簡易檢索 / 詳目顯示

研究生: 羅葦傑
Wei-chieh Lo
論文名稱: 長期演化網路具有服務差異化之修改DRX機制效能評估
Performance Evaluation of the Modified DRX Mechanism in LTE Networks with Service Differentiation
指導教授: 鍾順平
Shun-ping Chung
口試委員: 林永松
Yeong-sung Lin
王乃堅
Nai-jian Wang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 80
中文關鍵詞: 長期演化網路DRX休眠模式運作近似方法服務差異化靜止計數器功率節能因子封包延遲
外文關鍵詞: the inactivity timer, wake up delay
相關次數: 點閱:178下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • LTE 長期演化網路是第四代無線通訊技術之標準,對於網路資料的傳輸提供較高的系統頻寬。而我們了解到無線網路傳輸速率是受限於行動裝置的電池容量。另一方面,由於現在的智慧型手機提供行動性讓現代人擁有很好的行動自由度,因此如何延長行動裝置的電池壽命是目前最重要的議題之一。在LTE無線網路架構之下,使用”非連續性接收系統操作(DRX)”休眠機制來保存行動裝置的電池電力。在無線傳輸網路之中我們專注在基地台與行動裝置之間的下鏈傳輸。首先,提出一個修改型的DRX休眠機制,此機制允許遠端基地台能夠以下鏈傳輸封包的方式進接到兩個行動裝置。為了避免了兩個行動裝置接收封包時會彼此碰撞,所以我們在原本的DRX機制中增加一個等待狀態。第二,我們推導出相關的數學模型來描述共享相同通道的兩個行動裝置之LTE DRX機制。我們將此它描述成一個具有半馬可夫程序特性的系統,然後使用嵌入式馬可夫鏈推導出在狀態轉移時間點時系統的穩態機率分佈。一旦穩態機率分佈被找到,透過由我們自己所提出來的兩種近似方法來計算所感興趣的效能量度。例如:功率節能因子、功率消耗平均百分比、封包延遲。根據實施輕/重載的資料流量以及服務差異化,我們可以考慮到四種情況。第三,研究四種系統參數對效能量度的影響。例如,靜止計數器、短循環計數器、短循環、長循環。如果系統具有服務差異化,我們可以發現參數靜止計數器比其他參數還容易造成重大的影響。在大量的數值實驗之後,顯示出第一個近似方法優於第二個近似方法。最後但並非最不重要,解析結果是借透過模擬結果驗證的。電腦模擬是使用C語言來撰寫。在所有我們研究的情況中,解析結果和模擬結果是非常吻合的。


    The fourth-generation (4G) wireless technologies, such as Long-Term Evolution (LTE), promise to provide high bandwidth for data transmission. On one hand, the data rate for wireless transmission is limited by battery capacity. On the other hand, people enjoy the freedom provided by the mobility of user equipment (UE). Therefore, how to extend the battery lifetime of UEs is one of the most significant issues. Accordingly, LTE wireless networks employ the power-saving operation called Discontinuous Reception Operation (DRX) to conserve UE battery. We focus on the downlink transmission in LTE networks under the DRX mechanism. First, we propose the Modified DRX mechanism to allow the RNC to initiate a downlink transmission shared by two UEs. To avoid the collision between two UEs, a new mode, defer mode, is added to the original DRX mechanism. Second, we develop the analytical model to describe the LTE DRX operation with two UEs sharing the same link. We characterize the system of interest as a semi-Markov process. We utilize the embedded Markov chain to derive the steady-state probability distribution of the system of interest at the state transition points. Once the steady state probability distribution is found, the performance measures of interest are computed via two proposed approximation methods. The performance measures of interest are the power saving factor, mean percentage power consumption, and wake-up delay. Based on whether the traffic load is light or heavy and whether the service differentiation is enforced, we consider four scenarios. Third, we study the effect of four system parameters, i.e., the inactivity timer, the DRX short cycle timer, the short cycle, and the long cycle, on performance measures. With service differentiation, the inactivity timer results in the most significant effect among the four system parameters. After extensive numerical experiments, approximation method 1 is shown to outperform approximation method 2. Last but not least, we verify the accuracy of the analytical results by the simulation program written in C. In most cases studied, the analytical results are reasonably close to the simulation results.

    摘 要 I ABSTRACT II CONTENTS III List of Tables V List of Figures V 1. Introduction 1 2. DRX Mechanism in LTE 4 3. System Model 6 3.1 ETSI Packet Traffic Model 6 3.2 The Modified DRX Scheme 7 3.2.1 Approximation Methods 8 3.2.2 Multiplexing Gain 9 3.2.3 Service Differentiation 9 4. Analytical Model 11 4.1 Semi-Markov Modeling 11 4.1.1 Transition Probability Matrix 11 4.1.2 Mean Holding Time 15 4.1.3 Iterative Algorithm 19 4.2 Performance Measure 20 4.2.1 Power Saving Factor 21 4.2.2 Mean Percentage Power Consumption 22 4.2.3 Wake-Up Delay 23 5. Simulation Model 27 5.1 Main Program 27 5.2 Subprograms 27 5.2.1 Bursty Subprogram 27 5.2.2 Arrival Subprogram 28 5.2.3 Departure Subprogram 29 5.2.4 Sleep Subprogram 29 5.2.5 Listen Subprogram 30 6.Numirical Results 37 6.1 Light Load 37 6.1.1 Scenario A 37 6.1.2 Scenario B 41 6.2 Heavy Load 45 6.2.1 Scenario C 45 6.2.2 Scenario D 48 7. Conclusions 77 References 79

    [1] Third-Generation Partnership Project, Tech. Spec. 3G TS 25.304 ver. 5.9.0, Sep. 2005.
    [2] Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, (Revision of IEEE Std 802.11-1999), IEEE Std.802.11-2007, Jun. 2006.
    [3] 3GPP, “3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA) Medium Access Control (MAC) protocol specification,” Technical Specification 3GPP TS 36.321, version 8.0.0 (2007-12), 2007.
    [4] Part 16: Air Interface for Broadband Wireless Access Systems, IEEE Std. 802.16-2009, May 2009.
    [5] 3GPP TS 36.321: “E-UTRA; Medium Access Control (MAC) protocol specification,” Rel. 8, v. 8.7.0, Sep. 2009.
    [6] 3GPP TS 36.331: “E-UTRA; Radio Resource Control (RRC) protocol specification,” Rel. 8, v. 8.7.0, Sep. 2009.
    [7] Third-Generation Partnership Project, Tech. Spec. 3G TS 36.300 ver.10.0.0, Jun. 2010.
    [8] H. Holma and A. Toskala, WCDMA for UMTS. New York: Wiley, 2000.
    [9] ETSI, “UMTS; Selection procedures for the choice of radio transmission technologies of the UMTS,” Technical Report UMTS 30.03 v. 3.2.0, Apr. 1998.
    [10] S. R. Yang and Y. B. Lin, “Modeling UMTS discontinuous reception mechanism,” IEEE Transactions on Wireless Communications, vol. 4, no. 1, Jan. 2005, pp. 312-319.
    [11] S. Yang, M. Yoo, and Y. Shin, “An adaptive discontinuous reception mechanism based on extended paging indicator for power saving in UMTS,” IEEE 64th Vehicular Technology Conference, VTC Fall 2006, pp. 1-5.
    [12] S. R. Yang, S. Y. Yan and H. N. Hung, “Modeling UMTS power saving with bursty packet data traffic,” IEEE Transactions on Mobile Computing, vol. 6, no. 12, Dec.2007, pp. 1398-1409.
    [13] L. Zhou, H. Xu, H. Tian, Y. Gao, L. Du, and L.Chen, “Performance analysis of power saving mechanism with adjustable DRX cycles in 3GPP LTE,” IEEE 68th Vehicular Technology Conference, VTC Spring, Sep. 2008, pp. 1-5.
    [14] J. H. Yeh, J. C. Chen, and C. C. Lee, “Comparative analysis of energy saving techniques in 3GPP and 3GPP2 systems,” IEEE Trans. Veh. Technol., vol. 58, no. 1, pp. 432–448, Jan. 2009.
    [15] W. Willinger, M. S. Taqqu, R. Sherman, and D.V. Wilson, “Self-similarity through high-variability: statistical analysis of ethernet LAN traffic at the source level,” IEEE/ACM Trans. Networking, vol. 5, no. 1, pp. 71-86, Feb. 1997.
    [16] S. M. Ross, Stochastic Processes, second ed. John Wiley & Sons, 1996.
    [17] M. S. Mushtaq, A. Shahid, and S. Fowler, “Qos-aware LTE downlink scheduler for VoIP with power saving,”2010 IEEE 15th International Conference on Computational Science and Engineering, pp. 243-250.
    [18] L. Kleinrock, Queueing Systems, Volume I: Theory, John Wiley, New York, 1975.
    [19] Y. Y. Mihov, K. M. Kassev, and B. P. Tsankov, “Analysis and performance evaluation of the DRX mechanism for power saving in LTE,”2010 IEEE 26th Convention of Electrical and Electronics Engineers in Israel, pp. 520-524.

    QR CODE