Lin
口試委員: 林修正
Andrew S. Lin
蘇威年
Wei-Nien Su
黃炳照
Bing-Joe Hwang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 115
中文關鍵詞: 金屬混合氧化物陽離子摻雜水熱法氫氣氧化反應
外文關鍵詞: Metal mixed oxide, cation-doping, hydrothermal process, hydrogen oxidation reaction
相關次數: 點閱:188下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氫能時代的來臨,將對照驗證質子交換薄膜燃料電池(PEMFC)技術的發展成熟度,目前PEMFC電極觸媒主要是以碳當作載體,利用碳載體的高導電性與高比表面積以使Pt可以均勻分散,但在操作過程發生的碳腐蝕現象,會導致Pt觸媒活性下降,並降低PEMFC的效能。本研究目的為探討非碳載體之金屬混合氧化物陽極反應觸媒,以提升觸媒穩定性,並提升觸媒抗CO毒化能力,以實驗室先前水熱法合成的W0.7Ru0.3O2 載體為基礎,進一步測試製備參數對觸媒的影響,所測試的參數包括:不同晶相氧化鎢載體、Ru陽離子摻雜形成不同鎢釕比例載體與不同載體鍛燒溫度,最後進行製作流程優化。
    研究結果顯示以EG法自製40%Pt氧化物擔載觸媒可獲得與商用PtRu/C觸媒相近的Pt粒徑(3-4奈米),以CO-stripping測試中CO起始氧化電位與峰電位,和氫氣氧化反應(HOR)在純氫、100和250ppm CO環境下的旋轉圓盤電極分析與定電位分析,發現優化流程製得的40Pt/W5Ru5-N12-c300與40Pt/W7Ru3-N12-c300觸媒具有比擬商用20Pt10Ru/C觸媒的良好抗CO能力、氫氣氧化活性與穩定性。


    Proton exchange membrane fuel cells (PEMFCs) are expected to have enormous potential for both mobile and stationary applications. Carbon supports are mainly used in electrocatalysts for fuel cells because of good electron conductivity and high surface area that may leads to good dispersion of active Pt particles. However, carbon corrosion under operating conditions of PEMFCs becomes a concern which can cause deterioration in the performance of Pt catalysts. To enhance the durability and the CO tolerance of anodic catalysts, mixed-oxide supports are examined in this study. A simple hydrothermal process is applied to synthesize mixed W-Ru oxide supports and the influences of preparation parameters are examined, including Tungsten oxide phase, Tungsten Ruthenium ratio, and pretreatment temperature, and subsequently the preparation procedure is optimized.
    Pt loading is prepared by EG method. XRD results show that the prepared 40wt%Pt/W5Ru5-N12-c300 contains Pt particle size of 3-4 nm. CO stripping and hydrogen oxidation reaction (HOR) with 100 and 250 ppm CO are examined. The results indicate that 40Pt/W5Ru5-N12-c300 and 40Pt/W7Ru3-N12-c300 catalysts exhibit improved CO tolerance, intrinsic activity and durability comparing to the other prepared catalysts. The overall performance is comparable with commercial 20Pt10Ru/C catalysts.

    摘要 I Abstract II 誌謝 III 圖目錄 VII 表目錄 X 第1章、 緒論 1 1.1 前言 1 1.2 質子交換薄膜燃料電池 (PEMFC) 3 1.3 直接甲醇燃料電池 (DMFC) 4 第2章、 文獻回顧 5 2.1 陽極觸媒介紹 5 2.2 碳載體觸媒 5 2.3 金屬氧化物載體 6 2.3.1 氧化釕 (Ruthenium oxides、RuOx) 7 2.3.2 鎢氧化物 (Tungsten oxides、WOx) 8 2.3.3 混合金屬氧化物 9 2.4 合金觸媒 10 2.5 研究目的與方法 11 第3章、 研究設備與方法 12 3.1 研究架構 12 3.2 藥品與設備 12 3.3 觸媒製備方法 15 3.3.1 RuOxHy的製備 15 3.3.2 水熱法 15 3.3.3 水熱法製備WOx載體 15 3.3.4 水熱法製備h-WOx載體 16 3.3.5 水熱法製備不同鍛燒溫度之WxRu1-xOy載體 16 3.3.6 水熱法製備WxRu1-xOy-N12載體 17 3.3.7 改良式乙二醇還原法製備40wt%Pt觸媒 18 3.4 材料鑑定方法 19 3.4.1 X光繞射分析(XRD) 19 3.4.2 表面積與孔隙度測定儀 (BET) 20 3.4.3 掃描式電子顯微鏡-能量散射光譜儀 (SEM-EDS) 20 3.5 電化學分析方法 21 3.5.1 可逆氫電極(RHE)的前置作業 22 3.5.2 薄膜電極的製備 22 3.5.3 循環伏安法 (Cyclic voltammetry) 23 3.5.4 CO電催化氧化分析 (CO-stripping) 23 3.5.5 純氫氣中氫氣氧化反應之陽極測試條件 (HOR-pure H2) 24 3.5.6 微量CO下氫氣氧化反應之陽極測試條件 (HOR-100 or 250ppmCO/H2) 24 3.5.7 電化學活性表面積與CO/H比例計算 24 3.5.8 塔弗方程式 (Tafel equation) 25 3.5.9 氫氣氧化之分析方法 25 第4章、 結果與討論 28 4.1 不同晶相氧化鎢載體對40wt%Pt觸媒的影響 28 4.1.1 載體與觸媒特性分析 28 4.1.1.1 XRD分析 28 4.1.1.2 材料形貌與EDS成份分析 32 4.1.2 觸媒之電化學特性分析 34 4.1.2.1 觸媒之循環伏安法分析 34 4.2 混合氧化物載體成份與煅燒溫度對40wt%Pt觸媒的影響 38 4.2.1 載體與觸媒特性分析 38 4.2.1.1 XRD分析 38 4.2.1.2 氮氣等溫吸/脫附分析 47 4.2.1.3 材料形貌與EDS成份分析 50 4.2.2 觸媒之電化學反應分析 52 4.2.2.1 觸媒之循環伏安法分析 52 4.2.2.2 觸媒之氫氣氧化反應分析 57 4.3 釕摻雜效應對40wt%Pt觸媒的影響 67 4.3.1 載體與觸媒特性分析 67 4.3.1.1 XRD分析 67 4.3.1.2 氮氣等溫吸/脫附分析 75 4.3.1.3 材料形貌與EDS成份分析 76 4.3.2 觸媒之電化學反應分析 78 4.3.2.1 觸媒之循環伏安法分析 78 4.3.2.2 觸媒之氫氣氧化反應分析 81 第5章、 結論 86 第6章、 參考文獻 87 附錄一 Nafion 厚度計算 92 附錄二 氫氣氧化動力學數據處理 92 附錄三 合成嘗試經驗 103

    1. Appleby, A.J., Issues in fuel cell commercialization. Journal of Power Sources, 1996. 58(2): p. 153-176.
    2. 衣寶廉, 黃., 林修正, 燃料電池-原理與應用. 2005, 台北: 五南圖書出版.
    3. 李書鋒, 質子交換膜燃料電池性能之理論探討. 2004, 大葉大學.
    4. 謝宗達, RuOxHy助觸媒的合成與其對Pt電催化甲醇氧化反應的影響. 2013, 台灣科技大學.
    5. H.‐F. Oetjen, V.M.S., U. Stimming and F. Trila, Performance Data of a Proton Exchange Membrane Fuel Cell Using H2/CO as Fuel Gas. J. Electrochem. Soc, 1996. 143(12): p. 3838-3842.
    6. J.C, A., C. K.A.M, and Davis. Proc.9th Word Hydrogen Energy Conf Pairs. 1992. France.
    7. Shahgaldi, S. and Hamelin, J., Improved carbon nanostructures as a novel catalyst support in the cathode side of PEMFC: a critical review. Carbon, 2015. 94: p. 705-728.
    8. Meier, J.C., Galeano, C., Katsounaros, I., Witte, J., Bongard, H.J., Topalov, A.A., Baldizzone, C., Mezzavilla, S., Schuth, F., and Mayrhofer, K.J., Design criteria for stable Pt/C fuel cell catalysts. Beilstein J Nanotechnol, 2014. 5: p. 44-67.
    9. Antolini, E., Carbon supports for low-temperature fuel cell catalysts. Applied Catalysis B: Environmental, 2009. 88(1–2): p. 1-24.
    10. Zhang, Z., Liu, J., Gu, J., Su, L., and Cheng, L., An overview of metal oxide materials as electrocatalysts and supports for polymer electrolyte fuel cells. Energy & Environmental Science, 2014. 7(8): p. 2535-2558.
    11. Graves, J.E., Pletcher, D., Clarke, R.L., and Walsh, F.C., The electrochemistry of Magnéli phase titanium oxide ceramic electrodes Part I. The deposition and properties of metal coatings. Journal of Applied Electrochemistry, 1991. 21(10): p. 848-857.
    12. Nagaraju, S.C., Roy, A.S., and Ramgopal, G., Conductivity of surface modified TiO 2 dope nanocomposites. Measurement, 2015. 60: p. 214-221.
    13. Benson, J.E., Kohn, H.W., and Boudart, M., On the reduction of tungsten trioxide accelerated by platinum and water. Journal of Catalysis, 1966. 5(2): p. 307-313.
    14. Samjeské, G., Wang, H., Löffler, T., and Baltruschat, H., CO and methanol oxidation at Pt-electrodes modified by Mo. Electrochimica Acta, 2002. 47(22–23): p. 3681-3692.
    15. Götz, M. and Wendt, H., Binary and ternary anode catalyst formulations including the elements W, Sn and Mo for PEMFCs operated on methanol or reformate gas. Electrochimica Acta, 1998. 43(24): p. 3637-3644.
    16. P. K. Shen, K.Y.C.a.A.C.C.T., CO Oxidation on Pt‐Ru WO3 Electrodes. J. Electrochem. Soc, 1995. 142(6): p. L85-L86.
    17. Papageorgopoulos, D.C., Keijzer, M., and de Bruijn, F.A., The inclusion of Mo, Nb and Ta in Pt and PtRu carbon supported electrocatalysts in the quest for improved CO tolerant PEMFC anodes. Electrochimica Acta, 2002. 48(2): p. 197-204.
    18. Deivaraj, T.C., Chen, W., and Lee, J.Y., Preparation of PtNi nanoparticles for the electrocatalytic oxidation of methanol. Journal of Materials Chemistry, 2003. 13(10): p. 2555-2560.
    19. Park, K.-W., Choi, J.-H., Kwon, B.-K., Lee, S.-A., Sung, Y.-E., Ha, H.-Y., Hong, S.-A., Kim, H., and Wieckowski, A., Chemical and Electronic Effects of Ni in Pt/Ni and Pt/Ru/Ni Alloy Nanoparticles in Methanol Electrooxidation. The Journal of Physical Chemistry B, 2002. 106(8): p. 1869-1877.
    20. Park, K.-W., Choi, J.-H., Lee, S.-A., Pak, C., Chang, H., and Sung, Y.-E., PtRuRhNi nanoparticle electrocatalyst for methanol electrooxidation in direct methanol fuel cell. Journal of Catalysis, 2004. 224(2): p. 236-242.
    21. Suffredini, H.B., Tricoli, V., Avaca, L.A., and Vatistas, N., Sol–gel method to prepare active Pt–RuO2 coatings on carbon powder for methanol oxidation. Electrochemistry Communications, 2004. 6(10): p. 1025-1028.
    22. Lasch, K., Hayn, G., Jörissen, L., Garche, J., and Besenhardt, O., Mixed conducting catalyst support materials for the direct methanol fuel cell. Journal of Power Sources, 2002. 105(2): p. 305-310.
    23. Pylypenko, S., Blizanac, B.B., Olson, T.S., Konopka, D., and Atanassov, P., Composition- and Morphology-Dependent Corrosion Stability of Ruthenium Oxide Materials. ACS Applied Materials & Interfaces, 2009. 1(3): p. 604-611.
    24. Watanabe, M. and Motoo, S., Electrocatalysis by ad-atoms: Part II. Enhancement of the oxidation of methanol on platinum by ruthenium ad-atoms. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1975. 60(3): p. 267-273.
    25. Chen, K.Y., Sun, Z., and Tseung, A.C.C., Preparation and Characterization of High-Performance Pt-Ru/WO3/C
    Anode Catalysts for the Oxidation of Impure Hydrogen. Electrochemical and Solid-State Letters, 2000. 3 (1) 10-12 (2000).
    26. Cui, X., Zhang, H., Dong, X., Chen, H., Zhang, L., Guo, L., and Shi, J., Electrochemical catalytic activity for the hydrogen oxidation of mesoporous WO3 and WO3/C composites. Journal of Materials Chemistry, 2008. 18(30).
    27. Zhang, D.-Y., Ma, Z.-F., Wang, G., Konstantinov, K., Yuan, X., and Liub, H.-K., Electro-Oxidation of Ethanol on Pt-WO3/C Electrocatalyst. Electrochemical and Solid-State Letters, 2006. 9(9)A423-A426(2006).
    28. Kulesza, P.J. and Faulkner, L.R., Electrocatalysis at a Novel Electrode Coating of Nonstoichiometric Tungsten(VI,V) Oxide Aggregates. J. Am. Chem. Soc, 1988.
    29. WISEMAN, I.J. and DICKENS, P.G., Tbe Crystal Structure of Cubic Hydrogen Tungsten Bronze. JOURNAL OF SOLID STATE CHEh4LWRY, 1973. 6,374-377 (1973).
    30. VANNICE, M.A., BOUDART, M., and FRIPIAT, J.J., Mobility of Hydrogen in Hydrogen Tungsten Bronze. JOURNAL OF CATALYSIS, 1970. 17, 359-365 (1970).
    31. Shim, J. and J., E., Electrochemical characteristics of Pt-WO3/C and Pt-TiO2/C electrocatalysts in a polymer electrolyte fuel cell. Power science, 2001. 102 (2001) 172-177.
    32. Schlatter, J.C. and Boudart, M., Hydrogenation of ethylene on supported platinum. Journal of Catalysis, 1972. 24(3): p. 482-492.
    33. 彭怡貞, 金屬混合氧化物擔載 Pt 觸媒製備參數對觸媒製備參數對其氫氣氧化氫氣氧化反應的CO耐受性探討, in 化學工程系. 2016, 台灣科技大學: 台灣.
    34. García, B.L., Fuentes, R., and Weidner, J.W., Low-Temperature Synthesis of a PtR/Nb0.1Ti0.9O2 Electrocatalyst for Methanol Oxidation. Electrochemical and Solid-State Letters, 2007. 10(7): p. B108-B110.
    35. Nguyen, T.-T., Ho, V.T.T., Pan, C.-J., Liu, J.-Y., Chou, H.-L., Rick, J., Su, W.-N., and Hwang, B.-J., Synthesis of Ti0.7Mo0.3O2 supported-Pt nanodendrites and their catalytic activity and stability for oxygen reduction reaction. Applied Catalysis B: Environmental, 2014. 154–155: p. 183-189.
    36. Lo, C.-P., Wang, G., Kumar, A., and Ramani, V., TiO2–RuO2 electrocatalyst supports exhibit exceptional electrochemical stability. Applied Catalysis B: Environmental, 2013. 140–141: p. 133-140.
    37. Ho, V.T.T., Pillai, K.C., Chou, H.-L., Pan, C.-J., Rick, J., Su, W.-N., Hwang, B.-J., Lee, J.-F., Sheu, H.-S., and Chuang, W.-T., Robust non-carbon Ti0.7Ru0.3O2 support with co-catalytic functionality for Pt: enhances catalytic activity and durability for fuel cells. Energy & Environmental Science, 2011. 4(10): p. 4194-4200.
    38. Hong, L., Gui, Y., Lu, J., Hu, J., Yuan, J., and Niu, L., High performance of polyoxometalate/PtPd nanoparticles/carbon nanotubes electrocatalysts for the methanol electrooxidation. International Journal of Hydrogen Energy, 2013. 38(25): p. 11074-11079.
    39. Hassan, A., Carreras, A., Trincavelli, J., and Ticianelli, E.A., Effect of heat treatment on the activity and stability of carbon supported PtMo alloy electrocatalysts for hydrogen oxidation in proton exchange membrane fuel cells. Journal of Power Sources, 2014. 247: p. 712-720.
    40. Hsieh, C.-T., Chang, Y.-S., and Yin, K.-M., Pt–Sn Nanoparticles Decorated Carbon Nanotubes as Electrocatalysts with Enhanced Catalytic Activity. The Journal of Physical Chemistry C, 2013. 117(30): p. 15478-15486.
    41. Rocha, T.A., Ibanhi, F., Colmati, F., Linares, J.J., Paganin, V.A., and Gonzalez, E.R., Nb as an influential element for increasing the CO tolerance of PEMFC catalysts. Journal of Applied Electrochemistry, 2013. 43(8): p. 817-827.
    42. Chang, K.-H. and Hu, C.-C., Oxidative Synthesis of RuOx nH2O with Ideal Capacitive. Journal of The Electrochemical Society, 2004.
    43. Gojković, S.L., Zečević, S., and Savinell, R., O 2 Reduction on an Ink‐Type Rotating Disk Electrode Using Pt Supported on High‐Area Carbons. Journal of The Electrochemical Society, 1998. 145(11): p. 3713-3720.
    44. Schmidt, T., Gasteiger, H., Stäb, G., Urban, P., Kolb, D., and Behm, R., Characterization of high‐surface‐area electrocatalysts using a rotating disk electrode configuration. Journal of The Electrochemical Society, 1998. 145(7): p. 2354-2358.
    45. Lin, R.-B. and Shih, S.-M., Kinetics of hydrogen oxidation reaction on Nafion-coated Pt/C electrodes under high overpotentials. Journal of the Chinese Institute of Chemical Engineers, 2007. 38(5–6): p. 365-370.
    46. Marković, N.M., Grgur, B.N., Lucas, C.A., and Ross, P.N., Electrooxidation of CO and H2/CO Mixtures on Pt(111) in Acid Solutions. The Journal of Physical Chemistry B, 1999. 103(3): p. 487-495.
    47. Shih, Y.-H., Sagar, G.V., and Lin, S.D., Effect of Electrode Pt Loading on the Oxygen Reduction Reaction Evaluated by Rotating Disk Electrode and Its Implication on the Reaction Kinetics. The Journal of Physical Chemistry C, 2008. 112(1): p. 123-130.
    48. Higuchi, E., Uchida, H., and Watanabe, M., Effect of loading level in platinum-dispersed carbon black electrocatalysts on oxygen reduction activity evaluated by rotating disk electrode. Journal of Electroanalytical Chemistry, 2005. 583(1): p. 69-76.
    49. Sun, S., Zhao, Y., Xia, Y., Zou, Z., Min, G., and Zhu, Y., Bundled tungsten oxide nanowires under thermal processing. Nanotechnology, 2008. 19(30): p. 305709.
    50. Xiong, L., More, K.L., and He, T., Syntheses, characterization, and catalytic oxygen electroreduction activities of carbon-supported PtW nanoparticle catalysts. Journal of Power Sources, 2010. 195(9): p. 2570-2578.
    51. Chacón, C., Rodríguez-Pérez, M., Oskam, G., and Rodríguez-Gattorno, G., Synthesis and characterization of WO3 polymorphs: monoclinic, orthorhombic and hexagonal structures. Journal of Materials Science: Materials in Electronics, 2014. 26(8): p. 5526-5531.
    52. Baeck, S.H., Choi, K.S., Jaramillo, T.F., Stucky, G.D., and McFarland, E.W., Enhancement of Photocatalytic and Electrochromic Properties of Electrochemically Fabricated Mesoporous WO3 Thin Films. Advanced Materials, 2003. 15(15): p. 1269-1273.
    53. Cui, X., Guo, L., Cui, F., He, Q., and Shi, J., Electrocatalytic Activity and CO Tolerance Properties of Mesostructured Pt/WO3 Composite as an Anode Catalyst for PEMFCs. J. Phys. Chem. C, 2009.
    54. 胡仙超, 周., 刘喜慧, 屈慧男, 温和瑞, and 余长林, <中空树枝状三氧化钨载铂催化剂对甲醇的电催化氧化性能研究.pdf>. Journal of Fuel Chemistry and Technology, 2015.
    55. Jayaraman, S., Jaramillo, T.F., Baeck, S.-H., and McFarland, E.W., Synthesis and Characterization of Pt-WO3 as Methanol Oxidation Catalysts for Fuel Cells. American Chemical Society, 2005.
    56. Dai, Y., Liu, Y., and Chen, S., Pt–W bimetallic alloys as CO-tolerant PEMFC anode catalysts. Electrochimica Acta, 2013. 89: p. 744-748.
    57. 洪慧珊, 以旋轉圓盤電極分析燃料電池中陽極觸媒受CO毒化之影響, in 化學工程系. 2004, 元智大學: 台灣.
    58. 謝宗達, RuOxHy助觸媒的合成與其對Pt電催化甲醇氧化反應的影響, in 化學工程系. 2013, 台灣科技大學: 台灣.
    59. 雷敏宏 and 吳紀聖, 觸媒化學概論與應用. 2014: 五南圖書出版股份有限公司.
    60. 陳力嘉, 鈦釕混合氧化物擔載Pt觸媒的製備與其在電化學特性研究, in 化學工程系. 2015, 台灣科技大學: 台灣.

    QR CODE