簡易檢索 / 詳目顯示

研究生: 陳璟安
Jing-An Chen
論文名稱: 含熱效應之鋰離子電池等效電路模型
Lithium-ion Battery Equivalent Circuit Model With Thermal Effects
指導教授: 姜嘉瑞
Chia-Jui Chiang
口試委員: 蔡大翔
Dah-Shyang Tsai
楊景龍
Ching-Lung Yang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 89
中文關鍵詞: 鋰離子電池等效電路交流阻抗分析內阻極化電阻擴散電容
外文關鍵詞: Lithium-ion battery, equivalent, alternative current impedance spectroscopy, internal resistance, polarization resistance, diffusion capacitance
相關次數: 點閱:274下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究目的為建立一結合鋰離子電池(lithium ion battery) 等效電
    路及熱動態之模型。模型參數鑑別乃利用交流阻抗分析(Alternative Current
    Impedance Spectroscopy,ACIS) 實驗,以最小平方法求出鋰離子電池在不同電量
    狀態(State Of Charge) 與不同環境溫度下之內阻(Ri)、極化電阻(Rp)、下壓因
    子()、極化電容(Cp)、擴散電容(Cd) 及擴散電阻(Rd) 之變化,建立鋰離子電
    池參數模型。並以絕熱及自然散熱等實驗,鑑別出熱模型內熱容值與熱傳係數,
    運用不同充放電行程,在不同溫度及SOC 下對鋰離子電池模型進行驗證,並於
    各操作條件下溫度與電壓誤差皆小於0.1o C 與35mV。


    The purpose of this thesis is to establish the lithium-ion equivalent circuit
    model with SOC and temperature effects on its parameter. Model parameter
    identification is conducted by alternative current impedance spectroscopy (ACIS)
    experiment, which uses the least squares method to obtain the lithium-ion internal
    resistance (Ri),Polarization resistance(R),generalized capacitive(A), depression
    factor() ,diffusion capacitance (Cd) and diffusion resistance(Rd) at different
    SOC and temperatures. The lithium-ion model is then validated against
    experimental data under different charge/discharge cycles and thermal conditions.
    Thermal dynamic model is identified by adiabatic and natural heat dissipation.
    All Temperature and voltage error less than 0.1o C and 35mV.

    目錄 摘要I ABSTRACT II 致謝III 目錄IV 圖目錄V 表目錄VIII 1 緒論1 1.1 研究背景. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 文獻回顧. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2.1 等效電路模型文獻回顧. . . . . . . . . . . . . . . . . . . 5 1.2.2 熱效應模型文獻回顧. . . . . . . . . . . . . . . . . . . . . 6 1.3 研究目的與方法. . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.4 論文架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 實驗設備與軟體介紹7 2.1 元件介紹. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.1 鋰離子電池介紹. . . . . . . . . . . . . . . . . . . . . . . 7 2.1.2 鋰離子電池原理. . . . . . . . . . . . . . . . . . . . . . . 8 2.2 硬體設備. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2.1 可程式直流電源供應器. . . . . . . . . . . . . . . . . . . 12 IV 目錄 2.2.2 直流電子負載機. . . . . . . . . . . . . . . . . . . . . . . 12 2.2.3 可程式恆溫試驗機. . . . . . . . . . . . . . . . . . . . . . 14 2.2.4 電阻式溫度感應器. . . . . . . . . . . . . . . . . . . . . . 15 2.2.5 霍爾元件. . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2.6 阻抗分析儀. . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2.7 數據擷取系統. . . . . . . . . . . . . . . . . . . . . . . . . 20 2.3 實驗設備軟體. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.3.1 MATLAB . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.3.2 Simulink . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.3.3 Real Time Windows Target . . . . . . . . . . . . . . . . . 22 2.4 開路電壓法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3 鋰離子電池模型25 3.1 交流阻抗分析法. . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.2 鋰離子等效電路模型. . . . . . . . . . . . . . . . . . . . . . . . . 30 3.2.1 ZARC 元件. . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.2.2 Warburg 元件. . . . . . . . . . . . . . . . . . . . . . . . . 33 3.2.3 鋰離子電池總阻抗. . . . . . . . . . . . . . . . . . . . . . 34 3.3 鋰離子電池之熱動態模型. . . . . . . . . . . . . . . . . . . . . . 37 4 模擬與實驗結果39 4.1 模型參數鑑別. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.1.1 熱模型參數鑑別. . . . . . . . . . . . . . . . . . . . . . . 39 4.1.2 交流阻抗實驗與參數鑑別. . . . . . . . . . . . . . . . . . 41 4.2 鋰離子電池之模型驗證. . . . . . . . . . . . . . . . . . . . . . . . 53 4.2.1 絕熱(Adiabatic) 情況下之模型驗證. . . . . . . . . . . . 53 4.2.2 常溫散熱(natural heat dissipation) 情況下之模型驗證. . 60 4.2.3 低溫情況下之模型驗證. . . . . . . . . . . . . . . . . . . 67 5 結果與未來展望71 5.0.1 結果. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

    [1] 張永瑞、謝錦隆, 再生能源HCPV.SOFC 高功率電力調控系統研製報
    告技術, 核能研究所,2009.
    [2] ’Tarun Huria’”Rechargeable lithium battery energy storage systems
    for vehicular applications”UNIVERSITÀ DI PISA Engineering School
    “Leonardo da Vinci,1-122,2012
    [3] ’stephan Buller’”Impedance-Based Simulation Models for Energy Storage
    Devices in Advanced Automotive Power Systems”ISBN: 978-3-
    8322-1225-4
    [4] ’ChangHoon Lim”MIT OpenCourseWare”IV. Transport Phenomena”
    Lecture 20: Warburg Impedance’
    [5] ’Alexander Farmann’ ’Wladislaw Waag’ ’ Dirk Uwe Sauer’”Adaptive
    approach for on-board impedance parameters and voltage estimation of
    lithium-ion batteries in electric vehicles”,Journal of Power Sources,vol.
    299,176-188,2015
    [6] ’D.Andre’ ’M. Meiler’”Characterization of high-power lithium-ion batteries
    by electrochemical impedance spectroscopy. I. Experimental investigation”,
    Journal of Power Sources,vol196,5334–5341,2011
    [7] ’D.Andre”M.Meiler’”Characterization of high-power lithium-ion
    batteries by electrochemical impedance spectroscopy. II: Modelling”,
    Journal of Power Sources,vol. 196,5349–5356,2011
    [8] ’Li Wang” Jishi Zhao’”Electrochemical Impedance Spectroscopy (EIS)
    Study of LiNi1/3Co1/3Mn1/3O2 for Li-ion Batteries”,J. Electrochem.
    Sci,vo. l 7,345-353,2012
    [9] ’Wladislaw Waag’,’Stefan Käbitz’”Experimental investigation of the
    lithium-ion battery impedance characteristic at various conditions and
    aging states and its influence on the application”.Applied Energy,vol.
    102,885–897,2013
    [10] ’J.Vetter”P.NovakAgeing’”mechanisms in lithium-ion batteries ”,Journal
    of Power Sources,vo. l147,269–281,2005
    [11] ’D.Bernardi’,’E. Pawlikowski’,”A General Energy Balance for Battery
    Systems”,J. Electrochem. Soc,Vol. 132,5-12,1985
    [12] ’Karen E. Thomas”John Newman’”Heats of mixing and of entropy in
    porous insertion electrodes”,Journal of Power Sources,vol 119–121,844–
    849,2003
    [13] ’Jinlei Su” Guo Wei’”Online Internal Temperature Estimation for
    Lithium-Ion Batteries Based on Kalman Filter,Energies ”,vol. 8,4400-
    4415,2015
    [14] ’S.C. Chen”C.Wan’”Thermal analysis of lithium-ion batteries”Journal
    of Power Sources,vol. 140,111-124,2005
    [15] ’Paola Villano”Maria Carewska’Specific heat capacity of lithium polymer
    battery components,Thermochimica Acta,vol. 402,219–224,2003
    [16] M. Specialties, resistance Temperature Detectors:PT-100
    [17] 張智星, MATLAB 程式設計與應用, 第1-2 1-5 頁. 清蔚科技股份有限
    公司.
    [18] 李宜達, 控制系統設計與模擬, 第1-1 1-2 頁. 全華科技圖書股份有限
    公司, 2003.
    [19] MathWorks, http://www.mathworks.de/.
    [20] T. M. Inc., 2004, real-time windows target user’s guide
    [21] Battery and Energy Technologieshttp://www.mpoweruk.com/
    [22] E. Barsoukov and J. R. Macdonald, “Impedane spectroscopy theory,
    experiment and applications,”Wiley-Interscience.
    [23] 鄭文欽, 含熱效應之超級電容等效電路模型, 碩士論文,100 年, 台北.
    [24] 曹楚南、張鑒清, 電化學阻抗譜導論. 科學出版社, 2002.
    [25] ’Julius Schmitt’,’Arpit Maheshwari’”Impedance change and capacity
    fade of lithium nickel manganese cobalt oxide-based batteries during
    calendar aging”,Journal of Power Sources”vol. 353,183-194,2017
    [26] ’Doron Aurbach’,’Mikhail D. Levi’,”Common Electroanalytical Behavior
    of Li Intercalation Processes into Graphite and Transition Metal
    Oxides”,J. Electrochem. Soc,vol. 145,3024-3034,1998
    [27] ’Saeed Sepasi’ ”ADAPTIVE STATE OF CHARGE ESTIMATION
    FOR BATTERY PACKS”1-133,2014
    [28] ’Suleiman Abu-Sharkh’,’Dennis Doerffel’”Rapid test and non-linear
    model characterisation of solid-state lithium-ion batteries”,Journal of
    Power Sources,vol. 130,266-274,2004
    [29] ’M. Broussely’,’Ph. Biensan’”Main aging mechanisms in Li ion batteries”,
    Journal of Power Sources,vol. 146,90–96,2005
    [30] ’Jon P. Christophersen’,’Gary L. Hunt’”Pulse resistance effects due to
    charging or discharging of high-power lithium-ion cells: A path dependence
    study”,vol. 173,998-1005,2007
    [31] ’Yancheng Zhang”Chao-Yang Wang’”Cycle-Life Characterization of
    Automotive Lithium-Ion Batteries with LiNiO2 Cathode”Journal of
    The Electrochemical Society,vol. 156,A527-A535,2009
    [32] ’P. SURESH1’,’A.K. SHUKLA’”Temperature dependence studies of
    a.c. impedance of lithium-ion cells”,Journal of Applied Electrochemistry,
    vol. 32,267–273,2002
    [33] ’Chunsheng Wang’,’A. John Appleby’”Low-Temperature Characterization
    of Lithium-Ion Carbon Anodes via Microperturbation Measurement”
    Journal of The Electrochemical Society,vol. 149,A754-A760,2002
    [34] ’Jiuchun Jiang’,’Haijun Ruan’,”reduced low-temperature electrothermal
    coupled model for lithium-ion batteries”,Applied Energy,vol.
    177,804–816,2016
    [35] ’Jamie Gomez’,’Ruben Nelson’”Equivalent circuit model parameters of
    a high-power Li-ion battery:Thermal and state of charge effects”Journal
    of Power Sources,vol. 196,4826–4831
    [36] ’Jun Huang’,’Zhe Li’”Analytical Solution to the Impedance of Electrode/
    Electrolyte Interface in Lithium-Ion Batteries”Journal of The
    Electrochemical Society,vol. 162,A7037-A7048
    [37] ’Long Lam’,’Pavol Bauer’A Practical Circuit-based Model for Li-ion
    Battery Cells in Electric Vehicle Applications,IEEE,1-9,2011

    QR CODE