簡易檢索 / 詳目顯示

研究生: 馬宗聖
Tsung-Sheng Ma
論文名稱: 無線網路之優先權化機會式網路編碼方法
Prioritized Opportunistic Network Coding Schemes in Wireless Networks
指導教授: 鍾順平
Shun-ping Chung
口試委員: 王乃堅
Nai-jian Wang
林永松
Yeong-sung Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 165
中文關鍵詞: 網路編碼服務差異化蝴蝶型網路封包傳輸延遲封包損失機率編碼機率成功送達率
外文關鍵詞: network coding, service differentiation, butterfly network, packet delivery delay, packet loss probability, coding probability, throughput
相關次數: 點閱:205下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在最近這幾年,網路編碼已被廣泛應用在改善無線網路的效能,其中不僅資料成功送達率而且能源效率、複雜度、拓展性、封包傳輸延遲和封包損失機率都可獲得改善。另一方面,不同的服務可能會有不同的服務品質需求。舉例來說,即時性服務在延遲方面是敏感的而在損失方面是可承受的,而非即時性服務在損失方面是敏感的而在延遲方面是可承受的。因此如何結合網路編碼和服務差異化變成無線網路設計的另一個關鍵議題。在這篇論文中,我們研究可應用在無線網路中繼節點之三種優先權化機會式網路編碼方法。在方法1中,封包的平均服務時間只受到優先權影響。在方法2與3中,封包的平均服務時間同時受到優先權和緩衝器占有度的影響。我們假設無線網路鏈結可能發生錯誤,也就是說封包傳輸時間是不固定的。我們也假設系統有兩種類別的封包,其中類別一的封包的優先權高於類別二。除此之外,不像大多數的研究假設緩衝器大小是無限的,我們考慮有限緩衝器情境,而且修改原始網路編碼以解決鎖死情況。在每一個優先權化機會式網路編碼方法中,我們考慮了三種情境:原始網路編碼,無優先權之非原始網路編碼和有優先權之非原始網路編碼。根據離散時間馬可夫鏈,我們推導我們考慮的系統的解析模型。我們也開發一個疊代演算法去求得穩態機率分布和感興趣的效能指標。我們感興趣的效能指標為封包傳輸延遲、編碼機率、來源端損失機率、中繼端損失機率、整體封包延遲、整體封包損失機率和成功送達率。我們研究不同系統參數,例如封包到達速率、封包服務速率和網路編碼服務速率,對於系統效能指標的影響。透過廣泛的數值實驗,我們發現方法1可達成最好的服務差異化而方法2可達成最好的整體效能。最後但不是最不重要的,我們使用電腦模擬去驗證我們的解析結果。在大多數的情況下我們的解析結果很接近我們的模擬結果。


    In recent years, network coding has demonstrated a wide range of applications for improving the performance of wireless networks not only in term of throughput, but also in terms of energy efficiency, complexity, scalability, packet delivery delay, and packet loss probability. On the other hand, different services may have different QoS requirements. As an example, the real-time service is delay-sensitive but loss-insensitive, whereas the non-real-time service is delay-insensitive but loss-sensitive. Therefore, how to combine network coding and service differentiation becomes another critical issue for the design of wireless networks. In this work, we study a wireless butterfly network where three prioritized opportunistic network coding (ONC) schemes are applied at the relay. The mean packet service time of scheme 1 depends only the priority, and those of schemes 2 and 3 depends on both the priority and buffer occupancy. We assume there may be errors in the wireless link, i.e., the packet transmission time is not fixed. It is assumed that there are two classes of packets. Class-1 packets have priority over class-2 packets. Furthermore, unlike the most studies assuming buffer space is infinite, we consider the finite buffer scenarios and propose a modification to solve the deadlock situation in the pure network coding (PNC). For each scheme, we consider three scenarios: PNC, non-PNC without priority, and non-PNC with priority. We derive an analytical model of the considered systems based on the discrete-time Markov chain. We develop an iterative algorithm to find the steady state probability distribution and the performance measures of interest. The performance measures of interest are the packet delivery delay, the coding probability, the source loss probability, the relay loss probability, the aggregate packet delivery delay, the aggregate loss probability, and the throughput. We study the effect of different system parameters, i.e., the packet arrival rate, the packet service rate, and the coding rate, on different performance measures. After extensive numerical experiments, it is found that scheme 1 achieves the best service differentiation, whereas scheme 2 achieves the best overall performance. Last but not least, we use computer simulation to verify our analytical results. In most cases our analytical results are very close to simulation results.

    摘要 I Abstract II Contents III List of Tables V List of Figures V 1. Introduction 1 2. System Model 4 2.1 Network Coding 4 2.2 Queueing Models 4 3. Analytical Model 8 3.1. Steady-State Probability Distribution 8 3.1.1 The Rates Flowing into Each State 10 3.1.2 The Rates Flowing out of Each State 46 3.1.3 Example System 48 3.1.4 Iterative Algorithm 54 3.2. Performance Measures 54 3.2.1 Coding Probability 54 3.2.2 Source Loss Probability 54 3.2.3 Packet Delivery Delay 55 3.2.4 Relay Loss Probability 56 3.2.5 Aggregate Packet Delivery Delay 57 3.2.6 Aggregate Loss Probability 57 3.2.7 Throughput 57 4. Simulation Model 60 4.1 Scheme 1 60 4.1.1 Main Program 60 4.1.2 Source Arrival Subprogram 61 4.1.3 Source Departure Subprogram 61 4.1.4 Relay Arrival Subprogram 62 4.1.5 Relay Departure Subprogram 65 4.2 Scheme 2 65 4.2.1 Main Program 66 4.2.2 Source Arrival Subprogram 66 4.2.3 Source Departure Subprogram 66 4.2.4 Relay Arrival Subprogram 66 4.2.5 Relay Departure Subprogram 69 4.3 Scheme 3 69 4.3.1 Main Program 70 4.3.2 Relay Retry and Transmission Probability Subprograms 70 4.3.3 Source Arrival Subprogram 71 4.3.4 Source Departure Subprogram 71 4.3.5 Relay Arrival Subprogram 71 4.3.6 Relay Departure Subprogram 75 4.4 Performance Measures 77 4.4.1 Packet Delivery Delay 77 4.4.2 Source Loss Probability 77 4.4.3 Relay Loss Probability 77 4.4.4 Coding Probability 78 4.4.5 Aggregate Packet Delivery Delay 78 4.4.6 Aggregate Loss Probability 78 4.4.7 Throughput 79 5. Numirical Results 102 5.1 Scheme 1 102 5.1.1 Source Arrival Rate 102 5.1.2 Source Service Rate 106 5.1.3 Coding Service Rate 109 5.2 Scheme 2 111 5.2.1 Source Arrival Rate 112 5.2.2 Source Service Rate 115 5.2.3 Coding Service Rate 118 5.3 Scheme 3 120 5.3.1 Source Arrival Rate 121 5.3.2 Source Service Rate 125 5.3.3 Coding Service Rate 127 6. Conclusions 163 References 164

    [1] R. Ahlswede, N. Cai, S.-Y. R. Li and R. W. Yeung, “Network information flow” IEEE Trans. on Information Theory, vol. 46, pp. 1204-1216, July 2000.
    [2] C .Fragouli, J. Widmer, and J.-Y Le Boudec, “On the benefits of network coding for wireless applications” 2006 4th International Symposium, pp. 1-6, April 2006
    [3] C .Fragouli, J. Widmer, and J.-Y Le Boudec, “A network coding approach to energy efficient broadcasting: from theory to practice” IEEE INFOCOM 2006, pp. 1-11, April 2006.
    [4] S. Katti, H. Rahul, W. Hu, D. Katabi, M. M’edard, and J. Crowcroft, “XORs in the air: practical wireless network coding” IEEE/ACM Transactions on Networking, vol. 16, no. 3, pp. 497-510, June 2008.
    [5] R. Koetter, “An algebraic approach to network coding” IEEE/ACM Transactions on Networking, vol. 11, no. 5, pp. 782-795, October 2003.
    [6] W. Chen, K. B. Letaief, and Z. Cao, “Opportunistic network coding for wireless networks” IEEE International Conference on Communications (ICC), pp. 4634-4639, June 2007.
    [7] S. Chieochan, E. Hossain, T. Issariyakul, and D. Niyato, “Opportunistic network coding and dynamic buffer allocation in a wireless butterfly network” Global Telecommunications Conference IEEE, pp. 1-6 , November 2009.
    [8] R. Zhang, Q. Qian, M. Xin, and B. Zhang, “Opportunistic scheduling and performance analysis on wireless network coding” IEEE 11th International Conference, pp. 491-498, August 2011.
    [9] W. Chen, K. Letaief, and Z. Cao,”Opportunistic Network Coding for Wireless Networks” IEEE ICC 2007, pp. 4634-4639, June 2007.
    [10] H. Seferoglu and A. Markopoulou,“Opportunistic Network Coding for Video Streaming over Wireless”16th International Packet Video Workshop (PV 2007). pp. 191-200 , November 2007.
    [11] X. He and A. Yener, “On the energy-delay trade-off of a two-way relay network” Conference on Information Sciences and Systems (CISS), pp. 865-870, March 2008.
    [12] X. Liu, G. Cheung, and C.-N. Chuah, “Rate-distortion optimized network coding for cooperative video stream repair in wireless peer-to-peer networks” International Symposium on World of Wireless, Mobile and Multimedia Networks (WoWMoM), pp. 1-6, June 2008.
    [13] B. Shrader and A. Ephremides, “A queueing model for random linear coding” IEEE Military Communications Conference (MILCOM), pp. 1-7, October 2007.
    [14] S. Katti, D. Katabi, W. Hu, H. Rahul, and M. Medard, “The importance of being opportunistic: practical network coding for wireless environments”.43rd Allerton Conference on Communication, Control, and Computing, Monticello, USA, Sept 2005.
    [15] R. Zhang and Q. Qian, “Probabilistic network coding with priority over wireless networks” 2011 International Conference on Measuring Technology and Mechatronics Automation (Icmtma 2011), pp. 918-921, January 6-7, Shanghai, China, 2011.

    無法下載圖示 全文公開日期 2019/07/21 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE