簡易檢索 / 詳目顯示

研究生: 陳麗莎
Adriana Clarisza
論文名稱: 下世代高安全性電池之先進電解質
Advanced Electrolytes for Next-Generation High-Safety Battery
指導教授: 黃炳照
Bing Joe Hwang
口試委員: 劉培毅
Oliver Liu
吳溪煌
She-Huang Wu
蘇威年
Wei-Nien Su
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 171
中文關鍵詞: 水電解質濃縮電解液鋅離子電池原位分析硫化電解質聚合物支架熱穩定性
外文關鍵詞: aqueous electrolyte, concentrated electrolyte, zinc-ion battery, in-operando characterization, sulfide electrolyte, polymer scaffold, thermal stability
相關次數: 點閱:296下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 傳統液(態)電池的安全問題增加了對更安全替代品的需求。水性和固體電解質被認為是有前景的解決方案。近幾十年來,利用鋅金屬在水介質中的穩定性,開發了水系鋅離子電池。為了盡量減少與水相關的寄生反應,這項工作使用了高濃度鹽電解質 (HCE) - 1m Zn(OTf)2 + 20m LiTFSI。由於 H2 和 O2 釋放受到抑制,HCE 具有更寬的電化學穩定性窗口。應用先進的非原位和原位/原位分析技術來評估原位形成的鈍化層的形態結構和成分。採用 HCE 的雙離子全 Zn||LiMn2O4 電池在 300 次循環後具有 92% 的出色容量保持率,平均庫倫效率為 99.62%。電池在 HCE 下的出色循環性能歸因於穩定的陰離子衍生 SEI 層的形成,HCE 的優異循環性能歸因於穩定的陰離子衍生 SEI 層的形成。
    另一方面,硫化物基固態電解質由於其超高的離子電導率而備受關注。然而,硫化物電解質的應用因為壓錠成型而受到阻礙,這會影響其能量密度並使其商業化複雜化。在這項工作中,利用具熱穩定的材料- PI 和 PVDF-HFP聚合物,將兩者均勻混合並通過靜電紡絲的方式,製成交聯的聚合物支架以製備出薄的硫化物固態電解質膜。在研究中探索了各種製備方法促使硫化物能簡單快速地結合到聚合物支架中,成功製造出厚度約為70 μm的光滑固態電解質膜。


    Safety complications of traditional liquid batteries have increased the demand for safer alternatives. Aqueous and solid electrolytes have been considered promising solutions. In recent decades, aqueous zinc-ion battery has been developed by taking the advantage of zinc metal stability in aqueous media. To minimize water-related parasitic reactions, this work utilizes a highly concentrated salt electrolyte (HCE) - 1 m Zn(OTf)2 + 20 m LiTFSI. HCE has a broadened electrochemical stability window due to suppressed H2 and O2 evolution. Advanced ex-situ and in-situ/ in-operando analysis techniques are applied to evaluate the morphological structure and the composition of the in-situ formed passivation layer. A dual-ion full Zn||LiMn2O4 cell employing HCE has excellent capacity retention of 92% after 300 cycles with an average coulombic efficiency of 99.62%. The battery's excellent cycling performance with HCE is attributed to the formation of a stable anion-derived SEI layer.
    Sulfide-based solid electrolytes have gained much interest due to their ultra-high ionic conductivity. However, the application of sulfide electrolytes has been hindered by the need for thick pellets, compromising their energy density and complicating commercialization. In this work, a thin sulfide solid electrolyte membrane is fabricated by utilizing a thermally-stable polymer scaffold. Cross-linked polymer scaffolds are fabricated through electrospinning of PI and PVDF-HFP blend. Various preparation methods have been explored to allow fast and simple incorporation of sulfide into the polymer scaffold. A smooth solid electrolyte membrane with a low thickness of ~70 μm has been successfully fabricated.

    中文摘要 i Abstract iii Acknowledgments v Table of Contents vii List of Figures x List of Tables xvi List of Units and Abbreviations xvii Chapter 1 Introduction 1 1.1. Battery as Energy Storage Device 1 1.2. Lithium-Ion Batteries (LIB) 2 1.2.1. Components of Lithium-Ion Batteries 2 1.2.2. Challenges in Traditional Liquid Batteries 6 Chapter 2 Fundamentals of Aqueous Zinc-Ion Battery 9 2.1. Advantages of Zinc-Ion Battery 9 2.2. Working Principle of Zinc-Ion Battery 9 2.3. Dual-Ion Zinc Battery 10 2.4. Challenges in Zinc-Ion Battery 11 2.5. Fundamental Development of Aqueous Zinc-Ion Battery 13 Chapter 3 Fundamentals of Solid-State Battery 23 3.1. Advantages of Solid-State Battery 23 3.2. Components of Solid-State Battery 24 3.3. Classification of Solid-Electrolytes 24 3.4. Sulfide-based Solid-Electrolytes 28 3.5. Ion Transport Mechanism 32 3.6. Challenges in Sulfide-Based Solid Electrolytes 34 3.7. Fundamental Development of Sulfide-Based Solid Electrolytes 38 Chapter 4 Experimental Section 47 4.1. Aqueous Electrolyte 47 4.1.1. Chemical and Reagents 47 4.1.2. Preparation of Cathode and Electrolytes 48 4.1.3. Electrolyte Characterization and Morphological Imaging 48 4.1.4. Electrochemical Measurement and Characterization 49 4.1.5. Battery Characterization 50 4.2. Sulfide-based Solid Electrolyte 51 4.2.1. Chemicals and Reagents 51 4.2.2. Preparation of Porous Membrane 52 4.2.3. Preparation of Sulfide-Based Solid Electrolyte Membrane 53 4.2.4. Electrochemical Measurement and Characterization 54 Chapter 5 Highly Concentrated Salt Electrolyte for A Highly Stable Aqueous Dual-Ion Zinc Battery 57 5.1. Motivations and Objectives of the Study 57 5.1.1. Motivations 57 5.1.2. Objectives 58 5.2. Results and Discussion 59 5.2.1. Electrolyte Optimization and Properties 59 5.2.2. Solvation Structure of Zn2+ 62 5.2.3. Half-cell Cycling Performance 64 5.2.4. In-operando Imaging of Zn Plating and Stripping 65 5.2.5. Morphology of Zinc Plating and Stripping on Copper Substrate 67 5.2.6. In-operando XRD Analysis on Zn||Cu Half-Cell 69 5.2.7. Zn||LiMn2O4 Battery Cycling Performance 73 5.2.8. XPS Analysis on LMO Cathode After Cycling 75 5.3. Summary 78 Chapter 6 Porous Polymeric Membrane for a Thin Sulfide-Based Solid Electrolyte 81 6.1. Motivation and Objectives of the Study 81 6.1.1. Motivation 81 6.1.2. Objectives 82 6.2. Results and Discussion 83 6.2.1. Fabrication of Polymer Membranes 83 6.2.2. Morphology of Electrospun Polymer Membranes 84 6.2.3. Thermal Stability of Electrospun Polymer Membranes 86 6.2.4. Solvent Selection 88 6.2.5. Sulfide Slurry Preparation and Incorporation 93 6.2.6. Sintering of Solid Electrolyte Membranes 98 6.2.7. Effect of Heat Treatment to the Polymer Membranes 100 6.2.8. Hot Calendaring Method 106 6.2.9. Mechanical Strength Measurement and Pore Size Modification 107 6.3. Summary 110 Chapter 7 Conclusions and Future Outlooks 113 7.1. Conclusions 113 7.2. Future Outlooks 114 References 116

    (1) Ahmad, T.; Zhang, D. A Critical Review of Comparative Global Historical Energy Consumption and Future Demand : The Story Told so Far. Energy Reports 2020, 6, 1973–1991. https://doi.org/10.1016/j.egyr.2020.07.020.
    (2) Bouzguenda, I.; Alalouch, C.; Fava, N. Towards Smart Sustainable Cities : A Review of the Role Digital Citizen Participation Could Play in Advancing Social Sustainability. Sustain. Cities Soc. 2019, 50, 101627. https://doi.org/10.1016/j.scs.2019.101627.
    (3) Jefferson, M. Sustainable Energy Development: Performance and Prospects. Renew. Energy 2006, 31, 571–582. https://doi.org/10.1016/j.renene.2005.09.002.
    (4) Cian, E. De; Wing, I. S. Amplification of Future Energy Demand Growth Due to Climate Change. Nat. Commun. 2019, 10, 2762. https://doi.org/10.1038/s41467-019-10399-3.
    (5) Dong, B.; Zhang, M.; Mu, H.; Su, X. Study on Decoupling Analysis between Energy Consumption and Economic Growth in Liaoning Province. Energy Policy 2016, 97, 414–420. https://doi.org/10.1016/j.enpol.2016.07.054.
    (6) Li, Q.; Zhang, J.; Gong, C.; Guo, J.; Yu, L.; Zhang, J. Spinel LiMn2O4 Cathode Materials for Lithium Storage : The Regulation of Exposed Facets and Surface Coating. Ceram. Int. 2019, 45 (10), 13198–13202. https://doi.org/10.1016/j.ceramint.2019.04.002.
    (7) Pickl, M. J. The Renewable Energy Strategies of Oil Majors – From Oil to Energy? Energy Strateg. Rev. 2019, 26, 100370. https://doi.org/10.1016/j.esr.2019.100370.
    (8) Gielen, D.; Boshell, F.; Saygin, D.; Bazilian, M. D.; Wagner, N.; Gorini, R. The Role of Renewable Energy in the Global Energy Transformation. Energy Strateg. Rev. 2019, 24, 38–50. https://doi.org/10.1016/j.esr.2019.01.006.
    (9) Yang, Y.; Bremner, S.; Menictas, C.; Kay, M. Battery Energy Storage System Size Determination in Renewable Energy Systems: A Review. Renew. Sustain. Energy Rev. 2018, 91, 109–125. https://doi.org/10.1016/j.rser.2018.03.047.
    (10) Lund, P. D.; Lindgren, J.; Mikkola, J.; Salpakari, J. Review of Energy System Fl Exibility Measures to Enable High Levels of Variable Renewable Electricity. Renew. Sustain. Energy Rev. 2015, 45, 785–807. https://doi.org/10.1016/j.rser.2015.01.057.
    (11) Mahlia, T. M. I.; Saktisahdan, T. J.; Jannifar, A.; Hasan, M. H.; Matseelar, H. S. C. A Review of Available Methods and Development on Energy Storage ; Technology Update. Renew. Sustain. Energy Rev. 2014, 33, 532–545. https://doi.org/10.1016/j.rser.2014.01.068.
    (12) Soloveichik, G. L. Battery Technologies for Large-Scale Stationary Energy Storage. Annu. Rev. Chem. Biomol. Eng. 2011, 2, 503–527. https://doi.org/10.1146/annurev-chembioeng-061010-114116.
    (13) Hossain, E.; Hossain, J.; Un-Noor, F. Utility Grid: Present Challenges and Their Potential Solutions. IEEE Access 2018, 6, 60294–60317. https://doi.org/10.1109/ACCESS.2018.2873615.
    (14) Dunn, B.; Kamath, H.; Tarascon, J. Electrical Energy Storage for the Grid: A Battery of Choices. Science (80-. ). 2011, 334 (6058), 928–935. https://doi.org/10.1126/science.1212741.
    (15) Environ, E.; Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D. Challenges in the Development of Advanced Li-Ion Batteries: A Review. Energy Environ. Sci. 2011, 4, 3243–3262. https://doi.org/10.1039/c1ee01598b.
    (16) Manthiram, A. An Outlook on Lithium Ion Battery Technology. ACS Cent. Sci. 2017, 3 (10), 1063–1069. https://doi.org/10.1021/acscentsci.7b00288.
    (17) Fergus, J. W. Recent Developments in Cathode Materials for Lithium Ion Batteries. J. Power Sources 2010, 195 (4), 939–954. https://doi.org/10.1016/j.jpowsour.2009.08.089.
    (18) Whittingham, M. S. Lithium Batteries and Cathode Materials. Chem. Rev. 2004, 104, 4271–4301. https://doi.org//10.1021/cr020731c.
    (19) Antolini, E. LiCoO2: Formation, Structure, Lithium and Oxygen Nonstoichiometry, Electrochemical Behaviour and Transport Properties. Solid State Ionics 2004, 170, 159–171. https://doi.org/10.1016/j.ssi.2004.04.003.
    (20) Belov, D.; Yang, M. Investigation of the Kinetic Mechanism in Overcharge Process for Li-Ion Battery. Solid State Ionics 2008, 179, 1816–1821. https://doi.org/10.1016/j.ssi.2008.04.031.
    (21) Belov, D.; Yang, M. Failure Mechanism of Li-Ion Battery at Overcharge Conditions. J. Solid State Electrochem. 2008, 12, 885–894. https://doi.org/10.1007/s10008-007-0449-3.
    (22) Liu, H.; Yang, Y.; Zhang, J. Reaction Mechanism and Kinetics of Lithium Ion Battery Cathode Material LiNiO2 with CO2. J. Power Sources 2007, 173, 556–561. https://doi.org/10.1016/j.jpowsour.2007.04.083.
    (23) Yamada, A.; Chung, S. C.; Hinokuma, K. Optimized LiFePO4 for Lithium Battery Cathodes. J. Electrochem. Soc. 2001, 148 (3), A224–A229. https://doi.org/10.1149/1.1348257.
    (24) Thackeray, M. M.; Kock, A. de; David, W. I. F. SYNTHESIS AND STRUCTURAL CHARACTERIZATION OF DEFECT SPINELS IN THE LITHIUM-MANGANESE-OXIDE SYSTEM. Mater. Res. Bull. 1993, 28 (10), 1041–1049.
    (25) Belharouak, I.; Sun, Y.-K.; Lu, W.; Amine, K. On the Safety of the Li4Ti5O12 ∕ LiMn2O4 Lithium-Ion Battery System. J. Electrochem. Soc. 2007, 154 (12), A1083–A1087. https://doi.org/10.1149/1.2783770.
    (26) Takami, N.; Inagaki, H.; Kishi, T.; Harada, Y.; Fujita, Y.; Hoshina, K. Electrochemical Kinetics and Safety of 2-Volt Class Li-Ion Battery System Using Lithium Titanium Oxide Anode. J. Electrochem. Soc. 2009, 156 (2), A128–A132. https://doi.org/10.1149/1.3043441.
    (27) Padhi, A. K.; Nanjundaswamy, K. 5.; Goodenough, J. B. Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries. J. Electrochem. Soc. 1997, 144 (4), 1188.
    (28) Yan, J.; Wang, J.; Liu, H.; Bakenov, Z.; Gosselink, D.; Chen, P. Rechargeable Hybrid Aqueous Batteries. J. Power Sources 2012, 216, 222–226. https://doi.org/10.1016/j.jpowsour.2012.05.063.
    (29) Liu, Y.; Yang, Y. Recent Progress of TiO2 -Based Anodes for Li Ion Batteries. J. Nanomater. 2016. https://doi.org/10.1155/2016/8123652.
    (30) Osiak, M.; Geaney, H.; Armstrong, E.; O’Dwyer, C. Structuring Materials for Lithium-Ion Batteries: Advancements in Nanomaterial Structure, Composition, and Defined Assembly on Cell Performance. J. Mater. Chem. A 2014, 2 (25), 9433–9460. https://doi.org/10.1039/c4ta00534a.
    (31) Kasavajjula, U.; Wang, C.; Appleby, A. J. Nano- and Bulk-Silicon-Based Insertion Anodes for Lithium-Ion Secondary Cells. J. Power Sources 2007, 163, 1003–1039. https://doi.org/10.1016/j.jpowsour.2006.09.084.
    (32) Chen, Z.; Cao, Y.; Qian, J.; Ai, X.; Yang, H. Antimony-Coated SiC Nanoparticles as Stable and High-Capacity Anode Materials for Li-Ion Batteries. J. Phys. Chem. C 2010, 114, 15196–15201. https://doi.org/10.1021/jp104099r.
    (33) Chan, C. K.; Zhang, X. F.; Cui, Y. High Capacity Li Ion Battery Anodes Using Ge Nanowires. Nano Lett. 2008, 8 (1), 307–309. https://doi.org/10.1021/nl0727157.
    (34) Deimede, V.; Elmasides, C. Separators for Lithium‐Ion Batteries: A Review on the Production Processes and Recent Developments. Energy Technol. 2015, 3, 453–468. https://doi.org//10.1002/ente.201402215.
    (35) Huang, X. Separator Technologies for Lithium-Ion Batteries. J. Solid State Electrochem. 2011, 15, 649–662. https://doi.org/10.1007/s10008-010-1264-9.
    (36) Choi, J.; Kim, P. J. A Roadmap of Battery Separator Development: Past and Future. Curr. Opin. Electrochem. 2022, 31, 100858. https://doi.org/10.1016/j.coelec.2021.100858.
    (37) Arora, P.; Zhang, Z. J. Battery Separators. Chem. Rev. 2004, 104, 4419−4462. https://doi.org/10.1021/cr020738u.
    (38) Armand, M.; Tarascon, J. Building Better Batteries. Nature 2008, 451, 652–657. https://doi.org//10.1038/451652a.
    (39) Scrosati, B.; Hassoun, J.; Sun, Y.-K. Lithium-Ion Batteries. A Look into the Future. Energy Environ. Sci. 2011, 3287–3295. https://doi.org/10.1039/c1ee01388b.
    (40) Scrosati, B.; Garche, J. Lithium Batteries: Status , Prospects and Future. J. Power Sources J. 2010, 195, 2419–2430. https://doi.org/10.1016/j.jpowsour.2009.11.048.
    (41) Kalhoff, J.; Eshetu, G. G.; Bresser, D.; Passerini, S. Safer Electrolytes for Lithium-Ion Batteries: State of the Art and Perspectives. ChemSusChem 2015, 8 (13), 2154–2175. https://doi.org/10.1002/cssc.201500284.
    (42) Verma, P.; Maire, P.; Novák, P. A Review of the Features and Analyses of the Solid Electrolyte Interphase in Li-Ion Batteries. Electrochim. Acta 2010, 55 (22), 6332–6341. https://doi.org/10.1016/j.electacta.2010.05.072.
    (43) Guyomard, D.; Tarascon, J. M. Li Metal‐Free Rechargeable LiMn2O4/ Carbon Cells: Their Understanding and Optimization. J. Electrochem. Soc. 1992, 139 (4), 937.
    (44) Jie, Y.; Ren, X.; Cao, R.; Cai, W.; Jiao, S. Advanced Liquid Electrolytes for Rechargeable Li Metal Batteries. Adv. Funct. Mater. 2020, 30, 1910777. https://doi.org/10.1002/adfm.201910777.
    (45) Wen, J.; Yu, Y.; Chen, C. A Review on Lithium-Ion Batteries Safety Issues: Existing Problems and Possible Solutions. Mater. Express 2012, 2 (3), 197–212. https://doi.org/10.1166/mex.2012.1075.
    (46) Feng, X.; Ouyang, M.; Liu, X.; Lu, L.; Xia, Y.; He, X. Thermal Runaway Mechanism of Lithium Ion Battery for Electric Vehicles: A Review. Energy Storage Mater. 2018, 10, 246–267. https://doi.org/10.1016/j.ensm.2017.05.013.
    (47) Wang, L.; Yin, S.; Yu, Z.; Wang, Y.; Yu, T. X.; Zhao, J.; Xie, Z.; Li, Y.; Xu, J. Unlocking the Significant Role of Shell Material for Lithium-Ion Battery Safety. Mater. Des. 2018, 160, 601–610. https://doi.org/10.1016/j.matdes.2018.10.002.
    (48) Miranda, D.; Costa, C. M.; Almeida, A. M.; Lanceros-Méndez, S. Computer Simulations of the Influence of Geometry in the Performance of Conventional and Unconventional Lithium-Ion Batteries. Appl. Energy 2016, 165, 318–328. https://doi.org/10.1016/j.apenergy.2015.12.068.
    (49) Chen, Y.; Kang, Y.; Zhao, Y.; Wang, L.; Liu, J.; Li, Y.; Liang, Z.; He, X.; Li, X.; Tavajohi, N.; Li, B. A Review of Lithium-Ion Battery Safety Concerns: The Issues, Strategies, and Testing Standards. J. Energy Chem. 2021, 59, 83–99. https://doi.org/10.1016/j.jechem.2020.10.017.
    (50) Amine, K.; Belharouak, I.; Chen, Z.; Tran, T.; Yumoto, H.; Ota, N.; Myung, S. T.; Sun, Y. K. Nanostructured Anode Material for High-Power Battery System in Electric Vehicles. Adv. Mater. 2010, 22 (28), 3052–3057. https://doi.org/10.1002/adma.201000441.
    (51) Maleki, H.; Deng, G.; Anani, A.; Howard, J. Thermal Stability Studies of Li‐Ion Cells and Components. J. Electrochem. Soc. 1999, 146 (9), 3224–3229. https://doi.org/10.1149/1.1392458.
    (52) Robinson, J. B.; Finegan, D. P.; Heenan, T. M. M.; Smith, K.; Kendrick, E.; Brett, D. J. L.; Shearing, P. R. Microstructural Analysis of the Effects of Thermal Runaway on Li-Ion and Na-Ion Battery Electrodes. J. Electrochem. Energy Convers. Storage 2018, 15 (1), 1–9. https://doi.org/10.1115/1.4038518.
    (53) Wang, Q.; Ping, P.; Zhao, X.; Chu, G.; Sun, J.; Chen, C. Thermal Runaway Caused Fire and Explosion of Lithium Ion Battery. J. Power Sources 2012, 208, 210–224. https://doi.org/10.1016/j.jpowsour.2012.02.038.
    (54) Kang, Y.; Liang, Z.; Zhao, Y.; Xu, H.; Qian, K.; He, X.; Li, T.; Li, J. Large-Scale Synthesis of Lithium- and Manganese-Rich Materials with Uniform Thin-Film Al2O3 Coating for Stable Cathode Cycling. Sci. China Mater. 2020, 63 (9), 1683–1692. https://doi.org/10.1007/s40843-020-1327-8.
    (55) Wang, J.; Hu, Z.; Yin, X.; Li, Y.; Huo, H.; Zhou, J.; Li, L. Alumina/Phenolphthalein Polyetherketone Ceramic Composite Polypropylene Separator Film for Lithium Ion Power Batteries. Electrochim. Acta 2015, 159, 61–65. https://doi.org/10.1016/j.electacta.2015.01.208.
    (56) Ren, D.; Feng, X.; Lu, L.; Ouyang, M.; Zheng, S.; Li, J.; He, X. An Electrochemical-Thermal Coupled Overcharge-to-Thermal-Runaway Model for Lithium Ion Battery. J. Power Sources 2017, 364, 328–340. https://doi.org/10.1016/j.jpowsour.2017.08.035.
    (57) Liu, B.; Jia, Y.; Yuan, C.; Wang, L.; Gao, X.; Yin, S.; Xu, J. Safety Issues and Mechanisms of Lithium-Ion Battery Cell upon Mechanical Abusive Loading: A Review. Energy Storage Mater. 2020, 24, 85–112. https://doi.org/10.1016/j.ensm.2019.06.036.
    (58) Wang, Q.; Jiang, L.; Yu, Y.; Sun, J. Progress of Enhancing the Safety of Lithium Ion Battery from the Electrolyte Aspect. Nano Energy 2019, 55, 93–114. https://doi.org/10.1016/j.nanoen.2018.10.035.
    (59) Zeng, Z.; Wu, B.; Xiao, L.; Jiang, X.; Chen, Y.; Ai, X.; Yang, H.; Cao, Y. Safer Lithium Ion Batteries Based on Nonflammable Electrolyte. J. Power Sources 2015, 279, 6–12. https://doi.org/10.1016/j.jpowsour.2014.12.150.
    (60) Wang, Q.; Mao, B.; Stoliarov, S. I.; Sun, J. A Review of Lithium Ion Battery Failure Mechanisms and Fire Prevention Strategies. Prog. Energy Combust. Sci. 2019, 73, 95–131. https://doi.org/10.1016/j.pecs.2019.03.002.
    (61) Alias, N.; Mohamad, A. A. Advances of Aqueous Rechargeable Lithium-Ion Battery: A Review. J. Power Sources 2015, 274, 237–251. https://doi.org/10.1016/j.jpowsour.2014.10.009.
    (62) Chen, R.; Nolan, A. M.; Lu, J.; Wang, J.; Yu, X.; Mo, Y.; Chen, L.; Huang, X.; Li, H. The Thermal Stability of Lithium Solid Electrolytes with Metallic Lithium. Joule 2020, 4 (4), 812–821. https://doi.org/10.1016/j.joule.2020.03.012.
    (63) Gao, J.; Shao, Q.; Chen, J. Lithiated Nafion-Garnet Ceramic Composite Electrolyte Membrane for Solid-State Lithium Metal Battery. J. Energy Chem. 2020, 46, 237–247. https://doi.org/10.1016/j.jechem.2019.11.012.
    (64) Tang, W.; Zhu, Y.; Hou, Y.; Liu, L.; Wu, Y.; Loh, K. P.; Zhang, H.; Zhu, K. Aqueous Rechargeable Lithium Batteries as an Energy Storage System of Superfast Charging. Energy Environ. Sci. 2013, 6 (7), 2093–2104. https://doi.org/10.1039/c3ee24249h.
    (65) Kim, H.; Hong, J.; Park, K. Y.; Kim, H.; Kim, S. W.; Kang, K. Aqueous Rechargeable Li and Na Ion Batteries. Chem. Rev. 2014, 114 (23), 11788–11827. https://doi.org/10.1021/cr500232y.
    (66) Hou, Y.; Wang, X.; Zhu, Y.; Hu, C.; Chang, Z.; Wu, Y.; Holze, R. Macroporous LiFePO4 as a Cathode for an Aqueous Rechargeable Lithium Battery of High Energy Density. J. Mater. Chem. A 2013, 1 (46), 14713–14718. https://doi.org/10.1039/c3ta13472e.
    (67) Li, W.; Dahn, J. R.; Root, J. H. Lithium Intercalation from Aqueous Solutions. Mater. Res. Soc. Symp. - Proc. 1995, 369, 69–80. https://doi.org/10.1557/proc-369-69.
    (68) Wang, X.; Hou, Y.; Zhu, Y.; Wu, Y.; Holze, R. An Aqueous Rechargeable Lithium Battery Using Coated Li Metal as Anode. Sci. Rep. 2013, 3, 4–8. https://doi.org/10.1038/srep01401.
    (69) Luo, J. Y.; Cui, W. J.; He, P.; Xia, Y. Y. Raising the Cycling Stability of Aqueous Lithium-Ion Batteries by Eliminating Oxygen in the Electrolyte. Nat. Chem. 2010, 2 (9), 760–765. https://doi.org/10.1038/nchem.763.
    (70) Chang, Z.; Li, C.; Wang, Y.; Chen, B.; Fu, L.; Zhu, Y.; Zhang, L.; Wu, Y.; Huang, W. A Lithium Ion Battery Using an Aqueous Electrolyte Solution. Sci. Rep. 2016, 6, 28421. https://doi.org/10.1038/srep28421.
    (71) Konarov, A.; Voronina, N.; Jo, J. H.; Bakenov, Z.; Sun, Y. K.; Myung, S. T. Present and Future Perspective on Electrode Materials for Rechargeable Zinc-Ion Batteries. ACS Energy Lett. 2018, 3 (10), 2620–2640. https://doi.org/10.1021/acsenergylett.8b01552.
    (72) Li, Y.; Lu, J. Metal−Air Batteries: Will They Be the Future Electrochemical Energy Storage Device of Choice? ACS Energy Lett. 2017, 2, 1370−1377. https://doi.org/10.1021/acsenergylett.7b00119.
    (73) Parker, J. F.; Chervin, C. N.; Pala, I. R.; Machler, M.; Burz, M. F.; Long, J. W.; Rolison, D. R. Rechargeable Nickel–3D Zinc Batteries: An Energy-Dense, Safer Alternative to Lithium-Ion. Science (80-. ). 2017, 356 (6336), 415–418. https://doi.org/10.1126/science.aak9991.
    (74) Fang, G.; Zhou, J.; Pan, A.; Liang, S. Recent Advances in Aqueous Zinc-Ion Batteries. ACS Energy Lett. 2018, 3 (10), 2480–2501. https://doi.org/10.1021/acsenergylett.8b01426.
    (75) Fu, J.; Cano, Z. P.; Park, M. G.; Yu, A.; Fowler, M.; Chen, Z. Electrically Rechargeable Zinc–Air Batteries: Progress, Challenges, and Perspectives. Adv. Mater. 2017, 29 (7). https://doi.org/10.1002/adma.201604685.
    (76) Yi, J.; Liang, P.; Liu, X.; Wu, K.; Liu, Y.; Wang, Y.; Xia, Y.; Zhang, J. Challenges, Mitigation Strategies and Perspectives in Development of Zinc-Electrode Materials and Fabrication for Rechargeable Zinc–air Batteries. Energy Environ. Sci. 2018, 11, 3075–3095. https://doi.org/10.1039/c8ee01991f.
    (77) Han, C.; Li, W.; Liu, H.-K.; Dou, S.; Wang, J. Design Strategies for Developing Non-Precious Metal Based Bi-Functional Catalysts for Alkaline Electrolyte Based Zinc–air Batteries. Mater. Horizons 2019, 6, 1812–1827. https://doi.org/10.1039/c9mh00502a.
    (78) Han, C.; Li, W.; Kun, H.; Dou, S.; Wang, J. Principals and Strategies for Constructing a Highly Reversible Zinc Metal Anode in Aqueous Batteries. Nano Energy 2020, 74, 104880. https://doi.org/10.1016/j.nanoen.2020.104880.
    (79) Chen, L.; Yang, Z.; Cui, F.; Meng, J.; Chen, H.; Zeng, X. Enhanced Rate and Cycling Performances of Hollow V2O5 Nanospheres for Aqueous Zinc Ion Battery Cathode. Appl. Surf. Sci. 2020, 507, 145137. https://doi.org/10.1016/j.apsusc.2019.145137.
    (80) Xu, C.; Chiang, S. W.; Ma, J.; Kang, F. Investigation on Zinc Ion Storage in Alpha Manganese Dioxide for Zinc Ion Battery by Electrochemical Impedance Spectrum. J. Electrochem. Soc. 2013, 160 (1), A93–A97. https://doi.org/10.1149/2.008302jes.
    (81) Yao, H. R.; You, Y.; Yin, Y. X.; Wan, L. J.; Guo, Y. G. Rechargeable Dual-Metal-Ion Batteries for Advanced Energy Storage. Phys. Chem. Chem. Phys. 2016, 18 (14), 9326–9333. https://doi.org/10.1039/c6cp00586a.
    (82) Gummow, R. J.; Vamvounis, G.; Kannan, M. B.; He, Y. Calcium-Ion Batteries: Current State-of-the-Art and Future Perspectives. Adv. Mater. 2018, 30, 1801702. https://doi.org/10.1002/adma.201801702.
    (83) Liu, Q.; Wang, H.; Jiang, C.; Tang, Y. Multi-Ion Strategies towards Emerging Rechargeable Batteries with High Performance. Energy Storage Mater. 2019, 23, 566–586. https://doi.org/10.1016/j.ensm.2019.03.028.
    (84) Xu, C.; Li, B.; Du, H.; Kang, F. Energetic Zinc Ion Chemistry: The Rechargeable Zinc Ion Battery. Angew. Chemie 2012, 124 (4), 957–959. https://doi.org/10.1002/ange.201106307.
    (85) Verma, V.; Kumar, S.; Manalastas, Jr., W.; Srinivasan, M. Undesired Reactions in Aqueous Rechargeable Zinc Ion Batteries. ACS Energy Lett. 2021, 6 (5), 1773–1785. https://doi.org/10.1021/acsenergylett.1c00393.
    (86) Monroe, C.; Newman, J. Dendrite Growth in Lithium/Polymer Systems A Propagation Model for Liquid Electrolytes under Galvanostatic Conditions. J. Electrochem. Soc. 2003, 150 (10), A1377–A1384. https://doi.org/10.1149/1.1606686.
    (87) Garcia, G.; Ventosa, E.; Schuhmann, W. Complete Prevention of Dendrite Formation in Zn Metal Anodes by Means of Pulsed Charging Protocols. ACS Appl. Mater. Interfaces 2017, 9 (22), 18691–18698. https://doi.org/10.1021/acsami.7b01705.
    (88) Choi, K. W.; Hamby, D.; Bennion, D. N.; Newman, J. Engineering Analysis of Shape Change in Zinc Secondary Electrodes: I. Theoretical. J. Electrochem. Soc. 1976, 123 (11), 1628–1637. https://doi.org/10.1149/1.2132658.
    (89) Rudiyanto, B.; Illah, I.; Agung, N.; Cheng, C. Case Studies in Thermal Engineering Preliminary Analysis of Dry-Steam Geothermal Power Plant by Employing Exergy Assessment : Case Study in Kamojang Geothermal Power Plant, Indonesia. Case Stud. Therm. Eng. 2017, 10, 292–301. https://doi.org/10.1016/j.csite.2017.07.006.
    (90) Kim, H.; Jeong, G.; Kim, Y. U.; Kim, J. H.; Park, C. M.; Sohn, H. J. Metallic Anodes for next Generation Secondary Batteries. Chem. Soc. Rev. 2013, 42 (23), 9011–9034. https://doi.org/10.1039/c3cs60177c.
    (91) Wang, K.; Pei, P.; Ma, Z.; Chen, H.; Xu, H.; Chen, D.; Wang, X. Dendrite Growth in the Recharging Process of Zinc-Air Batteries. J. Mater. Chem. A 2015, 3 (45), 22648–22655. https://doi.org/10.1039/c5ta06366c.
    (92) J. L. Barton and J. O; Bockris. The Electrolytic Growth of Dendrites from Ionic Solutions. Proc. R. Soc. L. 1962, 268, 485–505.
    (93) Diggle, J. W.; Despic, A. R.; Bockris, J. O. The Mechanism of the Dendritic Electrocrystallization of Zinc. J. Electrochem. Soc. 1969, 116 (11), 1503. https://doi.org/10.1149/1.2411588.
    (94) Wu, T. H.; Zhang, Y.; Althouse, Z. D.; Liu, N. Nanoscale Design of Zinc Anodes for High-Energy Aqueous Rechargeable Batteries. Mater. Today Nano 2019, 6, 1–13. https://doi.org/10.1016/j.mtnano.2019.100032.
    (95) Yuan, Y. F.; Tu, J. P.; Wu, H. M.; Yang, Y. Z.; Shi, D. Q.; Zhao, X. B. Electrochemical Performance and Morphology Evolution of Nanosized ZnO as Anode Material of Ni-Zn Batteries. Electrochim. Acta 2006, 51 (18), 3632–3636. https://doi.org/10.1016/j.electacta.2005.10.017.
    (96) Chen, P.; Wu, Y.; Zhang, Y.; Wu, T. H.; Ma, Y.; Pelkowski, C.; Yang, H.; Zhang, Y.; Hu, X.; Liu, N. A Deeply Rechargeable Zinc Anode with Pomegranate-Inspired Nanostructure for High-Energy Aqueous Batteries. J. Mater. Chem. A 2018, 6 (44), 21933–21940. https://doi.org/10.1039/C8TA07809B.
    (97) Ahmed, M.; Mitha, A.; Chen, P. Scalable Porous Zinc Anode to Improve the Cycling Performance of Aqueous Lithium Energy Storage Systems. J. Energy Storage 2019, 21, 481–488. https://doi.org/10.1016/j.est.2018.12.014.
    (98) Minakshi, M.; Appadoo, D.; Martin, D. E. The Anodic Behavior of Planar and Porous Zinc Electrodes in Alkaline Electrolyte. Electrochem. Solid-State Lett. 2010, 13 (7). https://doi.org/10.1149/1.3387672.
    (99) Parker, J. F.; Chervin, C. N.; Nelson, E. S.; Rolison, D. R.; Long, J. W. Wiring Zinc in Three Dimensions Re-Writes Battery Performance - Dendrite-Free Cycling. Energy Environ. Sci. 2014, 7 (3), 1117–1124. https://doi.org/10.1039/c3ee43754j.
    (100) Parker, J. F.; Nelson, E. S.; Wattendorf, M. D.; Chervin, C. N.; Long, J. W.; Rolison, D. R. Retaining the 3D Framework of Zinc Sponge Anodes upon Deep Discharge in Zn-Air Cells. ACS Appl. Mater. Interfaces 2014, 6 (22), 19471–19476. https://doi.org/10.1021/am505266c.
    (101) Parker, J. F.; Pala, I. R.; Chervin, C. N.; Long, J. W.; Rolison, D. R. Minimizing Shape Change at Zn Sponge Anodes in Rechargeable Ni–Zn Cells: Impact of Electrolyte Formulation. J. Electrochem. Soc. 2016, 163 (3), A351–A355. https://doi.org/10.1149/2.1001602jes.
    (102) Wang, X.; Wang, F.; Wang, L.; Li, M.; Wang, Y.; Chen, B.; Zhu, Y.; Fu, L.; Zha, L.; Zhang, L.; Wu, Y.; Huang, W. An Aqueous Rechargeable Zn//Co3O4Battery with High Energy Density and Good Cycling Behavior. Adv. Mater. 2016, 28 (24), 4904–4911. https://doi.org/10.1002/adma.201505370.
    (103) Zhang, G. X. Novel Anode for High Power Zinc-Air Batteries. ECS Meet. Abstr. 2006, MA2006-02 (6), 375. https://doi.org/10.1149/ma2006-02/6/375.
    (104) Kang, L.; Cui, M.; Jiang, F.; Gao, Y.; Luo, H.; Liu, J.; Liang, W.; Zhi, C. Nanoporous CaCO3 Coatings Enabled Uniform Zn Stripping/ Plating for Long-Life Zinc Rechargeable Aqueous Batteries. Adv. Energy Mater. 2018, 8, 1801090. https://doi.org//10.1002/aenm.201801090.
    (105) Zhao, K.; Wang, C.; Yu, Y.; Yan, M.; Wei, Q.; He, P.; Dong, Y.; Zhang, Z.; Wang, X.; Mai, L. Ultrathin Surface Coating Enables Stabilized Zinc Metal Anode. Adv. Mater. Interfaces 2018, 5 (16), 1800848. https://doi.org/10.1002/admi.201800848.
    (106) Zhou, Z.; Zhang, Y.; Chen, P.; Wu, Y.; Yang, H.; Ding, H.; Zhang, Y.; Wang, Z.; Du, X.; Liu, N. Graphene Oxide-Modified Zinc Anode for Rechargeable Aqueous Batteries. Chem. Eng. Sci. 2019, 194, 142–147. https://doi.org/10.1016/j.ces.2018.06.048.
    (107) Wu, Y.; Zhang, Y.; Ma, Y.; Howe, J. D.; Yang, H.; Chen, P.; Aluri, S.; Liu, N. Ion-Sieving Carbon Nanoshells for Deeply Rechargeable Zn-Based Aqueous Batteries. Adv. Energy Mater. 2018, 8, 1802470. https://doi.org/10.1002/aenm.201802470.
    (108) Liu, C.; Xie, X.; Lu, B.; Zhou, J.; Liang, S. Electrolyte Strategies toward Better Zinc-Ion Batteries. ACS Energy Lett. 2021, 6 (3), 1015–1033. https://doi.org/10.1021/acsenergylett.0c02684.
    (109) Lee, S. H.; Park, D. J.; Yang, W. G.; Ryu, K. S. Comparison of Electrochemical Performance for Zinc Anode via Various Electrolytes and Conducting Agents in Zn-Air Secondary Batteries. Ionics (Kiel). 2017, 23 (7), 1801–1809. https://doi.org/10.1007/s11581-017-2005-1.
    (110) Mainar, A. R.; Iruin, E.; Colmenares, L. C.; Kvasha, A.; de Meatza, I.; Bengoechea, M.; Leonet, O.; Boyano, I.; Zhang, Z.; Blazquez, J. A. An Overview of Progress in Electrolytes for Secondary Zinc-Air Batteries and Other Storage Systems Based on Zinc. J. Energy Storage 2018, 15, 304–328. https://doi.org/10.1016/j.est.2017.12.004.
    (111) McLarnon, F. R.; Cairns, E. J. The Secondary Alkaline Zinc Electrode. J. Electrochem. Soc. 1991, 138 (2), 645–656. https://doi.org/10.1149/1.2085653.
    (112) Shaigan, N.; Qu, W.; Takeda, T. Morphology Control of Electrodeposited Zinc from Alkaline Zincate Solutions for Rechargeable Zinc Air Batteries. ECS Trans. 2010, 28 (32), 35–44. https://doi.org//10.1149/1.3507925.
    (113) Thomas Goh, F. W.; Liu, Z.; Hor, T. S. A.; Zhang, J.; Ge, X.; Zong, Y.; Yu, A.; Khoo, W. A Near-Neutral Chloride Electrolyte for Electrically Rechargeable Zinc-Air Batteries. J. Electrochem. Soc. 2014, 161 (14), A2080–A2086. https://doi.org/10.1149/2.0311414jes.
    (114) Hassan, H. H.; Amin, M. A.; Gubbala, S.; Sunkara, M. K. Participation of the Dissolved O2 in the Passive Layer Formation on Zn Surface in Neutral Media. Electrochim. Acta 2007, 52 (24), 6929–6937. https://doi.org/10.1016/j.electacta.2007.05.013.
    (115) Hassan, H. H. Perchlorate and Oxygen Reduction during Zn Corrosion in a Neutral Medium. Electrochim. Acta 2006, 51 (26), 5966–5972. https://doi.org/10.1016/j.electacta.2006.03.065.
    (116) Laska, C. A.; Auinger, M.; Biedermann, P. U.; Iqbal, D.; Laska, N.; De Strycker, J.; Mayrhofer, K. J. J. Effect of Hydrogen Carbonate and Chloride on Zinc Corrosion Investigated by a Scanning Flow Cell System. Electrochim. Acta 2015, 159, 198–209. https://doi.org/10.1016/j.electacta.2015.01.217.
    (117) Jindra, J.; Mrha, J.; Musilová, M. Zinc-Air Cell with Neutral Electrolyte. J. Appl. Electrochem. 1973, 3 (4), 297–301. https://doi.org/10.1007/BF00613036.
    (118) Clark, S.; Latz, A.; Horstmann, B. Rational Development of Neutral Aqueous Electrolytes for Zinc–Air Batteries. ChemSusChem 2017, 10 (23), 4735–4747. https://doi.org/10.1002/cssc.201701468.
    (119) Zhang, N.; Cheng, F.; Liu, Y.; Zhao, Q.; Lei, K.; Chen, C.; Liu, X.; Chen, J. Cation-Deficient Spinel ZnMn2O4 Cathode in Zn(CF3SO3)2 Electrolyte for Rechargeable Aqueous Zn-Ion Battery. J. Am. Chem. Soc. 2016, 138 (39), 12894–12901. https://doi.org/10.1021/jacs.6b05958.
    (120) Bass, K.; Mitchell, P. J.; Wilcox, G. D.; Smith, J. Methods for the Reduction of Shape Change and Dendritic Growth in Zinc-Based Secondary Cells. J. Power Sources 1991, 35 (3), 333–351. https://doi.org/10.1016/0378-7753(91)80117-G.
    (121) Bischoff, C. F.; Fitz, O. S.; Burns, J.; Bauer, M.; Gentischer, H.; Birke, K. P.; Henning, H.-M.; Biro, D. Revealing the Local PH Value Changes of Acidic Aqueous Zinc Ion Batteries with a Manganese Dioxide Electrode during Cycling. J. Electrochem. Soc. 2020, 167 (2), 020545. https://doi.org/10.1149/1945-7111/ab6c57.
    (122) Han, S. D.; Rajput, N. N.; Qu, X.; Pan, B.; He, M.; Ferrandon, M. S.; Liao, C.; Persson, K. A.; Burrell, A. K. Origin of Electrochemical, Structural, and Transport Properties in Nonaqueous Zinc Electrolytes. ACS Appl. Mater. Interfaces 2016, 8 (5), 3021–3031. https://doi.org/10.1021/acsami.5b10024.
    (123) Olbasa, B. W.; Huang, C. J.; Fenta, F. W.; Jiang, S. K.; Chala, S. A.; Tao, H. chu; Nikodimos, Y.; Wang, C. C.; Sheu, H. S.; Yang, Y. W.; Ma, T. L.; Wu, S. H.; Su, W. N.; Dai, H.; Hwang, B. J. Highly Reversible Zn Metal Anode Stabilized by Dense and Anion-Derived Passivation Layer Obtained from Concentrated Hybrid Aqueous Electrolyte. Adv. Funct. Mater. 2021, 2103959. https://doi.org/10.1002/adfm.202103959.
    (124) Wang, F.; Borodin, O.; Gao, T.; Fan, X.; Sun, W.; Han, F.; Faraone, A.; Dura, J. A.; Xu, K.; Wang, C. Highly Reversible Zinc Metal Anode for Aqueous Batteries. Nat. Mater. 2018, 17, 543–549. https://doi.org/10.1038/s41563-018-0063-z.
    (125) Olbasa, B. W.; Fenta, F. W.; Chiu, S. F.; Tsai, M. C.; Huang, C. J.; Jote, B. A.; Beyene, T. T.; Liao, Y.; Wang, C.; Su, W.; Dai, H.; Hwang, B. J. High-Rate and Long-Cycle Stability with a Dendrite-Free Zinc Anode in an Aqueous Zn-Ion Battery Using Concentrated Electrolytes. ACS Appl. Energy Mater. 2020, 3 (5), 4499−4508. https://doi.org/10.1021/acsaem.0c00183.
    (126) He, B.; Zhou, W.; Liang, Y.; Bao, S.; Li, H. Synthesis and Electrochemical Properties of Chemically Substituted LiMn2O4 Prepared by a Solution-Based Gel Method. J. Colloid Interface Sci. 2006, 300 (2), 633–639. https://doi.org/10.1016/j.jcis.2006.04.002.
    (127) He, Z.; Wu, X.; Li, Y.; Li, C.; He, Z.; Xiang, Y.; Xiong, L.; Chen, D.; Yu, Y.; Sun, K.; Chen, P. The Electrochemical Performance Improvement of LiMn2O4/Zn Based on Zinc Foil as the Current Collector and Thiourea as an Electrolyte Additive. J. Power Sources 2015, 300, 453–459. https://doi.org/10.1016/j.jpowsour.2015.09.096.
    (128) Hoang, T. K. A.; Doan, T. N. L.; Lu, C.; Ghaznavi, M.; Zhao, H.; Chen, P. Performance of Thixotropic Gel Electrolytes in the Rechargeable Aqueous Zn/LiMn2O4 Battery. ACS Sustain. Chem. Eng. 2017, 5 (2), 1804–1811. https://doi.org/10.1021/acssuschemeng.6b02553.
    (129) Mitha, A.; Mi, H.; Dong, W.; Cho, I. S.; Ly, J.; Yoo, S.; Bang, S.; Hoang, T. K. A.; Chen, P. Thixotropic Gel Electrolyte Containing Poly(Ethylene Glycol) with High Zinc Ion Concentration for the Secondary Aqueous Zn/LiMn2O4 Battery. J. Electroanal. Chem. 2019, 836, 1–6. https://doi.org/10.1016/j.jelechem.2019.01.014.
    (130) Zhao, J.; Zhang, J.; Yang, W.; Chen, B.; Zhao, Z.; Qiu, H.; Dong, S.; Zhou, X.; Cui, G.; Chen, L. “Water-in-Deep Eutectic Solvent” Electrolytes Enable Zinc Metal Anodes for Rechargeable Aqueous Batteries. Nano Energy 2019, 57, 625–634. https://doi.org/10.1016/j.nanoen.2018.12.086.
    (131) Qian, J.; Adams, B. D.; Zheng, J.; Xu, W.; Henderson, W. A.; Wang, J.; Bowden, M. E.; Xu, S.; Hu, J.; Zhang, J.-G. Anode-Free Rechargeable Lithium Metal Batteries. Adv. Funct. Mater. 2016, 26, 7094–7102. https://doi.org//10.1002/adfm.201602353.
    (132) Beyene, T. T.; Bezabh, H. K.; Weret, M. A.; Hagos, T. M.; Huang, C.-J.; Wang, C.-H.; Su, W.-N.; Dai, H.; Hwang, B.-J. Concentrated Dual-Salt Electrolyte to Stabilize Li Metal and Increase Cycle Life of Anode Free Li-Metal Batteries. J. Electrochem. Soc. 2019, 166 (8), A1501–A1509. https://doi.org/10.1149/2.0731908jes.
    (133) Hagos, T. T.; Thirumalraj, B.; Huang, C. J.; Abrha, L. H.; Hagos, T. M.; Berhe, G. B.; Bezabh, H. K.; Cherng, J.; Chiu, S. F.; Su, W. N.; Hwang, B. J. Locally Concentrated LiPF 6 in a Carbonate-Based Electrolyte with Fluoroethylene Carbonate as a Diluent for Anode-Free Lithium Metal Batteries. ACS Appl. Mater. Interfaces 2019, 11 (10), 9955–9963. https://doi.org/10.1021/acsami.8b21052.
    (134) Lee, Y. G.; Fujiki, S.; Jung, C.; Suzuki, N.; Yashiro, N.; Omoda, R.; Ko, D. S.; Shiratsuchi, T.; Sugimoto, T.; Ryu, S.; Ku, J. H.; Watanabe, T.; Park, Y.; Aihara, Y.; Im, D.; Han, I. T. High-Energy Long-Cycling All-Solid-State Lithium Metal Batteries Enabled by Silver–carbon Composite Anodes. Nat. Energy 2020, 5 (4), 299–308. https://doi.org/10.1038/s41560-020-0575-z.
    (135) Wondimkun, Z. T.; Tegegne, W. A.; Shi-Kai, J.; Huang, C. J.; Sahalie, N. A.; Weret, M. A.; Hsu, J. Y.; Hsieh, P. L.; Huang, Y. S.; Wu, S. H.; Su, W. N.; Hwang, B. J. Highly-Lithiophilic Ag@PDA-GO Film to Suppress Dendrite Formation on Cu Substrate in Anode-Free Lithium Metal Batteries. Energy Storage Mater. 2021, 35, 334–344. https://doi.org/10.1016/j.ensm.2020.11.023.
    (136) Zhu, Y.; Cui, Y.; Alshareef, H. N. An Anode-Free Zn−MnO2 Battery. Nano Lett. 2021, 21 (3), 1446–1453. https://doi.org/10.1021/acs.nanolett.0c04519.
    (137) An, Y.; Tian, Y.; Zhang, K.; Liu, Y.; Liu, C.; Xiong, S.; Feng, J.; Qian, Y. Stable Aqueous Anode-Free Zinc Batteries Enabled by Interfacial Engineering. Adv. Funct. Mater. 2021, 31 (26). https://doi.org/10.1002/adfm.202101886.
    (138) Cheng, X. B.; Zhang, Q. Dendrite-Free Lithium Metal Anodes: Stable Solid Electrolyte Interphases for High-Efficiency Batteries. J. Mater. Chem. A 2015, 3 (14), 7207–7209. https://doi.org/10.1039/c5ta00689a.
    (139) Xu, K. Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries. Chem. Rev. 2004, 104 (10), 4303–4417. https://doi.org/10.1021/cr030203g.
    (140) Fan, L.; Wei, S.; Li, S.; Li, Q.; Lu, Y. Recent Progress of the Solid-State Electrolytes for High-Energy Metal-Based Batteries. Adv. Energy Mater. 2018, 8 (11). https://doi.org/10.1002/aenm.201702657.
    (141) Song, S. W.; Lee, K. C.; Park, H. Y. High-Performance Flexible All-Solid-State Microbatteries Based on Solid Electrolyte of Lithium Boron Oxynitride. J. Power Sources 2016, 328, 311–317. https://doi.org/10.1016/j.jpowsour.2016.07.114.
    (142) Sakuda, A. Favorable Composite Electrodes for All-Solid-State Batteries. J. Ceram. Soc. Japan 2018, 126 (9), 675–683. https://doi.org/10.2109/jcersj2.18114.
    (143) Wu, C.; Lou, J.; Zhang, J.; Chen, Z.; Kakar, A.; Emley, B.; Ai, Q.; Guo, H.; Liang, Y.; Lou, J.; Yao, Y.; Fan, Z. Current Status and Future Directions of All-Solid-State Batteries with Lithium Metal Anodes, Sulfide Electrolytes, and Layered Transition Metal Oxide Cathodes. Nano Energy 2021, 87, 106082. https://doi.org/10.1016/j.nanoen.2021.106081.
    (144) Takada, K.; Aotani, N.; Iwamoto, K.; Kondo, S. Solid State Lithium Battery with Oxysulfide Glass. Solid State Ionics 1996, 86–88, 877–882.
    (145) Fan, L.; Wei, S.; Li, S.; Li, Q.; Lu, Y. Recent Progress of the Solid-State Electrolytes for High-Energy Metal-Based Batteries. Adv. Energy Mater. 2018, 8, 1702657. https://doi.org/10.1002/aenm.201702657.
    (146) Gao, Z.; Sun, H.; Fu, L.; Ye, F.; Zhang, Y.; Luo, W.; Huang, Y. Promises, Challenges, and Recent Progress of Inorganic Solid-State Electrolytes for All-Solid-State Lithium Batteries. Adv. Mater. 2018, 30 (17), 1705702. https://doi.org/10.1002/adma.201705702.
    (147) Zhao, W.; Yi, J.; He, P.; Zhou, H. Solid‑State Electrolytes for Lithium‑Ion Batteries Fundamentals, Challenges, and Perspective. Electrochem. Energy Rev. 2019, 2, 574–605.
    (148) Bohnke, O. The Fast Lithium-Ion Conducting Oxides Li3xLa2/3-XTiO3 from Fundamentals to Application. Solid State Ionics 2008, 179, 9–15. https://doi.org/10.1016/j.ssi.2007.12.022.
    (149) Itoh, M.; Inaguma, Y.; Jung, W. H.; Chen, L.; Nakamura, T. High Lithium Ion Conductivity in the Perovskite-Type Compounds Ln12Li12TiO3 (Ln=La,Pr,Nd,Sm). Solid State Ionics 1994, 70–71, 203–207. https://doi.org/10.1016/0167-2738(94)90310-7.
    (150) Stramare, S.; Thangadurai, V.; Weppner, W. Lithium Lanthanum Titanates: A Review. Chem. Mater. 2003, 15, 3974–3990. https://doi.org/10.1002/chin.200352244.
    (151) Wenzel, S.; Leichtweiss, T.; Krüger, D.; Sann, J.; Janek, J. Interphase Formation on Lithium Solid Electrolytes - An in Situ Approach to Study Interfacial Reactions by Photoelectron Spectroscopy. Solid State Ionics 2015, 278, 98–105. https://doi.org/10.1016/j.ssi.2015.06.001.
    (152) Zhao, Y.; Daemen, L. L. Superionic Conductivity in Lithium-Rich Anti-Perovskites. J. Am. Chem. Soc. 2012, 134 (36), 15042–15047. https://doi.org/10.1021/ja305709z.
    (153) Zhao, W.; Yi, J.; He, P.; Zhou, H. Solid-State Electrolytes for Lithium-Ion Batteries: Fundamentals, Challenges and Perspectives. Electrochem. Energy Rev. 2019, 2 (4), 574–605. https://doi.org/10.1007/s41918-019-00048-0.
    (154) Xu, X.; Wen, Z.; Yang, X.; Chen, L. Dense Nanostructured Solid Electrolyte with High Li-Ion Conductivity by Spark Plasma Sintering Technique. Mater. Res. Bull. 2008, 43, 2334–2341. https://doi.org/10.1016/j.materresbull.2007.08.007.
    (155) Zhang, M.; Takahashi, K.; Imanishi, N.; Takeda, Y.; Yamamoto, O.; Chi, B.; Pu, J.; Li, J. Preparation and Electrochemical Properties of Li1+xAlxGe2-x(PO4)3 Synthesized by a Sol-Gel Method. J. Electrochem. Soc. 2012, 159 (7), A1114–A1119. https://doi.org/10.1149/2.080207jes.
    (156) Feng, J. K.; Lu, L.; Lai, M. O. Lithium Storage Capability of Lithium Ion Conductor Li1.5Al 0.5Ge1.5(PO4)3. J. Alloys Compd. 2010, 501 (2), 255–258. https://doi.org/10.1016/j.jallcom.2010.04.084.
    (157) Thangadurai, V.; Kaack, H.; Weppner, W. J. F. Novel Fast Lithium Ion Conduction in Garnet-Type Li5La3M2O12 (M: Nb, Ta). J. Am. Ceram. Soc. 2003, 86 (3), 437–440. https://doi.org/10.1002/chin.200327009.
    (158) Awaka, J.; Kijima, N.; Hayakawa, H.; Akimoto, J. Synthesis and Structure Analysis of Tetragonal Li7La3Zr2O12 with the Garnet-Related Type Structure. J. Solid State Chem. 2009, 182 (8), 2046–2052. https://doi.org/10.1016/j.jssc.2009.05.020.
    (159) Thangadurai, V.; Pinzaru, D.; Narayanan, S.; Baral, A. K. Fast Solid-State Li Ion Conducting Garnet-Type Structure Metal Oxides for Energy Storage. J. Phys. Chem. Lett. 2015, 6 (2), 292–299. https://doi.org/10.1021/jz501828v.
    (160) Kahlaoui, R.; Arbi, K.; Sobrados, I.; Jimenez, R.; Sanz, J.; Ternane, R. Cation Miscibility and Lithium Mobility in NASICON Li1+xTi2-XScx(PO4)3 (0 ≤ x ≤ 0.5) Series: A Combined NMR and Impedance Study. Inorg. Chem. 2017, 56 (3), 1216–1224. https://doi.org/10.1021/acs.inorgchem.6b02274.
    (161) Giarola, M.; Sanson, A.; Tietz, F.; Pristat, S.; Dashjav, E.; Rettenwander, D.; Redhammer, G. J.; Mariotto, G. Structure and Vibrational Dynamics of NASICON-Type LiTi2(PO4)3. J. Phys. Chem. C 2017, 121 (7), 3697–3706. https://doi.org/10.1021/acs.jpcc.6b11067.
    (162) Aono, H.; Sugimoto, E.; Sadaoka, Y.; Imanaka, N.; Adachi, G. The Electrical Properties of Ceramic Electrolytes for LiMxTi2−x (PO4)3+yLi2O, M = Ge, Sn, Hf, and Zr Systems. Journal of The Electrochemical Society. 1993, pp 1827–1833. https://doi.org/10.1149/1.2220723.
    (163) Xu, M.; Park, M. S.; Lee, J. M.; Kim, T. Y.; Park, Y. S.; Ma, E. Mechanisms of Li+ Transport in Garnet-Type Cubic Li3+xLa3M2O 12 (M = Te, Nb, Zr). Phys. Rev. B 2012, 85 (5), 1–5. https://doi.org/10.1103/PhysRevB.85.052301.
    (164) Cussen, E. J. The Structure of Lithium Garnets: Cation Disorder and Clustering in a New Family of Fast Li+ Conductors. Chem. Commun. 2006, No. 4, 412–413. https://doi.org/10.1039/b514640b.
    (165) Thangadurai, V.; Weppner, W. Effect of Sintering on the Ionic Conductivity of Garnet-Related Structure Li5La3Nb2O12 and In- and K-Doped Li5La3Nb2O12. J. Solid State Chem. 2006, 179 (4), 974–984. https://doi.org/10.1016/j.jssc.2005.12.025.
    (166) Kanno, R.; Hata, T.; Kawamoto, Y.; Irie, M. Synthesis of a New Lithium Ionic Conductor, Thio-LISICON-Lithium Germanium Sulfide System. Solid State Ionics 2000, 130 (1), 97–104. https://doi.org/10.1016/S0167-2738(00)00277-0.
    (167) Kanno, R.; Murayama, M. Lithium Ionic Conductor Thio-LISICON: The Li2S-GeS2-P2S5 System. J. Electrochem. Soc. 2001, 148 (7), A742–A746. https://doi.org//10.1149/1.1379028.
    (168) Kamaya, N.; Homma, K.; Yamakawa, Y.; Hirayama, M.; Kanno, R.; Yonemura, M.; Kamiyama, T.; Kato, Y.; Hama, S.; Kawamoto, K.; Mitsui, A. A Lithium Superionic Conductor. Nat. Mater. 2011, 10 (9), 682–686. https://doi.org/10.1038/nmat3066.
    (169) Du, F.; Ren, X.; Yang, J.; Liu, J.; Zhang, W. Article Pubs.Acs.Org/JPCC Structures, Thermodynamics, and Li+ Mobility of Li10GeP2S12: A First- Principles Analysis. J. Phys. Chem. C 2014, 118, 10590−10595. https://doi.org/10.1149/ma2016-03/2/663.
    (170) Xu, M.; Ding, J.; Ma, E. One-Dimensional Stringlike Cooperative Migration of Lithium Ions in an Ultrafast Ionic Conductor. Appl. Phys. Lett. 2012, 101 (3). https://doi.org/10.1063/1.4737397.
    (171) Wenzel, S.; Randau, S.; Leichtweiß, T.; Weber, D. A.; Sann, J.; Zeier, W. G.; Janek, J. Direct Observation of the Interfacial Instability of the Fast Ionic Conductor Li10GeP2S12 at the Lithium Metal Anode. Chem. Mater. 2016, 28 (7), 2400–2407. https://doi.org/10.1021/acs.chemmater.6b00610.
    (172) Krauskopf, T.; Culver, S. P.; Zeier, W. G. Bottleneck of Diffusion and Inductive Effects in Li10Ge1-XSnxP2S12. Chem. Mater. 2018, 30 (5), 1791–1798. https://doi.org/10.1021/acs.chemmater.8b00266.
    (173) Sun, Y.; Suzuki, K.; Hori, S.; Hirayama, M.; Kanno, R. Superionic Conductors: Li10+δ[SnySi1−y]1+δP2−δS12 with a Li10GeP2S12- Type Structure in the Li3PS4−Li4SnS4−Li4SiS4 Quasi-Ternary System. Chem. Mater. 2017, 29, 5858−5864. https://doi.org//10.1021/acs.chemmater.7b00886.
    (174) Kuhn, A.; Duppel, V.; Lotsch, B. V. Tetragonal Li10GeP2S12 and Li7GePS8-Exploring the Li Ion Dynamics in LGPS Li Electrolytes. Energy Environ. Sci. 2013, 6 (12), 3548–3552. https://doi.org/10.1039/c3ee41728j.
    (175) Kraft, M. A.; Culver, S. P.; Calderon, M.; Böcher, F.; Krauskopf, T.; Senyshyn, A.; Dietrich, C.; Zevalkink, A.; Janek, J.; Zeier, W. G. Influence of Lattice Polarizability on the Ionic Conductivity in the Lithium Superionic Argyrodites Li6PS5X (X = Cl, Br, I). J. Am. Chem. Soc. 2017, 139 (31), 10909–10918. https://doi.org/10.1021/jacs.7b06327.
    (176) Deiseroth, H. J.; Kong, S. T.; Eckert, H.; Vannahme, J.; Reiner, C.; Zaiß, T.; Schlosser, M. Li6PS5X: A Class of Crystalline Li-Rich Solids with an Unusually High Li+ Mobility. Angew. Chemie - Int. Ed. 2008, 47 (4), 755–758. https://doi.org/10.1002/anie.200703900.
    (177) Zhang, Z.; Shao, Y.; Lotsch, B.; Hu, Y. S.; Li, H.; Janek, J.; Nazar, L. F.; Nan, C. W.; Maier, J.; Armand, M.; Chen, L. New Horizons for Inorganic Solid State Ion Conductors. Energy Environ. Sci. 2018, 11 (8), 1945–1976. https://doi.org/10.1039/c8ee01053f.
    (178) Wang, Y.; Richards, W. D.; Ong, S. P.; Miara, L. J.; Kim, J. C.; Mo, Y.; Ceder, G. Design Principles for Solid-State Lithium Superionic Conductors. Nat. Mater. 2015, 14 (10), 1026–1031. https://doi.org/10.1038/nmat4369.
    (179) Kaup, K.; Lalère, F.; Huq, A.; Shyamsunder, A.; Adermann, T.; Hartmann, P.; Nazar, L. F. Correlation of Structure and Fast Ion Conductivity in the Solid Solution Series Li1+2xZn1-XPS4. Chem. Mater. 2018, 30 (3), 592–596. https://doi.org/10.1021/acs.chemmater.7b05108.
    (180) Richards, W. D.; Wang, Y.; Miara, L. J.; Kim, J. C.; Ceder, G. Design of Li1+2xZn1-XPS4, a New Lithium Ion Conductor. Energy Environ. Sci. 2016, 9, 3272. https://doi.org//10.1039/c6ee02094a.
    (181) Kuhn, A.; Holzmann, T.; Nuss, J.; Lotsch, B. V. A Facile Wet Chemistry Approach towards Unilamellar Tin Sulfide Nanosheets from Li4xSn1-XS2 Solid Solutions. J. Mater. Chem. A 2014, 2 (17), 6100–6106. https://doi.org/10.1039/c3ta14190j.
    (182) Brant, J. A.; Massi, D. M.; Holzwarth, N. A. W.; Macneil, J. H.; Douvalis, A. P.; Bakas, T.; Martin, S. W.; Gross, M. D.; Aitken, J. A. Fast Lithium Ion Conduction in Li2SnS3: Synthesis, Physicochemical Characterization, and Electronic Structure. Chem. Mater. 2015, 27 (1), 189–196. https://doi.org/10.1021/cm5037524.
    (183) Holzmann, T.; Schoop, L. M.; Ali, M. N.; Moudrakovski, I.; Gregori, G.; Maier, J.; Cava, R. J.; Lotsch, B. V. Li0.6[Li0.2Sn0.8S2]-a Layered Lithium Superionic Conductor. Energy Environ. Sci. 2016, 9 (8), 2578–2585. https://doi.org/10.1039/c6ee00633g.
    (184) Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review. Chem. Rev. 2017, 117 (15), 10403–10473. https://doi.org/10.1021/acs.chemrev.7b00115.
    (185) Mauger, A.; Armand, M.; Julien, C. M.; Zaghib, K. Challenges and Issues Facing Lithium Metal for Solid-State Rechargeable Batteries. J. Power Sources 2017, 353, 333–342. https://doi.org/10.1016/j.jpowsour.2017.04.018.
    (186) Chen, J.; Xiong, J.; Ji, S.; Huo, Y.; Zhao, J.; Liang, L. Polymer Electrolytes for Lithium Batteries. Adv. Mater. 1998, 10 (6), 439–448. https://doi.org/10.7536/PC190627.
    (187) Fenton, D. E.; Parker, J. M.; Wright, P. V. Complexes of Alkali Metal Ions with Poly(Ethylene Oxide). Polymer (Guildf). 1973, 14 (11), 589. https://doi.org/10.1016/0032-3861(73)90146-8.
    (188) Abraham, K. M.; Alamgir, M. Li+‐Conductive Solid Polymer Electrolytes with Liquid‐Like Conductivity. J. Electrochem. Soc. 1990, 137, 1657.
    (189) Aihara, Y.; Arai, S.; Hayamizu, K. Ionic Conductivity, DSC and Self Diffusion Coefficients of Lithium, Anion, Polymer, and Solvent of Polymer Gel Electrolytes: The Structure of the Gels and the Diffusion Mechanism of the Ions. Electrochim. Acta 2000, 45 (8), 1321–1326. https://doi.org/10.1016/S0013-4686(99)00339-4.
    (190) Fullerton-Shirey, S. K.; Maranas, J. K. Effect of LiClO4 on the Structure and Mobility of PEO-Based Solid Polymer Electrolytes. Macromolecules 2009, 42 (6), 2142–2156. https://doi.org/10.1021/ma802502u.
    (191) Bruce, P. G.; Vincent, C. A. Polymer Electrolytes. J. Chem. Soc. Faraday Trans. 1993, 89 (17), 3187–3203. https://doi.org//10.1039/FT9938903187.
    (192) Quartarone, E.; Mustarelli, P.; Magistris, A. PEO-Based Composite Polymer Electrolytes. Solid State Ionics 1998, 110, 1–14. https://doi.org/10.1016/s0167-2738(98)00114-3.
    (193) Bouchet, R.; Maria, S.; Meziane, R.; Aboulaich, A.; Lienafa, L.; Bonnet, J.; Phan, T. N. T.; Bertin, D.; Gigmes, D.; Devaux, D.; Denoyel, R.; Armand, M. Single-Ion BAB Triblock Copolymers as Highly Efficient Electrolytes for Lithium-Metal Batteries. Nat. Mater. 2013, 12, 452–457. https://doi.org/10.1038/namt3602.
    (194) Angell, C. A.; Liu, C.; Sanchez, E. Rubbery Solid Electrolytes with Dominant Cationic Transport and High Ambient Conductivity. Nature 1993, 362 (6416), 137–139. https://doi.org/10.1038/362137a0.
    (195) Rolland, J.; Brassinne, J.; Bourgeois, J. P.; Poggi, E.; Vlad, A.; Gohy, J. F. Chemically Anchored Liquid-PEO Based Block Copolymer Electrolytes for Solid-State Lithium-Ion Batteries. J. Mater. Chem. A 2014, 2 (30), 11839–11846. https://doi.org/10.1039/c4ta02327g.
    (196) Yuan, F.; Chen, H. Z.; Yang, H. Y.; Li, H. Y.; Wang, M. PAN-PRO Solid Polymer Electrolytes with High Ionic Conductivity. Mater. Chem. Phys. 2005, 89 (2–3), 390–394. https://doi.org/10.1016/j.matchemphys.2004.09.032.
    (197) Ramesh, S.; Winie, T.; Arof, A. K. Investigation of Mechanical Properties of Polyvinyl Chloride-Polyethylene Oxide (PVC-PEO) Based Polymer Electrolytes for Lithium Polymer Cells. Eur. Polym. J. 2007, 43 (5), 1963–1968. https://doi.org/10.1016/j.eurpolymj.2007.02.006.
    (198) Wen, Z.; Itoh, T.; Ichikawa, Y.; Kubo, M.; Yamamoto, O. Blend-Based Polymer Electrolytes of Poly(Ethylene Oxide) and Hyperbranched Poly[Bis(Triethylene Glycol)Benzoate] with Terminal Acetyl Groups. Solid State Ionics 134 2000, 134, 281–289. https://doi.org//10.1016/S0167-2738(00)00707-4.
    (199) Zhang, Z.; Kennedy, J. H. Synthesis and Characterization of the B2S3Li2S, the P2S5Li2S and the B2S3P2S5Li2S Glass Systems. Solid State Ionics 1990, 38, 217–224. https://doi.org/10.1016/0167-2738(90)90424-P.
    (200) Dietrich, C.; Weber, D. A.; Sedlmaier, S. J.; Indris, S.; Culver, S. P.; Walter, D.; Janek, J.; Zeier, W. G. Lithium Ion Conductivity in Li2S-P2S5 Glasses-Building Units and Local Structure Evolution during the Crystallization of Superionic Conductors Li3PS4, Li7P3S11 and Li4P2S7. J. Mater. Chem. A 2017, 5 (34), 18111–18119. https://doi.org/10.1039/c7ta06067j.
    (201) Ohtomo, T.; Kawamoto, K.; Hayashi, A.; Tatsumisago, M. Preparation of Li2S–P2S5 Amorphous Solid Electrolytes by Mechanical Milling. Commun. Am. Ceram. Soc. 2001, 84 (2), 477–479. https://doi.org//10.1111/j.1151-2916.2001.tb00685.x.
    (202) Kennedy, J. H. Ionically Conductive Glasses Based on SiS2. Mater. Chem. Phys. 1989, 23, 29–50.
    (203) Souquet, J. L.; Robinel, E.; Barrau, B.; Ribes, M. Glass Formation and Ionic Conduction in the M2SGeS2 (M = Li, Na, Ag) Systems. Solid State Ionics 1981, 317–321. https://doi.org/10.1016/0167-2738(81)90105-3.
    (204) Tatsumisago, M.; Hayashi, A. Superionic Glasses and Glass-Ceramics in the Li 2S-P 2S 5 System for All-Solid-State Lithium Secondary Batteries. Solid State Ionics 2012, 225, 342–345. https://doi.org/10.1016/j.ssi.2012.03.013.
    (205) Hayashi, A.; Tatsumisago, M.; Minami, T. Electrochemical Properties for the Lithium Ion Conductive (100‐x) (0.6Li2S·0.4SiS2 )·xLi4SiO4 Oxysulfide Glasses. J. Electrochem. Soc. 1999, 146 (9), 3472–3475. https://doi.org/10.1149/1.1392498.
    (206) Ujiie, S.; Inagaki, T.; Hayashi, A.; Tatsumisago, M. Conductivity of 70Li2S·30P2S5 Glasses and Glass-Ceramics Added with Lithium Halides. Solid State Ionics 2014, 263, 57–61. https://doi.org/10.1016/j.ssi.2014.05.002.
    (207) Mizuno, F.; Hayashi, A.; Tadanaga, K.; Tatsumisago, M. High Lithium Ion Conducting Glass-Ceramics in the System Li2S-P2S5. Solid State Ionics 2006, 177, 2721–2725. https://doi.org/10.1016/j.ssi.2006.04.017.
    (208) Yamane, H.; Shibata, M.; Shimane, Y.; Junke, T.; Seino, Y.; Adams, S.; Minami, K.; Hayashi, A.; Tatsumisago, M. Crystal Structure of a Superionic Conductor, Li7P3S11. Solid State Ionics 2007, 178 (15–18), 1163–1167. https://doi.org/10.1016/j.ssi.2007.05.020.
    (209) Mizuno, F.; Hayashi, A.; Tadanaga, K.; Tatsumisago, M. New, Highly Ion‐Conductive Crystals Precipitated from Li2S–P2S5 Glasses. Adv. Mater. 2005, 17 (7), 918–921. https://doi.org//10.1002/adma.200401286.
    (210) Zhang, Q.; Cao, D.; Ma, Y.; Natan, A.; Aurora, P.; Zhu, H. Sulfide-Based Solid-State Electrolytes: Synthesis, Stability, and Potential for All-Solid-State Batteries. Adv. Mater. 2019, 31 (44), 1901131. https://doi.org/10.1002/adma.201901131.
    (211) Kaib, T.; Haddadpour, S.; Kapitein, M.; Bron, P.; Schröder, C.; Eckert, H.; Roling, B.; Dehnen, S. New Lithium Chalcogenidotetrelates, LiChT: Synthesis and Characterization of the Li+-Conducting Tetralithium Ortho-Sulfidostannate Li4SnS4. Chem. Mater. 2012, 24 (11), 2211–2219. https://doi.org/10.1021/cm3011315.
    (212) Zhou, P.; Wang, J.; Cheng, F.; Li, F.; Chen, J. A Solid Lithium Superionic Conductor Li11AlP2S12 with a Thio-LISICON Analogous Structure. Chem. Commun. 2016, 52 (36), 6091–6094. https://doi.org/10.1039/c6cc02131j.
    (213) Ooura, Y.; MacHida, N.; Naito, M.; Shigematsu, T. Electrochemical Properties of the Amorphous Solid Electrolytes in the System Li2S-Al2S3-P2S5. Solid State Ionics 2012, 225, 350–353. https://doi.org/10.1016/j.ssi.2012.03.003.
    (214) Sahu, G.; Lin, Z.; Li, J.; Liu, Z.; Dudney, N.; Liang, C. Air-Stable, High-Conduction Solid Electrolytes of Arsenic-Substituted Li4SnS4. Energy Environ. Sci. 2014, 7 (3), 1053–1058. https://doi.org/10.1039/c3ee43357a.
    (215) Adams, S.; Prasada Rao, R. Structural Requirements for Fast Lithium Ion Migration in Li 10GeP 2S 12. J. Mater. Chem. 2012, 22 (16), 7687–7691. https://doi.org/10.1039/c2jm16688g.
    (216) Mo, Y.; Ong, S. P.; Ceder, G. First Principles Study of the Li 10GeP 2S 12 Lithium Super Ionic Conductor Material. Chem. Mater. 2012, 24 (1), 15–17. https://doi.org/10.1021/cm203303y.
    (217) Bron, P.; Johansson, S.; Zick, K.; Schmedt auf der Guenne, J.; Dehnen, S.; Roling, B. Li10SnP2S12: An Affordable Lithium Superionic Conductor. J. Am. Chem. Soc. 2013, 135, 15694−15697. https://doi.org/10.1002/chin.201404006.
    (218) Bron, P.; Dehnen, S.; Roling, B. Li10Si0.3Sn0.7P2S12 – A Low-Cost and Low-Grain-Boundary-Resistance Lithium Superionic Conductor. J. Power Sources 2016, 329, 530–535. https://doi.org/10.1016/j.jpowsour.2016.08.115.
    (219) Whiteley, J. M.; Woo, J. H.; Hu, E.; Nam, K.-W.; Lee, S.-H. Empowering the Lithium Metal Battery through a Silicon-Based Superionic Conductor. J. Electrochem. Soc. 2014, 161 (12), A1812–A1817. https://doi.org/10.1149/2.0501412jes.
    (220) Kato, Y.; Hori, S.; Saito, T.; Suzuki, K.; Hirayama, M.; Mitsui, A.; Yonemura, M.; Iba, H.; Kanno, R. High-Power All-Solid-State Batteries Using Sulfide Superionic Conductors. Nat. Energy 2016, 1 (4), 1–7. https://doi.org/10.1038/nenergy.2016.30.
    (221) Rao, R. P.; Adams, S. Studies of Lithium Argyrodite Solid Electrolytes for All-Solid-State Batteries. Phys. Status Solidi Appl. Mater. Sci. 2011, 208 (8), 1804–1807. https://doi.org/10.1002/pssa.201001117.
    (222) De Klerk, N. J. J.; Rosłoń, I.; Wagemaker, M. Diffusion Mechanism of Li Argyrodite Solid Electrolytes for Li-Ion Batteries and Prediction of Optimized Halogen Doping: The Effect of Li Vacancies, Halogens, and Halogen Disorder. Chem. Mater. 2016, 28 (21), 7955–7963. https://doi.org/10.1021/acs.chemmater.6b03630.
    (223) Minafra, N.; Culver, S. P.; Krauskopf, T.; Senyshyn, A.; Zeier, W. G. Effect of Si Substitution on the Structural and Transport Properties of Superionic Li-Argyrodites. J. Mater. Chem. A 2018, 6 (2), 645–651. https://doi.org/10.1039/c7ta08581h.
    (224) Kraft, M. A.; Ohno, S.; Zinkevich, T.; Koerver, R.; Culver, S. P.; Fuchs, T.; Senyshyn, A.; Indris, S.; Morgan, B. J.; Zeier, W. G. Inducing High Ionic Conductivity in the Lithium Superionic Argyrodites Li6+xP1-XGexS5I for All-Solid-State Batteries. J. Am. Chem. Soc. 2018, 140 (47), 16330–16339. https://doi.org/10.1021/jacs.8b10282.
    (225) Zhang, B.; Tan, R.; Yang, L.; Zheng, J.; Zhang, K.; Mo, S.; Lin, Z.; Pan, F. Mechanisms and Properties of Ion-Transport in Inorganic Solid Electrolytes. Energy Storage Mater. 2018, 10, 139–159. https://doi.org/10.1016/j.ensm.2017.08.015.
    (226) Rao, R. P.; Sharma, N.; Peterson, V. K.; Adams, S. Formation and Conductivity Studies of Lithium Argyrodite Solid Electrolytes Using In-Situ Neutron Diffraction. Solid State Ionics 2013, 230, 72–76. https://doi.org/10.1016/j.ssi.2012.09.014.
    (227) Yu, C.; Zhao, F.; Luo, J.; Zhang, L.; Sun, X. Recent Development of Lithium Argyrodite Solid-State Electrolytes for Solid-State Batteries: Synthesis, Structure, Stability and Dynamics. Nano Energy 2021, 83, 105858. https://doi.org/10.1016/j.nanoen.2021.105858.
    (228) Tarascon, J.-M.; Armand, M. Issues and Challenges Facing Rechargeable Lithium Batteries. Nature 2001, 414, 359–367. https://doi.org//10.1038/35104644.
    (229) YueGao; Wang, D.; Li, Y. C.; Yu, Z.; Mallouk, T. E.; Wang, D. Salt‐Based Organic Inorganic Nanocomposites Towards A Stable Lithium Metal/ Li10GeP2S12 Solid Electrolyte Interface. Angew. Chemie - Int. Ed. 2018, 57, 13608 –13612. https://doi.org//10.1002/ange.201807304.
    (230) Sang, L.; Bassett, K. L.; Castro, F. C.; Young, M. J.; Chen, L.; Haasch, R. T.; Elam, J. W.; Dravid, V. P.; Nuzzo, R. G.; Gewirth, A. A. Understanding the Effect of Interlayers at the Thiophosphate Solid Electrolyte/Lithium Interface for All-Solid-State Li Batteries. Chem. Mater. 2018, 30 (24), 8747–8756. https://doi.org/10.1021/acs.chemmater.8b02368.
    (231) Yao, X.; Huang, N.; Han, F.; Zhang, Q.; Wan, H.; Mwizerwa, J. P.; Wang, C.; Xu, X. High‐Performance All‐Solid‐State Lithium Sulfur Batteries Enabled by Amorphous Sulfur-Coated Reduced Graphene Oxide Cathodes. Adv. Energy Mater. 2017, 7, 1602923. https://doi.org//10.1002/aenm.201602923.
    (232) Choudhury, S.; Tu, Z.; Stalin, S.; Vu, D.; Fawole, K.; Gunceler, D.; Sundararaman, R.; Archer, L. A. Electroless Formation of Hybrid Lithium Anodes for Fast Interfacial Ion Transport. Angew. Chemie - Int. Ed. 2017, 56 (42), 13070–13077. https://doi.org/10.1002/anie.201707754.
    (233) Chen, S.; Xie, D.; Liu, G.; Mwizerwa, J. P.; Zhang, Q.; Zhao, Y.; Xu, X.; Yao, X. Sulfide Solid Electrolytes for All-Solid-State Lithium Batteries: Structure, Conductivity, Stability and Application. Energy Storage Mater. 2018, 14, 58–74. https://doi.org/10.1016/j.ensm.2018.02.020.
    (234) Haruyama, J.; Sodeyama, K.; Han, L.; Takada, K.; Tateyama, Y. Space−Charge Layer Effect at Interface between Oxide Cathode and Sulfide Electrolyte in All-Solid-State Lithium-Ion Battery. Chem. Mater. 2014, 26, 4248−4255. https://doi.org//10.1021/cm5016959.
    (235) Park, K. H.; Oh, D. Y.; Choi, Y. E.; Nam, Y. J.; Han, L.; Kim, J. Y.; Xin, H.; Lin, F.; Oh, S. M.; Jung, Y. S. Solution-Processable Glass LiI-Li4SnS4 Superionic Conductors for All-Solid-State Li-Ion Batteries. Adv. Mater. 2016, 28 (9), 1874–1883. https://doi.org/10.1002/adma.201505008.
    (236) Sakuda, A.; Hayashi, A.; Ohtomo, T.; Hama, S.; Tatsumisago, M. All-Solid-State Lithium Secondary Batteries Using LiCoO2 Particles with Pulsed Laser Deposition Coatings of Li2S-P 2S5 Solid Electrolytes. J. Power Sources 2011, 196 (16), 6735–6741. https://doi.org/10.1016/j.jpowsour.2010.10.103.
    (237) Muramatsu, H.; Hayashi, A.; Ohtomo, T.; Hama, S.; Tatsumisago, M. Structural Change of Li2S-P2S5 Sulfide Solid Electrolytes in the Atmosphere. Solid State Ionics 2011, 182 (1), 116–119. https://doi.org/10.1016/j.ssi.2010.10.013.
    (238) Hayashi, A.; Muramatsu, H.; Ohtomo, T.; Hama, S.; Tatsumisago, M. Improvement of Chemical Stability of Li3PS4 Glass Electrolytes by Adding MxOy (M = Fe, Zn, and Bi) Nanoparticles. J. Mater. Chem. A 2013, 1 (21), 6320–6326. https://doi.org/10.1039/c3ta10247e.
    (239) Ohtomo, T.; Hayashi, A.; Tatsumisago, M.; Kawamoto, K. Characteristics of the Li2O-Li2S-P2S 5 Glasses Synthesized by the Two-Step Mechanical Milling. J. Non. Cryst. Solids 2013, 364 (1), 57–61. https://doi.org/10.1016/j.jnoncrysol.2012.12.044.
    (240) Nam, Y. J.; Cho, S. J.; Oh, D. Y.; Lim, J. M.; Kim, S. Y.; Song, J. H.; Lee, Y. G.; Lee, S. Y.; Jung, Y. S. Bendable and Thin Sulfide Solid Electrolyte Film: A New Electrolyte Opportunity for Free-Standing and Stackable High-Energy All-Solid-State Lithium-Ion Batteries. Nano Lett. 2015, 15 (5), 3317–3323. https://doi.org/10.1021/acs.nanolett.5b00538.
    (241) Ito, S.; Fujiki, S.; Yamada, T.; Aihara, Y.; Park, Y.; Kim, T. Y.; Baek, S. W.; Lee, J. M.; Doo, S.; Machida, N. A Rocking Chair Type All-Solid-State Lithium Ion Battery Adopting Li2O-ZrO2 Coated LiNi0.8Co0.15Al 0.05O2 and a Sulfide Based Electrolyte. J. Power Sources 2014, 248, 943–950. https://doi.org/10.1016/j.jpowsour.2013.10.005.
    (242) Kim, D. H.; Lee, Y.; Song, Y. B.; Kwak, H.; Lee, S.; Jung, Y. S. Thin and Flexible Solid Electrolyte Membranes with Ultrahigh Thermal Stability Derived from Solution-Processable Li Argyrodites for All- Solid-State Li-Ion Batteries. ACS Energy Lett. 2020, 5, 718–727. https://doi.org/10.1021/acsenergylett.0c00251.
    (243) Zhang, Y.; Chen, R.; Wang, S.; Liu, T.; Xu, B.; Zhang, X.; Wang, X.; Shen, Y.; Lin, Y. H.; Li, M.; Fan, L. Z.; Li, L.; Nan, C. W. Free-Standing Sulfide/Polymer Composite Solid Electrolyte Membranes with High Conductance for All-Solid-State Lithium Batteries. Energy Storage Mater. 2020, 25, 145–153. https://doi.org/10.1016/j.ensm.2019.10.020.
    (244) Hayashi, A.; Tatsumisago, M. Mechanical Properties of Sulfide Glasses in All-Solid-State Batteries. J. Ceram. Soc. Japan 2018, 126 (9), 719–727. https://doi.org//10.2109/jcersj2.18022.
    (245) Nikodimos, Y.; Huang, C.-J.; Taklu, B. W.; Su, W.-N.; Hwang, B. J. Chemical Stability of Sulfide Solid-State Electrolytes: Stability toward Humid Air and Compatibility with Solvents and Binders. Energy Environ. Sci. 2022, 15 (3), 991–1033. https://doi.org/10.1039/d1ee03032a.
    (246) Oh, D. Y.; Nam, Y. J.; Park, K. H.; Jung, S. H.; Cho, S. J.; Kim, Y. K.; Lee, Y. G.; Lee, S. Y.; Jung, Y. S. Excellent Compatibility of Solvate Ionic Liquids with Sulfide Solid Electrolytes: Toward Favorable Ionic Contacts in Bulk-Type All-Solid-State Lithium-Ion Batteries. Adv. Energy Mater. 2015, 5 (22), 1–7. https://doi.org/10.1002/aenm.201500865.
    (247) Hatz, A. K.; Calaminus, R.; Feijoo, J.; Treber, F.; Blahusch, J.; Lenz, T.; Reichel, M.; Karaghiosoff, K.; Vargas-Barbosa, N. M.; Lotsch, B. V. Chemical Stability and Ionic Conductivity of LGPS-Type Solid Electrolyte Tetra-Li7SiPS8 after Solvent Treatment. ACS Appl. Energy Mater. 2021, 4 (9), 9932–9943. https://doi.org/10.1021/acsaem.1c01917.
    (248) Ueno, K.; Murai, J.; Ikeda, K.; Tsuzuki, S.; Tsuchiya, M.; Tatara, R.; Mandai, T.; Umebayashi, Y.; Dokko, K.; Watanabe, M. Li+ Solvation and Ionic Transport in Lithium Solvate Ionic Liquids Diluted by Molecular Solvents. J. Phys. Chem. C 2016, 120 (29), 15792–15802. https://doi.org/10.1021/acs.jpcc.5b11642.
    (249) Yubuchi, S.; Uematsu, M.; Deguchi, M.; Hayashi, A.; Tatsumisago, M. Lithium-Ion-Conducting Argyrodite-Type Li6PS5X (X = Cl, Br, I) Solid Electrolytes Prepared by a Liquid-Phase Technique Using Ethanol as a Solvent. ACS Appl. Energy Mater. 2018, 1 (8), 3622–3629. https://doi.org/10.1021/acsaem.8b00280.
    (250) Kennedy, J. H.; Zhang, Z. Preparation and Electrochemical Properties of the SiS2‐P2S5‐Li2S Glass Coformer System. J. Electrochem. Soc. 1989, 136 (9), 2441–2443. https://doi.org/10.1149/1.2097416.
    (251) Villaluenga, I.; Wujcik, K. H.; Tong, W.; Devaux, D.; Wong, D. H. C.; DeSimone, J. M.; Balsara, N. P. Compliant Glass-Polymer Hybrid Single Ion-Conducting Electrolytes for Lithium Batteries. Proc. Natl. Acad. Sci. U. S. A. 2016, 113 (1), 52–57. https://doi.org/10.1073/pnas.1520394112.
    (252) Yu, C.; van Eijck, L.; Ganapathy, S.; Wagemaker, M. Synthesis, Structure and Electrochemical Performance of the Argyrodite Li6PS5Cl Solid Electrolyte for Li-Ion Solid State Batteries. Electrochim. Acta 2016, 215, 93–99. https://doi.org/10.1016/j.electacta.2016.08.081.
    (253) Ito, S.; Nakakita, M.; Aihara, Y.; Uehara, T.; Machida, N. A Synthesis of Crystalline Li7P3S11 Solid Electrolyte from 1,2-Dimethoxyethane Solvent. J. Power Sources 2014, 271, 342–345. https://doi.org/10.1016/j.jpowsour.2014.08.024.
    (254) Prasada Rao, R.; Seshasayee, M. Molecular Dynamics Simulation of Ternary Glasses Li2S-P2S5-LiI. J. Non. Cryst. Solids 2006, 352 (30–31), 3310–3314. https://doi.org/10.1016/j.jnoncrysol.2006.04.018.
    (255) Wang, X.; Xiao, R.; Li, H.; Chen, L. Oxygen-Driven Transition from Two-Dimensional to Three-Dimensional Transport Behaviour in β-Li3PS4 Electrolyte. Phys. Chem. Chem. Phys. 2016, 18 (31), 21269–21277. https://doi.org/10.1039/c6cp03179j.
    (256) Kim, J.; Yoon, Y.; Eom, M.; Shin, D. Characterization of Amorphous and Crystalline Li2S-P2S5-P2Se5 Solid Electrolytes for All-Solid-State Lithium Ion Batteries. Solid State Ionics 2012, 225, 626–630. https://doi.org/10.1016/j.ssi.2012.05.013.
    (257) Mercier, R.; Malugani, J.-P.; Fahys, B.; Robert, G. Superionic Conduction in Li2S-P2S5-LiI-Glasses. Solid State Ionics 1981, 5, 663–666.
    (258) Xu, R. C.; Xia, X. H.; Li, S. H.; Zhang, S. Z.; Wang, X. L.; Tu, J. P. All-Solid-State Lithium-Sulfur Batteries Based on a Newly Designed Li7P2.9Mn0.1S10.7I0.3 Superionic Conductor. J. Mater. Chem. A 2017, 5 (13), 6310–6317. https://doi.org/10.1039/c7ta01147d.
    (259) Zhao, Y.; Wu, C.; Peng, G.; Chen, X.; Yao, X.; Bai, Y.; Wu, F.; Chen, S.; Xu, X. A New Solid Polymer Electrolyte Incorporating Li10GeP2S12 into a Polyethylene Oxide Matrix for All-Solid-State Lithium Batteries. J. Power Sources 2016, 301, 47–53. https://doi.org/10.1016/j.jpowsour.2015.09.111.
    (260) Kohjiya, S.; Kitade, T.; Ikeda, Y.; Hayashi, A.; Matsuda, A.; Tatsumisago, M.; Minami, T. Solid Electrolyte Composed of 95(0.6Li2S.0.4SiS2).5Li4SiO4 Glass and High Molecular Weight Branched Poly(Oxyethylene). Solid State Ionics 2002, 154–155, 1–6. https://doi.org//10.1016/S0167-2738(02)00447-2.
    (261) Kim, D. H.; Lee, Y. H.; Song, Y. B.; Kwak, H.; Lee, S. Y.; Jung, Y. S. Thin and Flexible Solid Electrolyte Membranes with Ultrahigh Thermal Stability Derived from Solution-Processable Li Argyrodites for All-Solid-State Li-Ion Batteries. ACS Energy Lett. 2020, 5 (3), 718–727. https://doi.org/10.1021/acsenergylett.0c00251.
    (262) Liu, S.; Zhou, L.; Han, J.; Wen, K.; Guan, S.; Xue, C.; Zhang, Z.; Xu, B.; Lin, Y.; Shen, Y.; Li, L.; Nan, C.-W. Super Long‐Cycling All‐Solid‐State Battery with Thin Li6PS5Cl‐Based Electrolyte. Adv. Energy Mater. 2022, 2200660. https://doi.org/10.1002/aenm.202200660.
    (263) Cai, M.; Yuan, D.; Zhang, X.; Pu, Y.; Liu, X.; He, H.; Zhang, L.; Ning, Xi. Lithium Ion Battery Separator with Improved Performance via Side-by-Side Bicomponent Electrospinning of PVDF-HFP/PI Followed by 3D Thermal Crosslinking. J. Power Sources 2020, 461, 228123. https://doi.org//10.1016/j.jpowsour.2020.228123 Received.
    (264) Zhang, Z.; Wu, L.; Zhou, D.; Weng, W.; Yao, X. Flexible Sulfide Electrolyte Thin Membrane with Ultrahigh Ionic Conductivity for All-Solid-State Lithium Batteries. Nano Lett. 2021, 21 (12), 5233–5239. https://doi.org/10.1021/acs.nanolett.1c01344.
    (265) Liu, H.; He, P.; Wang, G.; Liang, Y.; Wang, C.; Fan, L. Z. Thin, Flexible Sulfide-Based Electrolyte Film and Its Interface Engineering for High Performance Solid-State Lithium Metal Batteries. Chem. Eng. J. 2022, 430, 132991. https://doi.org/10.1016/j.cej.2021.132991.
    (266) Cheng, J. H.; Assegie, A. A.; Huang, C. J.; Lin, M. H.; Tripathi, A. M.; Wang, C. C.; Tang, M. T.; Song, Y. F.; Su, W. N.; Hwang, B. J. Visualization of Lithium Plating and Stripping via in Operando Transmission X‑ray Microscopy. J. Phys. Chem. C 2017, 121 (14), 7761–7766. https://doi.org/10.1021/acs.jpcc.7b01414.
    (267) Suo, L.; Borodin, O.; Gao, T.; Fan, X.; Luo, C. “Water-in-Salt” Electrolyte Enables High-Voltage Aqueous Lithium-Ion Chemistries. Science (80-. ). 2015, 350 (6263), 938–943. https://doi.org/10.1126/science.aab1595.
    (268) Tripathi, A. M.; Su, W. N.; Hwang, B. J. In Situ Analytical Techniques for Battery Interface Analysis. R. Soc. Chem. 2018, 47 (3), 736–851. https://doi.org/10.1039/c7cs00180k.
    (269) Huang, C. J.; Cheng, J. H.; Su, W. N.; Partovi-Azar, P.; Kuo, L. Y.; Tsai, M. C.; Lin, M. H.; Panahian Jand, S.; Chan, T. S.; Wu, N. L.; Kaghazchi, P.; Dai, H.; Bieker, P. M.; Hwang, B. J. Origin of Shuttle-Free Sulfurized Polyacrylonitrile in Lithium-Sulfur Batteries. J. Power Sources 2021, 492, 229508. https://doi.org/10.1016/j.jpowsour.2021.229508.
    (270) Xu, G.; Li, J.; Wang, C.; Du, X.; Lu, D.; Xie, B.; Wang, X.; Lu, C.; Liu, H.; Dong, S.; Cui, G.; Chen, L. The Formation/Decomposition Equilibrium of LiH and Its Contribution on Anode Failure in Practical Lithium Metal Batteries. Angew. Chemie Int. Ed. 2021, 60 (14), 7770–7776. https://doi.org/10.1002/ange.202013812.
    (271) Akella, S. H.; Taragin, S.; Mukherjee, A.; Lidor-Shalev, O.; Aviv, H.; Zysler, M.; Sharon, D.; Noked, M. Tailoring Nickel-Rich LiNi0.8Co0.1Mn0.1O2 Layered Oxide Cathode Materials with Metal Sulfides (M2S:M = Li, Na) for Improved Electrochemical Properties. J. Electrochem. Soc. 2021, 168 (8), 080543. https://doi.org/10.1149/1945-7111/ac2021.
    (272) Han, B.; Zhang, Z.; Zou, Y.; Xu, K.; Xu, G.; Wang, H.; Meng, H.; Deng, Y.; Li, J.; Gu, M. Poor Stability of Li2CO3 in the Solid Electrolyte Interphase of a Lithium-Metal Anode Revealed by Cryo-Electron Microscopy. Adv. Mater. 2021, 33, 2100404. https://doi.org/10.1002/adma.202100404.
    (273) Shen, Y. J.; Zhang, Y. L.; Gao, F.; Yang, G. S.; Lai, X. P. Influence of Temperature on the Microstructure Deterioration of Sandstone. Energies 2018, 11 (7), 1–17. https://doi.org/10.3390/en11071753.
    (274) Wang, X.; Pawar, G.; Li, Y.; Ren, X.; Zhang, M.; Lu, B.; Banerjee, A.; Liu, P.; Dufek, E. J.; Zhang, J. G.; Xiao, J.; Liu, J.; Meng, Y. S.; Liaw, B. Glassy Li Metal Anode for High-Performance Rechargeable Li Batteries. Nat. Mater. 2020, 19, 1339–1345. https://doi.org/10.1038/s41563-020-0729-1.
    (275) Cao, X.; Guo, G.; Liu, F.; Zhou, Y.; Zhang, S. The Properties of LiMn2O4 Synthesized by Molten Salt Method Using MnO2 as Manganese Source Recycled from Spent Zn-Mn Batteries. Int. J. Electrochem. Sci. 2015, 10 (5), 3841–3847.
    (276) Shan, C.; Guanghui, G.; Fangfang, L. Study on the Performance of LiMn2O4 Using Spent Zn–Mn Batteries as Manganese Source. J. Solid State Electrochem. 2014, 18 (6), 1495–1502. https://doi.org/10.1007/s10008-013-2311-0.
    (277) Yuan, G.; Bai, J.; Doan, T. N. L.; Chen, P. Synthesis and Electrochemical Investigation of Nanosized LiMn2O4 as Cathode Material for Rechargeable Hybrid Aqueous Batteries. Mater. Lett. 2014, 137, 311–314. https://doi.org/10.1016/j.matlet.2014.09.019.
    (278) Liao, B.; Xu, M.; Hong, P.; Li, H.; Wang, X.; Zhu, Y.; Xing, L.; Li, W. Enhancing Electrochemical Performance of Li/LiMn2O4 Cell at Elevated Temperature by Tailoring Cathode Interface via Diethyl Phenylphosphonite (DEPP) Incorporation. J. Appl. Electrochem. 2017, 47 (10). https://doi.org/10.1007/s10800-017-1108-8.
    (279) Pham, M. N.; Subramani, R.; Lin, Y. H.; Lee, Y. L.; Jan, J. S.; Chiu, C. C.; Teng, H. Acylamino-Functionalized Crosslinker to Synthesize All-Solid-State Polymer Electrolytes for High-Stability Lithium Batteries. Chem. Eng. J. 2022, 430, 132948. https://doi.org/10.1016/j.cej.2021.132948.
    (280) Nguyen, H. T. T.; Nguyen, D. H.; Zhang, Q. C.; Lee, Y. L.; Jan, J. S.; Chiu, C. C.; Teng, H. A Scaffold Membrane of Solid Polymer Electrolytes for Realizing High-Stability and Dendrite-Free Lithium-Metal Batteries. J. Mater. Chem. A 2021, 9 (45), 25408–25417. https://doi.org/10.1039/d1ta06838e.
    (281) Luo, X.; Lu, X.; Zhou, G.; Zhao, X.; Ouyang, Y.; Zhu, X.; Miao, Y. E.; Liu, T. Ion-Selective Polyamide Acid Nanofiber Separators for High-Rate and Stable Lithium-Sulfur Batteries. ACS Appl. Mater. Interfaces 2018, 10 (49), 42198–42206. https://doi.org/10.1021/acsami.8b10795.
    (282) Kim, S. K.; Kim, H. T.; Park, J. K. Effects of Thermal Curing on the Structure of Polyimide Film. Polym. J. 1998, 30 (3), 229–233. https://doi.org/10.1295/polymj.30.229.
    (283) Wu, G.; Yao, C.; Qiu, F. Synthesis, Characterization and Non-Linear Optical Properties of Polyimide and Polyimide/Silica Hybrid Materials. Iran. Polym. J. - English Ed. 2010, 19 (9), 651–660.
    (284) Ruhl, J.; Riegger, L. M.; Ghidiu, M.; Zeier, W. G. Impact of Solvent Treatment of the Superionic Argyrodite Li6PS5Cl on Solid‐State Battery Performance.Pdf. Adv. Energy Sustain. Res. 2021, 2, 2000077. https://doi.org/10.1002/aesr.202000077.
    (285) Yubuchi, S.; Teragawa, S.; Aso, K.; Tadanaga, K.; Hayashi, A.; Tatsumisago, M. Preparation of High Lithium-Ion Conducting Li6PS5Cl Solid Electrolyte from Ethanol Solution for All-Solid-State Lithium Batteries. J. Power Sources 2015, 293, 941–945. https://doi.org/10.1016/j.jpowsour.2015.05.093.
    (286) Lacey, M. J.; Jeschull, F.; Edström, K.; Brandell, D. Why PEO as a Binder or Polymer Coating Increases Capacity in the Li–S System. Chem. Commun. 2013, 49 (76), 8531–8533. https://doi.org/10.1039/c3cc44772c.
    (287) Inagaki, M.; Ibuki, T.; Takeichi, T. Carbonization Behavior of Polyimide Films with Various Chemical Structures. J. Appl. Polym. Sci. 1992, 44 (3), 521–525. https://doi.org/10.1002/app.1992.070440316.
    (288) Gebrekrstos, A.; Muzata, T. S.; Ray, S. S. Nanoparticle-Enhanced β ‑ Phase Formation in Electroactive PVDF Composites : A Review of Systems for Applications in Energy Harvesting, EMI Shielding, and Membrane Technology. ACS Appl. Nano Mater. 2022, 5, 7632−7651. https://doi.org/10.1021/acsanm.2c02183.
    (289) Lee, D. G.; Lee, B. C.; Jung, K. H. Preparation of Porous Carbon Nanofiber Electrodes Derived from 6FDA-Durene/PVDF Blends and Their Electrochemical Properties. Polymers (Basel). 2021, 13, 720. https://doi.org/10.3390/polym13050720.
    (290) Rahaman, M. S. A.; Ismail, A. F.; Mustafa, A. A Review of Heat Treatment on Polyacrylonitrile Fiber. Polym. Degrad. Stab. 2007, 92 (8), 1421–1432. https://doi.org/10.1016/j.polymdegradstab.2007.03.023.
    (291) Chen, S.; Liu, Z.; Jiang, S.; Hou, H. Carbonization: A Feasible Route for Reutilization of Plastic Wastes. Sci. Total Environ. 2020, 710, 136250. https://doi.org/10.1016/j.scitotenv.2019.136250.
    (292) Vaquette, C.; Cooper-White, J. J. Increasing Electrospun Scaffold Pore Size with Tailored Collectors for Improved Cell Penetration. Acta Biomater. 2011, 7 (6), 2544–2557. https://doi.org/10.1016/j.actbio.2011.02.036.
    (293) Chen, M.; Xie, S.; Zhao, X.; Zhou, W.; Li, Y.; Zhang, J.; Chen, Z.; Chao, D. Aqueous Zinc-Ion Batteries at Extreme Temperature: Mechanisms, Challenges, and Strategies. Energy Storage Mater. 2022. https://doi.org/10.1016/j.ensm.2022.06.052.
    (294) Mo, F.; Liang, G.; Meng, Q.; Liu, Z.; Li, H.; Fan, J.; Zhi, C. A Flexible Rechargeable Aqueous Zinc Manganese-Dioxide Battery Working at -20 °c. Energy Environ. Sci. 2019, 12 (2), 706–715. https://doi.org/10.1039/c8ee02892c.

    無法下載圖示 全文公開日期 2024/08/18 (校內網路)
    全文公開日期 2024/08/18 (校外網路)
    全文公開日期 2024/08/18 (國家圖書館:臺灣博碩士論文系統)
    QR CODE