簡易檢索 / 詳目顯示

研究生: 吳典錡
Dien-Chi Wu
論文名稱: 面成型快速原型系統之光罩校正法與光硬化樹脂奈米複合材料物性之研究
A Study of Photomask Correction Method and Physical Properties of Photopolymer Nano-Composites for area-forming rapid prototyping
指導教授: 邱士軒
Shih-Hsuan Chiu
口試委員: 邱顯堂
none
李俊毅
none
黃昌群
none
蘇舜恭
none
張豐志
none
溫哲彥
none
廖俊鑑
none
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2008
畢業學年度: 97
語文別: 英文
論文頁數: 92
中文關鍵詞: 快速原型光罩奈米複材料物性
外文關鍵詞: rapid prototyping, photomask, nano-composite, physical properties
相關次數: 點閱:385下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

快速原型是將3D CAD模型轉換為實體原件的一種疊層加工,一般的快速原型系統中,加工材料大致可分為固態、粉末、液態材料三種。早期快速原型系統主要的研究乃是在要求如何改善成品的特微、成品的品質、加工的成本與設計週期的長短,故快速原型的相關研究便針對上述目的來加以改善,如提高CAD模型的表面精度、使用較佳的加工材料或是加工流程的改良等等。
在液態類快速原型系統中,其主要的加工材料乃是光硬化樹脂,而原型的加工是經由光照射於光硬化樹脂來硬化成型,此種光硬化成型的照射方式有點、線、面三種。此類原型在硬化時會產生體積的收縮,且大都會有強度與硬度不佳的缺點,這會使得原型件在製造完成後,有保存不易及形變的問題產生。另外,面成型快速原型技術中,加工一層只需一次的光罩照射,當使用DMD來做為面成型快速原型系統的動態光罩時,在微尺寸的應用上會因DMD解析度而有所限制。若在加工微工件時,降低DMD解析度來改變微尺寸的影像,會因此使得解析誤差被放大。故本研究採用奈米二氧化矽當為光硬化樹脂的添加物,來改善光硬化樹脂的物理性質,並提出一種新的光罩自動校正法來保留原影像的高解析度。由實驗結果可知,光硬化樹脂/二氧化矽奈米複合材料可以改善如拉伸強度、硬度與裂解溫度等的物理性質。光罩自動校正法可增加面成型快速原型系統的自動化能力,並有效降低人為誤差造成的負面效果。


Rapid Prototyping (RP) is a layer by layer fabrication process that is capable of converting a 3-dimensional (3D) computer-Aided-Design (CAD) model into a physical object. There generally are solid, powdery and liquid materials available for RP. The main research issues of previously RP systems stem from the desire to improve the product feature, quality, cost and time to market. Some different researches, such as the more accurate representation of CAD models, the better manufactured materials or the improvement of manufacturing processes, etc., were presented to achieve the goal in rapid prototyping technology.
In liquid-RP system, the main available material is photopolymer which is cured through photon radiation in point, line and area to fabricate the prototype. The prototype fabricated from photopolymer was difficult for storage due to volumetric shrinkage and deformation during curing. The prototype fabricated from photopolymer suffers from the volumetric shrinkage during curing and the continuing deformation for a creeping period after curing. In addition, the process of area-forming rapid prototyping is that each layer is cured through single radiation of photomask. While adopting the DMD as the dynamic mask for area-forming rapid prototyping system, the resolution of the DMD is a limiting factor to the micro-sized applications. If a rescaled micro-sized image generated from Digital Micro-mirror Device (DMD) is directly used for fabricating the micro part, the error will be large. Therefore, we used nano-SiO2 as a major additive to modify the physical properties of photopolymer and present a novel photomask auto-correction method to remain the original photomask with high resolution. The experimental results showed that photopolymer/SiO2 nano-composite can improve some physical properties, such as tensile strength, hardness and the degradation temperature, etc. The photomask auto-correction method can enhance the ability of automation in area-forming rapid prototyping system and reduce efficiently negative influence of human error.

摘要 I ABSTRACT II 誌謝 IV CONTENTS VI FIGURES & TABLES INDEX IX Chapter 1. INTRODUCTION 1 1.1. Rapid Prototyping technology 2 1.2. Why Rapid prototyping? 4 1.3. The Workflow of Rapid Prototyping 5 1.4. Classification of Rapid Prototyping processes 7 1.5. Research objectives 9 1.6. Outline of the thesis 10 Chapter 2. POLYMER IN RAPID PROTOTYPING 11 2.1. Polymer composite materials 12 2.2. Nano-composite materials 13 2.3. Photopolymer in rapid prototyping 15 Chapter 3. PHYSICAL PROPERTIES OF PHOTOPOLYMER NANO-COMPOSITE 18 3.1. Introduction 19 3.2. Experiments 22 3.2.1. Reagents 22 3.2.2. Material preparation steps 23 3.2.3. Scanning electron microscopy 26 3.2.4. Test of rapid-body pendulum rheometer [18, 57] 26 3.2.5. Analysis of TGA 28 3.2.6. Mechanical properties 28 3.2.7. The basis properties for RP system 29 3.3. Results and discussions 29 3.3.1. Composite morphology 30 3.3.2. Analysis of photo-curing behavior 32 3.3.3. Analysis of thermal property 35 3.3.4. Analysis of mechanical properties 37 3.3.5. Curing thickness and dimensional stability for RP system 40 3.4. Conclusions 45 Chapter 4. THE AREA-FORMING PROCESS 47 4.1. The Stereolithography process 48 4.2. The area-forming process 50 Chapter 5. THE PHOTOMASK CORRECTION METHOD 53 5.1. Introduction 54 5.2. The photomask auto-correction rapid prototyping system 56 5.3. Photomask size correction 64 5.3.1. Calibration of the collected image 66 5.3.2. Image filtering 69 5.3.3. Detection of the image edge 71 5.3.4. Calculation and Calibration of the photomask size 74 5.4. Experiments and Results 76 5.5. Conclusion 82 Chapter 6. CONCLUSION 83 REFERENCES 86

1. 3D System, Inc., StereoLithography Interface Specification, 3D System, Inc., Valencia (1989).
2. Advani, S. G. and Sozer, E. M., Process modeling in composites manufacturing, Marcel Dekker, New York (2002).
3. ASTM D638, “Standard Test Method for Tensile Properties of Plastics,” American Society for Testing and Material (2002).
4. ASTM D1204, “Standard Test Method for Linear Dimensional Changes of Nonrigid Thermoplastic Sheeting or Film at Elevated Temperature,” American Society for Testing and Material (2002).
5. ASTM D2240, “Standard Test Method for Rubber Property - Durometer Hardness,” American Society for Testing and Material (2002).
6. ASTM D2566, “Standard Test Method for Linear Shrinkage of Cured Thermosetting Castings Resins During Cure,” American Society for Testing and Material (1986).
7. Beaman J. J., Historical Perspective, JTEC/WTEC panel report on rapid prototyping in Europe and Japan, WTEC Hyper-Librarian (http://www.wtec.org/loyola/rp/03_01.htm).
8. Benfarhi, S., Decker, C., Keller, L. and Zahouily, K., ”Synthesis of clay nanocomposite material by light-induced crosslinking polymerization,” European Polymer Journal, Vol. 40, No. 3, pp. 493-501 (2004).
9. Bertsch, A., “Microstereolithography using a liquid crystal display as dynamic mask generator,” Micro system Technologies, Vol. 3, No. 2, pp. 42-47 (1997).
10. Bertsch, A., Lorenz, H. and Renaud, P., “Combining microstereolithography and thick resist UV lithography for 3D microfabrication,” Proceedings of the 11th IEEE Workshop on Micro Electro Mechanical Systems, Heidelberg, Germany, pp. 18-23 (1998).
11. Bertsch, A., Bernhard, P., Vogt, C. and Renaud, P., “Rapid prototyping of small size objects,” Rapid Prototyping Journal, Vol. 6, No. 4, pp. 259-266 (2000).
12. Bertsch, A., Bernhard, P., Renaud, P. “Microstereolithography: Concepts and applications,” proceedings of the IEEE workshop on micro electro mechanical systems, Antibes-Juan les Pins, France, pp. 289-298 (2001).
13. Blanther, J. E., “Manufacture of contour relief maps,” U.S. Patent, 0473901 (1892).
14. Castrillo, P. D., Olmos, D., Amador, D. R. and Gonzalez-Benito, J., “Real Dispersion of Isolated Fumed Silica Nanoparticles in Highly Filled PMMA Prepared by High Energy Ball Milling,” Journal of Colloid and Interface Science, Vol. 308, No. 2, pp. 318–324 (2007).
15. Cheah, C. M., Fuh, J. Y. H., Nee, A. Y. C. and Lu, L., ”Mechanical characteristics of fiber-filled photo-polymer used in stereolithography,” Rapid Prototyping Journal, Vol. 5, No. 3, pp. 112-119 (1999).
16. Chatwin, C. R., Farsari, M., Huang, S., Heywood, H. I., Birch, P. M., Young, R. C. D. and Richardson, J. D., “UV microstereolithography system that uses spatial light modulator technology,” Applied optics, Vol. 37, No. 32, pp. 7514-7522 (1998).
17. Cheng Y. L., Li, M. L., Lin, J. H., Lai, J. H., Ke, C. T. and Huang, Y. C., “Development of Dynamic Mask Photolithography System,” Proceedings of the 2005 IEEE International Conference on Mechatronics, Taipei, Taiwan, pp. 467-471 (2005).
18. Chiu, H. T. and Wu, J. H., “The effect of swelling agents and characterization of polyurethane/polymer electrolytes/clay composites,” Journal of Applied Polymer Science, Vol. 98, No. 3, pp. 1206-1214 (2005).
19. Chua, C. K. and Leong, K. F., Liquid-Based Rapid Prototyping Systems, Rapid Prototyping: Principles & Applications in Manufacturing, John Wiley & Sons, New York (1998).
20. Chuk, R. N. and Thomson, V. J., “A comparison of rapid prototyping techniques used for wind tunnel model fabrication,” Rapid Prototyping Journal, Vol. 4, No. 4, pp. 185-196 (1998).
21. DiMatteo, P. L., “Method of Generating and Constructing Three-dimensional Bodies”, U.S. Patent, 3932923 (1976).
22. Fouassier, J. P., Photoinitiation, Photopolymerization and Photocuring: Fundamentals and Applications, Hanser Gardener, New York (1995).
23. Gaskin T. A., “Earth Science Teaching Device,” U.S. Patent, 3751827 (1973).
24. Gorga, R. E. and Cohen, R. E., “Toughness Enhancements in Poly(methyl methacrylate) by Addition of Oriented Multiwall Carbon Nanotube,” Journal of Polymer Science Part B-Polymer Physics, Vol. 42, No. 14, pp. 2690–2702 (2004).
25. Greulick, M., Greul, M. and Pintat, T., ”Fast, Functional Prototypes Via Multiphase Jet Solidification,” Rapid Prototyping Journal, Vol. 1, No. 1, pp. 20-25 (1995).
26. Hadipoespito G., Yang, Y., Choi, H., Ning, G. and Li, X., “Digital Micromirror device based microstereolithography for micro structures of transparent photopolymer and nanocomposites,” Proceedings of the 14th Solid Freeform Fabrication Symposium, Austin, USA, pp. 13-24 (2003).
27. Hornbeck, L. J., “Digital Light processing(TM) for high brightness high-resolution applications,” Proceedings of SPIE, San Jose, USA, pp. 27-40 (1997).
28. Hussain, F., Hojjati, M., Okamoto, M. and Gorga, R. E., “Polymer-matrix nanocomposites, processing, manufacturing, and application: an overview,” Journal of Composite Materials, Vol. 40, No. 17, pp. 1511-1575 (2006).
29. Jacobs, P. F., Basic Polymer Chemistry, Rapid Prototyping & Manufacturing: Fundamentals of Sterolithography, Society of Manufacturing Engineers, Dearborn (1992).
30. Jacobs, P. F., Stereolithography and other RP&M Technologies, ASME Press, New York (1996).
31. Kodama, H., “Automatic method for fabricating a three-dimensional plastic model with photo-hardening polymer,” Review of Scientific Instruments, Vol. 52, No. 11, pp. 1770-1773 (1981).
32. Koo, J. H., An Overview of Nanoparticle, Polymer nanocomposites: processing, characterization, and applications, McGraw-Hill, New York (2006).
33. Kruth, J. P., “Material increase manufacturing by rapid prototyping technologies,” Annals of CIRP, Vol. 40, No. 2, pp. 603-614 (1991).
34. Kulkarni, P., Marsan, A. and Dutta, D., “A review of process planning techniques in layered manufacturing,” Rapid Prototyping Journal, Vol. 6, No. 1, pp. 18-35 (2000).
35. Kunieda, M. and Nakagawa, T., “Development of laminated drawing dies by laser cutting,” Bull. of JSPE, Vol. 18, No. 4, pp. 353-354 (1984).
36. Jordan, J., Jacob, K. I., Tannenbaum, R., Sharaf, M. A. and Jasiuk, I., “Experimental trends in polymer nanocomposites—a review,” Materials Science and Engineering A, Vol. 393, No. 1-2, pp. 1-11 (2005).
37. Limaye, A. S. and Rosen, D. W., “Quantification of dimensional accuracy of Mask Projection Stereolithography builds,” Proceedings of the 15th solid Freeform Fabrication Symposium, Austin, USA (2004).
38. Limaye, A. S. and Rosen, D. W., “Process planning method for curing accurate microparts using Mask Projection Micro Stereolithography,” Proceedings of the 2nd international conference on advanced research in Virtual and Rapid Prototyping, Leiria, Portugal (2005).
39. Limaye, A. S. and Rosen, D. W., “Compensation zone approach to avoid print-through errors in Mask projection Stereolithography builds,” Rapid Prototyping Journal, Vol. 12, No. 5, pp. 283-291 (2006).
40. Luo, J .J. and Daniel, I. M., “Characterization and Modeling of Mechanical Behavior of Polymer/Clay Nanocomposites,” Composites Science and Technology, Vol. 63, No. 11, pp. 1607–1616 (2003).
41. Luo, R. C., Tzou, J. H. and Chang, Y. C., “Desktop Rapid Prototyping System with Supervisory Control and Monitoring through Internet,” IEEE/ASME Transaction on Mechatronics, Vol. 6, No. 4, pp. 399-409 (2001).
42. ISO 1522, “Paints and varnishes -- Pendulum damping test,” International Organization for Standardization (1998).
43. Matsubara, K., “Molding Method of Casting Using Photocurable Substance,” Japanese Kokai Patent Application, Sho 51[1976]-10813 (1976).
44. Monneret, S., Provin, C. and Gall, H. Le, “Micro-scale rapid prototyping by stereolithography,” 8th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA 2001), Antibes, France, pp. 299-304 (2001).
45. Nakagawa, T., et al., “Blanking tool by stacked bainite steel plates,” Press Technique, Tokyo, Japan, pp. 93-101 (1979).
46. Nakagawa T., Kunieda, M. and Liu, S., “Laser cut sheet laminated forming dies by diffusion bonding,” Proceedings of the 25th MTDR Conference, Manchester, England, pp. 505-510 (1985).
47. Patri, K. V. and Ma, W. Y., Stereolithography, Rapid Prototyping:Laser-based and Other Technologies, Kluwer Academic Publishers, Boston, (2004).
48. Perera, B. V., “Process of Making Relief Maps,” U.S. Patent, 2189592 (1940).
49. Rafael, C. and Richard, E., Image Enhancement in the Frequency Domain, Digital Image Processing, Addison-Wesley, New York (1992).
50. Ramesh, J., Edge Detection, Machine vision, McGraw-Hill, New York (1995).
51. Renap K. and Kruth, J. P., “Recoating issues in stereolithography,” Rapid Prototyping Journal, Vol. 1, No. 3, pp.4–16 (1992).
52. Schadow, K., “MEMS / Nanotechnology Integration,” Nanotechnology Aerospace Applications, Neuilly-sur-Seine, France, pp. 8-1–8-2 (2005).
53. Sorrentino, A., Gorrasi, G., Tortora, M., Vittoria, V., Costantino, U., Marmottini, F. and Padella, F., “Incorporation of Mg-Al hydrotalcite into a biodegradable Poly(ε-caprolactone) by high energy ball milling,” Polymer, Vol. 46, No. 5, pp. 1601–1608 (2005).
54. Stampel, J., Fouad, H., Seidler, S., Liska, R., Schwager, F., Woesz, A. and Fratzl, P., “Fabrication and moulding of cellular materials by rapid prototyping,” International Journal of Materials and Product Technology, Vol. 21, No. 4, pp. 285-96 (2004).
55. Suzumori, K., Koga, A. and Haneda, R., “Micro fabrication of integrated FMAs using stereo lithography,” Proceedings of the IEEE Micro Electro Mechanical Systems, Oiso, Japan, pp. 136-141 (1994).
56. Syu, G. C. and Jhang, L. D., Nano Composite Material, Wu-Nan Book Co. Ltd., Taipei (2001).
57. Tanaka, T., “Coating films evaluation of physical property,” Proceedings of the International Pressure Sensitive Adhesive Technoforum, Tokyo, pp.143 (1997).
58. Varadan, V. K., Vinoy, K. J. and Jose, K. A., Materials for Polymer MEMS, RF MEMS and their applications, Wiley, New York (2003).
59. Wang, C. H., “A Study on the Curing Behavior and Performance of Polyimide blend with Polyester Acrylate ,” Ph.D dissertation, National Taiwan University of Science and Technology, Taipei, Taiwan (2003).
60. Zak, G., Sela, M. N., Yevko, V., Park, C. B. and Benhabib, B., “Layered-manufacturing of fiber-reinforced composites,” Journal of Manufacturing Science and Engineering, Vol. 121, No. 3, pp. 448-456 (1999).
61. Zang, E. E., “Vitavue Relief Model Technique,” U.S. Patent, 3137080 (1940).

無法下載圖示 全文公開日期 2013/12/31 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE