簡易檢索 / 詳目顯示

研究生: 羅文澤
WEN-TSE LO
論文名稱: 第一原理於富鋰電極Li1.2Ni0.2Mn0.6O2摻雜金屬結構穩定性之研究
Understanding the role of dopant metal atoms on the structural and electronic properties of Lithium rich Li1.2Ni0.2Mn0.6O2 Cathode material for Li-ion Batteries
指導教授: 江志強
Jyh-Chiang Jiang
口試委員: 江志強
Jyh-Chiang Jiang
葉旻鑫
Min-Hsin Yeh
李涵榮
Han-Jung Li
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 96
中文關鍵詞: 鋰離子電池過量鋰金屬摻雜密度泛函理論
外文關鍵詞: Li-ion batteries, Li-rich, Metal ion doping, DFT
相關次數: 點閱:290下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鋰離子電池在 90 年代首次被商用化後,持續被視為有效率的儲能系統之一。相較於傳統的鋰鈷氧層狀正極材料,富鋰正極材料 Li1.2Ni0.2Mn0.6O2 可以提供更高的電容量(~250 mAh/g)、更大的能量密度(~1000 mAh/g)。然而,距離商用化仍須克服該材料的問題如結構穩定性、充放電電壓平台衰退、高充放電速率下的衰退。藉由密度泛函理論計算,首先確立 Li1.2Ni0.2Mn0.6O2 原子級結構。為解決結構不穩定之問題,我們提出透過參雜過度金屬鎘於層狀材料當中,不但可以抑制材料體積變化且減緩楊¬-泰勒效應(Jahn-Teller Distortion)發生。透過能態密度(Density of States)分析發現,當鎘參雜在鎳金屬位置時,參雜後的層狀材料因為鎘無法隨著充放電改變價數,使數量較少的鎳離子更快地價數轉移從 +2到 +4,減緩了會在 +3 發生的楊¬-泰勒效應。我們後續比較鉀、鈣、鋁等非過度金屬微量參雜,比較晶格參數、體積變化、生成能、電位、能態密度後,我們發現鎘參雜於富鋰材料中仍是最佳的選擇。於提升富鋰電極效能上,此研究結果透過理論計算提供給實驗學者一個新的參雜想法與策略。


    Li-ion batteries have been viewed as an efficient energy storage system since they firstly commercialized in the 1990s. Compared with convention lithium cobalt oxide, Li1.2Ni0.2Mn0.6O2 layered material can deliver higher specific capacity (~250 mAh/g) and high energy density (~1000 Wh/kg). Nevertheless, these materials still face some critical problems such as structural instability, voltage fading, and low rate performance. By the aid of DFT calculations, we demonstrated Li1.2Ni0.2Mn0.6O2 structure in atomic level. To solve the structural instability problem, in this study we have proposed doping of different metal atoms such as Cd, Ca, K and Al in different sites of Li1.2Ni0.2Mn0.6O2 and investigated their structural and electronic properties. The PDOS results show that the Ni ions in the pristine Li1.2Ni0.2Mn0.6O2 structure maintained the 3+ oxidation state for a longer time and resulted in the structural deformation during the long cycling process. Whereas, the Ni ions in the Cd, K and Ca-doped Li1.2Ni0.2Mn0.6O2 structure are in the 3+ oxidation state for a very short time compared to pristine. Our DFT results show that the doping of Cd ion in Ni site of Li1.2Ni0.2Mn0.6O2 is the most suitable one because it inhibits the structural change, lowers the formation energy, suppresses the Jahn-Teller compared with pristine and other dopant atoms. This theoretical study gives new insight about doping strategy, and will help in improving the electrochemical performance of Li-rich cathode materials

    Chapter 1 Introduction 1 1.1 The working principle of lithium-ion battery 4 1.2 Main components of a lithium-ion battery 7 1.2.1 Anode material 7 1.2.2 Cathode material 9 1.3 Present Study 18 Chapter 2 Theoretical methodology 22 Chapter 3 Results and Discussion 23 3.1 Modeling of bulk Li1.2Ni0.2Mn0.6O2 23 3.1.1 XRD simulation 24 3.1.2 Electronic Structure 25 3.1.3 Intercalation Mechanism 27 3.1.4 Average intercalation voltage 29 3.2 Cd Doping on Li1.2Ni0.2Mn0.6O2 33 3.2.1 Exchange Energies 33 3.2.2 Structural properties 34 3.2.3 Electronic Structure and Magnetic Moment 43 3.3 Effect of Non-Transitional Metal K, Ca, and Al Doping 50 3.3.1 Exchange energies 50 3.3.2 Structural properties 51 3.3.3 Formation Energy 57 3.3.4 Average intercalation voltage 58 3.3.5 Electronic Structure and Magnetic Moment 60 Chapter 4 Conclusion and Future Work 68 4.1 Conclusion 68 4.2 Future Work 70

    1. Sciences, N.A.o., Climate Change: Evidence and Causes. 2014, Washington, DC: The National Academies Press. 36.
    2. Le Quéré, C., et al., Global Carbon Budget 2016. Earth System Science Data, 2016. 8(2): p. 605-649.
    3. Stern, P.C., B.K. Sovacool, and T. Dietz, Towards a science of climate and energy choices. Nat. Clim. Chang., 2016. 6(6): p. 547-555.
    4. Cano, Z.P., et al., Batteries and fuel cells for emerging electric vehicle markets. Nat. Energy, 2018. 3(4): p. 279-289.
    5. Larcher, D. and J.M. Tarascon, Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem., 2015. 7(1): p. 19-29.
    6. Tran, M., et al., Realizing the electric-vehicle revolution. Nat. Clim. Chang., 2012. 2(5): p. 328-333.
    7. Agency, I.E., Global EV Outlook 2018. 2018.
    8. Lu, J., et al., The role of nanotechnology in the development of battery materials for electric vehicles. Nat. Nanotechnol., 2016. 11(12): p. 1031-1038.
    9. Goodenough, J.B. and K.S. Park, The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc., 2013. 135(4): p. 1167-76.
    10. Peled, E. and S. Menkin, Review—SEI: Past, Present and Future. J. Electrochem. Soc., 2017. 164(7): p. A1703-A1719.
    11. Julien, C., et al., Comparative Issues of Cathode Materials for Li-Ion Batteries. Inorganics, 2014. 2(1): p. 132.
    12. Zanini, M., S. Basu, and J.E. Fischer, Alternate synthesis and reflectivity spectrum of stage 1 lithium—graphite intercalation compound. Carbon, 1978. 16(3): p. 211-212.
    13. Yang, H., et al., Investigations of the exothermic reactions of natural graphite anode for Li-ion batteries during thermal runaway. J. Electrochem. Soc., 2005. 152(1): p. A73-A79.
    14. Zheng, H., et al., Electrochemical intercalation of lithium into a natural graphite anode in quaternary ammonium-based ionic liquid electrolytes. Carbon, 2006. 44(2): p. 203-210.
    15. Sun, Y., et al., Graphite-Encapsulated Li-Metal Hybrid Anodes for High-Capacity Li Batteries. Chem, 2016. 1(2): p. 287-297.
    16. Hossain, S., et al., Comparative studies of MCMB and CC composite as anodes for lithium-ion battery systems. J. Power Sources, 2003. 114(2): p. 264-276.
    17. Ahamad, S. and A. Gupta. Study of Capacity Retention of Mcmb Anode Using Various Nanostructured Conductive Additives. in Meeting Abstracts. 2017. J Electrochem Soc.
    18. Wang, X., E. Yasukawa, and S. Kasuya, Nonflammable trimethyl phosphate solvent-containing electrolytes for lithium-ion batteries: II. The use of an amorphous carbon anode. J. Electrochem. Soc., 2001. 148(10): p. A1066-A1071.
    19. Chang, K., et al., Graphene-like MoS 2/amorphous carbon composites with high capacity and excellent stability as anode materials for lithium ion batteries. J. Mater. Chem., 2011. 21(17): p. 6251-6257.
    20. Casimir, A., et al., Silicon-based anodes for lithium-ion batteries: Effectiveness of materials synthesis and electrode preparation. Nano Energy, 2016. 27: p. 359-376.
    21. Ozanam, F. and M. Rosso, Silicon as anode material for Li-ion batteries. Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., 2016. 213: p. 2-11.
    22. Sakabe, J., et al., Porous amorphous silicon film anodes for high-capacity and stable all-solid-state lithium batteries. Commun. Chem., 2018. 1(1): p. 24.
    23. Cheng, X.B., et al., Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review. Chem. Rev., 2017. 117(15): p. 10403-10473.
    24. Albertus, P., et al., Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries. Nat. Energy, 2017. 3(1): p. 16-21.
    25. Camacho-Forero, L.E., T.W. Smith, and P.B. Balbuena, Effects of High and Low Salt Concentration in Electrolytes at Lithium–Metal Anode Surfaces. J. Phys. Chem. C, 2016. 121(1): p. 182-194.
    26. Lin, D., Y. Liu, and Y. Cui, Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol., 2017. 12(3): p. 194-206.
    27. Zheng, J., et al., Electrolyte additive enabled fast charging and stable cycling lithium metal batteries. Nat. Energy, 2017. 2(3).
    28. Ding, F., et al., Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J. Am. Chem. Soc., 2013. 135(11): p. 4450-6.
    29. Qian, J., et al., High rate and stable cycling of lithium metal anode. Nat. Commun., 2015. 6: p. 6362.
    30. Li, W., et al., The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nat. Commun., 2015. 6: p. 7436.
    31. Cheng, J.-H., et al., Visualization of Lithium Plating and Stripping via in Operando Transmission X-ray Microscopy. J. Phys. Chem. C, 2017. 121(14): p. 7761-7766.
    32. WHITTINGHAM, M.S., Electrical Energy Storage and Intercalation Chemistry. Science, 1976. 192(4244): p. 1126-1127.
    33. Mizushima, K., et al., LixCoO2 (0< x<-1): A new cathode material for batteries of high energy density. Mater. Res. Bull., 1980. 15(6): p. 783-789.
    34. Rozier, P. and J.M. Tarascon, Review—Li-Rich Layered Oxide Cathodes for Next-Generation Li-Ion Batteries: Chances and Challenges. J. Electrochem. Soc., 2015. 162(14): p. A2490-A2499.
    35. Joost, R.b.M. and S. Alexander, 17th International Meeting on Lithium Batteries. Johns. Matthey Technol. Rev., 2015. 59(1): p. 56-63.
    36. Liu, H., et al., Origin of deterioration for LiNiO2 cathode material during storage in air. Electrochem. Solid State Lett., 2004. 7(7): p. A190-A193.
    37. Kim, B.-H., et al., Electrochemical properties of LiNiO2 cathode material synthesized by the emulsion method. Ceram. Int., 2007. 33(5): p. 837-841.
    38. Yoon, C.S., et al., Cation Ordering of Zr-Doped LiNiO2 Cathode for Lithium-Ion Batteries. Chem. Mat., 2018. 30(5): p. 1808-1814.
    39. Huang, Y., et al., A modified ZrO2-coating process to improve electrochemical performance of Li (Ni1/3Co1/3Mn1/3) O2. J. Power Sources, 2009. 188(2): p. 538-545.
    40. Fergus, J.W., Recent developments in cathode materials for lithium ion batteries. J. Power Sources, 2010. 195(4): p. 939-954.
    41. Ohzuku, T. and Y. Makimura, Layered lithium insertion material of LiNi1/2Mn1/2O2: A possible alternative to LiCoO2 for advanced lithium-ion batteries. Chem. Lett., 2001. 30(8): p. 744-745.
    42. Martha, S.K., et al., A comparative study of electrodes comprising nanometric and submicron particles of LiNi0.50Mn0.50O2, LiNi0.33Mn0.33Co0.33O2, and LiNi0.40Mn0.40Co0.20O2 layered compounds. J. Power Sources, 2009. 189(1): p. 248-255.
    43. Stewart, S.G., V. Srinivasan, and J. Newman, Modeling the performance of lithium-ion batteries and capacitors during hybrid-electric-vehicle operation. J Electrochem Soc, 2008. 155(9): p. A664-A671.
    44. Hy, S., et al., Performance and design considerations for lithium excess layered oxide positive electrode materials for lithium ion batteries. Energy Environ. Sci., 2016. 9(6): p. 1931-1954.
    45. Nayak, P.K., et al., Review on Challenges and Recent Advances in the Electrochemical Performance of High Capacity Li- and Mn-Rich Cathode Materials for Li-Ion Batteries. Adv. Energy Mater., 2018. 8(8): p. 1702397.
    46. Lee, J., et al., Unlocking the potential of cation-disordered oxides for rechargeable lithium batteries. Science, 2014. 343(6170): p. 519-522.
    47. Gu, M., et al., Nanoscale Phase Separation, Cation Ordering, and Surface Chemistry in Pristine Li1.2Ni0.2Mn0.6O2 for Li-Ion Batteries. Chem. Mat., 2013. 25(11): p. 2319-2326.
    48. Lin, M.-H., et al., Revealing the mitigation of intrinsic structure transformation and oxygen evolution in a layered Li 1.2 Ni 0.2 Mn 0.6 O 2 cathode using restricted charging protocols. J. Power Sources, 2017. 359: p. 539-548.
    49. Kim, S., et al., A stable lithium-rich surface structure for lithium-rich layered cathode materials. Nat. Commun., 2016. 7: p. 13598.
    50. Qiu, B., et al., Gas-solid interfacial modification of oxygen activity in layered oxide cathodes for lithium-ion batteries. Nat. Commun., 2016. 7: p. 12108.
    51. Thackeray, M.M., et al., Lithium insertion into manganese spinels. Mater. Res. Bull., 1983. 18(4): p. 461-472.
    52. Lee, M.-J., et al., High Performance LiMn2O4 Cathode Materials Grown with Epitaxial Layered Nanostructure for Li-Ion Batteries. Nano Lett., 2014. 14(2): p. 993-999.
    53. Liu, D., et al., Spinel materials for high-voltage cathodes in Li-ion batteries. RSC Adv., 2014. 4(1): p. 154-167.
    54. Yi, T.-F., et al., A review of recent developments in the surface modification of LiMn 2 O 4 as cathode material of power lithium-ion battery. Ionics, 2009. 15(6): p. 779.
    55. Jahn, H.A. and E. Teller, Stability of polyatomic molecules in degenerate electronic states-I—Orbital degeneracy. Proc. R. Soc. Lond. A, 1937. 161(905): p. 220-235.
    56. Goodenough, J.B. and A.L. Loeb, Theory of ionic ordering, crystal distortion, and magnetic exchange due to covalent forces in spinels. Phys. Rev., 1955. 98(2): p. 391.
    57. Aurbach, D., et al., Capacity fading of LixMn2O4 spinel electrodes studied by XRD and electroanalytical techniques. J. Power Sources, 1999. 81: p. 472-479.
    58. Pieczonka, N.P.W., et al., Understanding Transition-Metal Dissolution Behavior in LiNi0.5Mn1.5O4 High-Voltage Spinel for Lithium Ion Batteries. J. Phys. Chem. C, 2013. 117(31): p. 15947-15957.
    59. Padhi, A.K., K.S. Nanjundaswamy, and J.B. Goodenough, Phospho‐olivines as positive‐electrode materials for rechargeable lithium batteries. J. Electrochem. Soc., 1997. 144(4): p. 1188-1194.
    60. Saravanan, K., et al., Li (Mn x Fe 1− x) PO 4/C (x= 0.5, 0.75 and 1) nanoplates for lithium storage application. J. Mater. Chem., 2011. 21(38): p. 14925-14935.
    61. Tan, Z., X. Wang, and H. Zhou, Highly energy density olivine cathode material synthesized by coprecipitation technique. Electrochim. Acta, 2013. 90: p. 597-603.
    62. Xu, Z., et al., Recent developments in the doped LiFePO4 cathode materials for power lithium ion batteries. J. Electrochem. Soc., 2016. 163(13): p. A2600-A2610.
    63. Molenda, M., et al., Carbon nanocoatings for C/LiFePO4 composite cathode. Solid State Ion., 2013. 251: p. 47-50.
    64. Zaghib, K., et al., Safe and fast-charging Li-ion battery with long shelf life for power applications. J. Power Sources, 2011. 196(8): p. 3949-3954.
    65. Peled, E., The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—the solid electrolyte interphase model. J Electrochem Soc, 1979. 126(12): p. 2047-2051.
    66. Li, Q., et al., Progress in electrolytes for rechargeable Li-based batteries and beyond. Green Energy & Environment, 2016. 1(1): p. 18-42.
    67. Abe, K., et al., Functional electrolytes: Synergetic effect of electrolyte additives for lithium-ion battery. J. Power Sources, 2008. 184(2): p. 449-455.
    68. Wang, A., et al., Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries. npj Comput. Mater., 2018. 4(1): p. 15.
    69. Watanabe, M., et al., Application of Ionic Liquids to Energy Storage and Conversion Materials and Devices. Chem. Rev., 2017. 117(10): p. 7190-7239.
    70. Elia, G.A., et al., A Long‐Life Lithium Ion Battery with Enhanced Electrode/Electrolyte Interface by Using an Ionic Liquid Solution. Chem. Eur. J., 2016. 22(20): p. 6808-6814.
    71. Wang, G.J., et al., Electrochemical behavior of LiCoO2 in a saturated aqueous Li2SO4 solution. Electrochim. Acta, 2009. 54(4): p. 1199-1203.
    72. Adams, B.D., et al., Long term stability of Li-S batteries using high concentration lithium nitrate electrolytes. Nano Energy, 2017. 40: p. 607-617.
    73. Yamada, T., et al., All Solid-State Lithium–Sulfur Battery Using a Glass-Type P2S5–Li2S Electrolyte: Benefits on Anode Kinetics. J. Electrochem. Soc., 2015. 162(4): p. A646-A651.
    74. Liu, X., et al., Distinct charge dynamics in battery electrodes revealed by in situ and operando soft X-ray spectroscopy. Nat. Commun., 2013. 4: p. 2568.
    75. Lu, C.-H. and Y.-K. Lin, Microemulsion preparation and electrochemical characteristics of LiNi1/3Co1/3Mn1/3O2 powders. J. Power Sources, 2009. 189(1): p. 40-44.
    76. Stewart, S.G., V. Srinivasan, and J. Newman, Modeling the Performance of Lithium-Ion Batteries and Capacitors during Hybrid-Electric-Vehicle Operation. J. Electrochem. Soc., 2008. 155(9): p. A664.
    77. Zheng, J., et al., Li- and Mn-Rich Cathode Materials: Challenges to Commercialization. Adv. Energy Mater., 2017. 7(6): p. 1601284.
    78. Hy, S., et al., Direct In situ Observation of Li2O Evolution on Li-Rich High-Capacity Cathode Material, Li[NixLi(1–2x)/3Mn(2–x)/3]O2 (0 ≤ x ≤0.5). Journal of the American Chemical Society, 2014. 136(3): p. 999-1007.
    79. Xu, B., et al., Identifying surface structural changes in layered Li-excess nickel manganese oxides in high voltage lithium ion batteries: A joint experimental and theoretical study. Energy Environ. Sci., 2011. 4(6): p. 2223.
    80. Zheng, J., et al., Structural and Chemical Evolution of Li- and Mn-Rich Layered Cathode Material. Chem. Mat., 2015. 27(4): p. 1381-1390.
    81. Zhang, T., et al., Suppressing the voltage-fading of layered lithium-rich cathode materials via an aqueous binder for Li-ion batteries. Chem. Commun., 2016. 52(25): p. 4683-6.
    82. Mohanty, D., et al., Structural transformation of a lithium-rich Li1.2Co0.1Mn0.55Ni0.15O2 cathode during high voltage cycling resolved by in situ X-ray diffraction. J. Power Sources, 2013. 229: p. 239-248.
    83. Zheng, J., et al., Corrosion/fragmentation of layered composite cathode and related capacity/voltage fading during cycling process. Nano Lett., 2013. 13(8): p. 3824-30.
    84. Wang, Y., et al., New Insights into Improving Rate Performance of Lithium-Rich Cathode Material. Adv. Mater., 2015. 27(26): p. 3915-20.
    85. Martha, S.K., et al., Electrochemical and rate performance study of high-voltage lithium-rich composition: Li1.2Mn0.525Ni0.175Co0.1O2. J. Power Sources, 2012. 199: p. 220-226.
    86. Jung, Y.S., et al., Ultrathin direct atomic layer deposition on composite electrodes for highly durable and safe Li-ion batteries. Adv. Mater., 2010. 22(19): p. 2172-6.
    87. Chen, Z. and J.R. Dahn, Effect of a ZrO[sub 2] Coating on the Structure and Electrochemistry of Li[sub x]CoO[sub 2] When Cycled to 4.5 V. Electrochem. Solid State Lett., 2002. 5(10): p. A213.
    88. Wei, X., et al., Synthesis and properties of mesoporous Zn-doped Li1.2Mn0.54Co0.13Ni0.13O2 as cathode materials by a MOFs-assisted solvothermal method. RSC Adv., 2017. 7(56): p. 35055-35059.
    89. Yu, R., et al., Effect of magnesium doping on properties of lithium-rich layered oxide cathodes based on a one-step co-precipitation strategy. J. Mater. Chem. A, 2016. 4(13): p. 4941-4951.
    90. Lu, Y., et al., Enhanced Electrochemical Properties of Zr(4+)-doped Li1.20[Mn0.52Ni0.20Co0.08]O2 Cathode Material for Lithium-ion Battery at Elevated Temperature. Sci Rep, 2018. 8(1): p. 2981.
    91. Feng, X., et al., Enhanced electrochemical performance of Ti-doped Li1.2Mn0.54Co0.13Ni0.13O2 for lithium-ion batteries. Journal of Power Sources, 2016. 317: p. 74-80.
    92. Nayak, P.K., et al., Effect of Fe in suppressing the discharge voltage decay of high capacity Li-rich cathodes for Li-ion batteries. J. Solid State Electrochem., 2015. 19(9): p. 2781-2792.
    93. Qiao, Q.-Q., et al., Sn-stabilized Li-rich layered Li(Li0.17Ni0.25Mn0.58)O2 oxide as a cathode for advanced lithium-ion batteries. J. Mater. Chem. A, 2015. 3(34): p. 17627-17634.
    94. Chen, H., et al., Synthesis and electrochemical study of Zr-doped Li[Li0.2Mn0.54Ni0.13Co0.13]O2 as cathode material for Li-ion battery. Ceram. Int., 2016. 42(1): p. 263-269.
    95. Kresse, G. and J. Hafner, Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B, 1994. 49(20): p. 14251.
    96. Blöchl, P.E., Projector augmented-wave method. Phys. Rev. B, 1994. 50(24): p. 17953.
    97. Perdew, J.P., K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett., 1996. 77(18): p. 3865.
    98. Liechtenstein, A.I., V.I. Anisimov, and J. Zaanen, Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators. Phys. Rev. B, 1995. 52(8): p. R5467-R5470.
    99. Hinuma, Y., et al., Phase transitions in the LiNi0. 5Mn0. 5O2 system with temperature. Chem. Mat., 2007. 19(7): p. 1790-1800.
    100. Systèmes, D., Materials Studio. Dassault Systèmes BIOVIA: San Diego.
    101. Lee, D.K., et al., High capacity Li[Li0.2Ni0.2Mn0.6]O2 cathode materials via a carbonate co-precipitation method. J. Power Sources, 2006. 162(2): p. 1346-1350.
    102. Wang, J., et al., Synthesis and electrochemical properties of layered lithium transition metal oxides. J. Mater. Chem., 2011. 21(8): p. 2544-2549.
    103. Dixit, M., et al., Thermodynamic and kinetic studies of LiNi0.5Co0.2Mn0.3O2 as a positive electrode material for Li-ion batteries using first principles. Phys. Chem. Chem. Phys., 2016. 18(9): p. 6799-812.
    104. Hy, S., et al., Understanding the Role of Ni in Stabilizing the Lithium-Rich High-Capacity Cathode Material Li[NixLi(1–2x)/3Mn(2–x)/3]O2 (0 ≤ x ≤ 0.5). Chem. Mat., 2014. 26(24): p. 6919-6927.
    105. Urban, A., D.-H. Seo, and G. Ceder, Computational understanding of Li-ion batteries. npj Comput. Mater., 2016. 2(1).
    106. Arroyo y de Dompablo, M.E., A. Van der Ven, and G. Ceder, First-principles calculations of lithium ordering and phase stability onLixNiO2. Phys. Rev. B, 2002. 66(6).
    107. Li, G., et al., Halogen-doping in LiCoO2 cathode materials for Li-ion batteries: insights from ab initio calculations. RSC Adv., 2015. 5(130): p. 107326-107332.
    108. Song, B., et al., Mitigated phase transition during first cycle of a Li-rich layered cathode studied by in operando synchrotron X-ray powder diffraction. Phys. Chem. Chem. Phys., 2016. 18(6): p. 4745-52.
    109. Ates, M.N., S. Mukerjee, and K.M. Abraham, A high rate Li-rich layered MNC cathode material for lithium-ion batteries. RSC Adv., 2015. 5(35): p. 27375-27386.
    110. Yazami, R., Nanomaterials for Lithium-ion batteries: Fundamentals and Applications. 2013: Pan Stanford.
    111. Liu, C., Z.G. Neale, and G. Cao, Understanding electrochemical potentials of cathode materials in rechargeable batteries. Mater. Today, 2016. 19(2): p. 109-123.
    112. Dixit, M., et al., Thermodynamic and kinetic studies of LiNi0.5Co0.2Mn0.3O2 as a positive electrode material for Li-ion batteries using first principles. Physical Chemistry Chemical Physics, 2016. 18(9): p. 6799-6812.
    113. Luo, G., J. Zhao, and B. Wang, First-principles study of transition metal doped Li2S as cathode materials in lithium batteries. J. Renew. Sustain. Energy, 2012. 4(6): p. 063128.
    114. Zheng, Y.-Z., et al., Nickel-mediated polyol synthesis of hierarchical V2O5 hollow microspheres with enhanced lithium storage properties. J. Mater. Chem. A, 2015. 3(5): p. 1979-1985.
    115. Li, Q., et al., K(+)-doped Li(1.2)Mn(0.54)Co(0.13)Ni(0.13)O2: a novel cathode material with an enhanced cycling stability for lithium-ion batteries. ACS Appl. Mater. Interfaces, 2014. 6(13): p. 10330-41.

    QR CODE