簡易檢索 / 詳目顯示

研究生: 鄭銘堯
Ming-Yao Cheng
論文名稱: 新穎介孔尺度限制空間內奈米/奈米複合材料之合成與其電化學特性
Novel Synthesis of Nano-/Nano-composite Materials in Confined Space of Mesoporous Materials and Their Electrochemical Properties
指導教授: 黃炳照
Bing-Joe Hwang
口試委員: 萬其超
none
周澤川
none
何國川
none
杜景順
none
楊明長
none
蔡大翔
none
李嘉平
none
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 163
中文關鍵詞:  規則介孔材料限制空間疏水性膠囊化鋰離子電池陽極奈米複合材料奈米氧化鎳
外文關鍵詞: ordered mesoporous material, hydrophobic encapsulation route
相關次數: 點閱:339下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究成功地建立ㄧ名為疏水性膠囊化(hydrophobic encapsulation)的合成方法,可完全將無機材料合成於多孔擔體之限制空間內,可藉由此概念將NiO奈米粒子合成於規則介孔SBA-15材料之限制空間。首先,以此法合成之NiO/ SBA-15奈米複合材料具有新穎的奈米孔洞結構,且孔道中的NiO奈米粒子尺寸十分均ㄧ,並均勻的分散於限制空間內且無阻塞的問題。此新穎的奈米結構具有相當的潛力應用於新型非均相催化觸媒上。除了解決一般常見的介孔材料阻塞問題,此複合材料更具有高度的熱穩定性,造成高度熱穩定性的原因可能為NiO奈米粒子與氧化矽結構表面的強作用力所導致(NiO 平均晶粒大小由2.83 nm (400℃熱處理) 些微增加至3.69 nm (900℃熱處理) )。
    將SBA-15從NiO/SBA-15 奈米複合材料移除所得到之NiO奈米粒子應用於鋰離子電池陽極材料,發現其具備極佳的電化學性質。其於高速充放電50圈後,仍可維持相當之電容量,此特性與一般的NiO材料完全不同,一般NiO材料在長時間充放電後會導致電容量大幅下降。此優異的電化學特性可能來自於較穩定的奈米結構。另外,其充放電平台電位之差異較小,代表其電極之內部阻抗較小。
    另外,一種新穎三維奈米電流收集器/奈米電解質之奈米電極結構概念亦可藉由所建立的疏水性膠囊化合成法來實現。此新穎的奈米電極結構可應用於多種的電化學系統之電極上,在本研究中以鋰離子電池陽極來闡述此奈米結構的優點。本研究利用規則介孔CMK-3扮演奈米電流收集器的角色,而其介孔孔道可作為此奈米電極結構中之奈米電解質,而NiO活性材料則可合成於介孔孔道中,且不會阻塞電解質進出的通道。此NiO/CMK-3奈米複合材料具備十分優異的充放電特性,在快速充放電下仍能為維持高電容量,且於長期操作下幾乎沒有衰退,充分展現此新穎三維奈米電極結構之優勢。


    In this study, a general route, named as a hydrophobic encapsulation route, has been successfully developed for the exclusive formation of inorganic materials in the confined spaces of porous hosts. The concept was first demonstrated by the formation of NiO nanoparticles in the pore channels of mesoporous SBA-15. The synthesized NiO/ SBA-15 nanocomposites shows superior nano-architecture in the pore channels of SBA-15 that the formed NiO nanoparticles are highly uniform and well-distributed in the confined space without blocking the pore channels. The novel nano-architecture of the synthesized NiO/ SBA-15 is of great potential for advanced heterogeneous catalyst applications. The blockage problem usually encountered in mesoporous materials can be avoided by the developed route. Furthermore, the high thermal stability of the synthesized NiO/ SBA-15 was revealed by XRD and TPR analyses, indicating strong interaction of NiO nanoparticles with silica framework (average grain size of NiO only slightly increases from 2.83 (heated at 400 oC) to 3.69 nm (heated at 900 oC)).
    The ultra fine NiO nanoparticles extracted from the synthesized NiO/ SBA-15 shows excellent electrochemical properties as Li-ion battery anodes. The excellent capacity retention behavior for the ultra fine NiO nanoparticles is displayed for the first time even cycling at higher C rate. It may be contributed by the outstanding stability of the electrode made of the ultra fine NiO nanoparticles whose grain size are too small to be pulverized electrochemically (3.11 nm). The smaller hysteresis loop between the charge and discharge plateau indicates the less internal resistance of the electrode made of the synthesized ultra fine NiO nanoparticles compared to the commercial NiO nanoparticles.
    In addition, a novel concept for 3-D nano-current collector/ nano-electrolyte architecture as an anode material of Li-ion battery is introduced and demonstrated. The nano-architecture can be constructed by taking mesoporous CMK-3 as 3-D nano-current collector and the pore channels of the CMK-3 as the said nano-electrolyte after impregnating with liquid electrolyte. The NiO nanoparticles can be synthesized in the confined space of CMK-3 by the developed hydrophobic encapsulation route together with the nature of spontaneous oxidation of metal nanoparticles. The capacity retention and rate capability of the NiO/CMK-3 nanostructured materials applied in a lithium battery are excellent, indicating the effectiveness of the novel electrode nano-architectured by the developed concept. The concept can be applied to other materials for advanced electrochemical devices with proper modification of the process.

    摘要 I Abstract III Acknowledgement V List of Figures IX List of Tables XV Chapter 1 Background and motivation of the study 1 Chapter 2 Introduction 4 2-1 Discovery of mesoporous silica 4 2-1-1 First ordered mesoporous silica: MCM-41 4 2-1-2 Formation mechanism of ordered mesoporous silica 5 2-1-3 Applications 13 2-1-3-1 Electronics 13 2-1-3-2 Catalysis 14 2-1-3-3 Adsorption and Separation 18 2-1-3-4 Hard templates 19 2-2 Non-siliceous materials by mesoporous silica as hard templates and hosts 21 2-2-1 Mesoporous carbons 22 2-2-2 Other inorganic replicas 26 2-2-3 Supported nanorods and nanoparticles 29 2-3 Rechargeable Li-ion battery: an important electrochemical energy storage system 32 2-3-1 Basics of Li-ion battery 35 2-3-2 Theoretical aspects 36 2-3-3 Anode materials for Li-ion battery 43 2-3-3-1 Carbonaceous materials 43 2-3-3-2 Li alloys 45 2-3-3-3 Transition metal oxides 47 2-3-3-4 Others 49 2-3-4 Application of ordered mesoporous materials for Li-ion battery anodes 50 Chapter 3 The developed hydrophobic encapsulation route: Illustration by NiO nanoparticles in SBA-15 53 3-1 Background and goal 53 3-2 Concept of hydrophobic encapsulation route 55 3-3 Experimental 56 3-3-1 Synthesis 56 3-3-2 Material characterization 59 3-4 Results and Discussion 61 3-4-1 Filling quality of the material 61 3-4-2 Crystalline structure and mesostructure of the materials 61 3-4-3 Morphology and composition analyses by electron microscopes 68 3-4-4 Nitrogen adsorption-desorption isotherms 82 3-4-5 Temperature programming reduction analyses 87 3-5 Summery 90 Chapter 4 Electrochemical properties of highly uniform NiO nanoparticles derived from hydrophobic encapsulation route with SBA-15 as host 91 4-1 Background and goal 91 4-2 Experimental 94 4-2-1 Synthesis 96 4-2-2 Material characterization 96 4-3 Results and Discussion 98 4-3-1 Crystalline structure 98 4-3-2 Morphology 98 4-3-3 Surface area 99 4-3-4 Composition 102 4-3-5 Electrochemical characterization 102 4-4 Summary 109 Chapter 5: Novel nano-architecture for Li-ion battery anodes by NiO/ CMK-3 nanocomposites 110 5-1 Background and goal 110 5-2 Novel 3-D nano-current collector/ nano-electrolyte concept 115 5-3 Experimental 119 5-3-1 Synthesis 120 5-3-2 Material Characterization 121 5-4 Results and Discussion 124 5-4-1 Composition of CMK-Ni by TGA 124 5-4-2 Crystalline structure and mesostructure of the materials 124 5-4-3 Morphology and composition analyses by electron microscopes 127 5-4-4 Nitrogen adsorption/desorption isotherms 134 5-5 Electrochemical characterization 137 5-6 Summary 145 Chapter 6 Conclusion 146 Reference 150 List of Figures Figure 2-1 Figure 2-1 Proposed liquid-crystal templating mechanism for formation of MCM-41 by Beck et al.. Possible pathway 1: hexagonal packing initiated by micellar rods; Possible pathway 2: hexagonal packing initiated by silicates【3】 6 Figure 2-2 Various pathways to ordered mesoporous silica【5】 6 Figure 2-3 Illustration of some important ordered mesoporous silicas. (a) MCM-41, 2-D hexagonal, space group: p6mm (b) MCM-48, cubic, space group: Ia d (c) MCM-50, lamellar, space group: p2 (d) SBA-15, 2-D hexagonal, space group: p6mm. Micropores interconnected between mesopore channels in SBA-15.【6, 7】 7 Figure 2-4 Shape of the organized surfactant varying with local effective surfactant packing parameter “g” 9 Figure 2-5 The used surfactants in the investigation of Huo et al.【14】. 12 Figure 2-6 Schematic description of the methods for modification or functionalization of ordered mesoporous materials【8】 12 Figure 2-7 Preparation process of mesoporous carbon (CMK-1 or SNU-1) by employing MCM-48 as the template【40】 25 Figure 2-8 Nanostructure of CMK-5 (a) Schematic illustration of the nanopipe-type mesoporous CMK-5; (b) TEM images taken by the electron beam parallel and perpendicular to the nano-pipe channels, respectively.【49】 25 Figure 2-9 Ragone plot for traditional energy production routes and advanced energy conversion and storage devices【73】 33 Figure 2-10 Energy storage capabilities for the present commercialized rechargeable batteries【73】 33 Figure 2-11 Schematic illustration of a working cell for Li-ion battery 37 Figure 3-1 Schematic illustration of the hydrophobic encapsulation route for synthesis of metal oxide nanoparticles exclusively in SBA-15 57 Figure 3-2 Experiment process for synthesized NiO nanoparticles exclusively in the confined space of SBA-15 (a) flow chart; (b) illustration of the centrifugal process 57 Figure 3-3 Wide-angled XRD patterns for the synthesized materials (a) NiO-400, NiO-650 and NiO-900; (b) NiO-a-400 64 Figure 3-4 Low-angled XRD patterns (a) parent SBA-15; (b) NiO-400, NiO-650 and NiO-900; (c) NiO-a-400. All the patterns showing 2-D hexagonal ordering of the mesoporous structure (p6mm) 67 Figure 3-5 SEM images for the synthesized SBA-15 taken at various magnifications. (a) scale bar: 100 nm; (b) scale bar: 100 nm; (c) scale bar: 1 μm; (d) scale bar: 1 μm. 70 Figure 3-6 SEM images of various magnifications and the representative EDS spectrum for NiO-a-400. (a) scale bar: 100 nm; (b) scale bar: 1 μm; (c) scale bar: 1 μm. 71 Figure 3-7 SEM images of NiO-400 taken at the magnification of (a) 50,000 X, (b) 20,000 X and (c) 5,000 X and (d) NiO-900 (50,000 X) 72 Figure 3-8 TEM image of the parent SBA-15 (a) low magnification image of SBA-15 (scale bar: 100 nm); (b) enlarged image of (a) (scale bar: 50 nm); (c) image with the pore channels parallel to the direction of electron beam (scale bar: 50 nm); (d) the corresponding Fourier transformed pattern of (c); (e) enlarged image of (c) (scale bar: 20 nm); (f) image with the pore channels perpendicular to the direction of electron beam (scale bar: 20 nm); (g) the corresponding Fourier transformed pattern of (f); (h) Illustration of the electron beam parallel or perpendicular to the pore channels of SBA-15 75 Figure 3-9 TEM images of NiO-a-400. (a) orifice portion of the NiO-a-400; (b) middle of the NiO-a-400 77 Figure 3-10 TEM analysis of NiO-400. (a), (b) low magnification images; (c) image taken with the electron beam parallel to the pore channels; (d) electron diffraction of (c); (e) image taken with the electron beam perpendicular to the pore channels; (f) electron diffraction of (e); (g) high-resolution image of NiO; (h) HAADF image; (i) representative EDS spectrum; (j) line-resolved EDS results of the red cross-section line in (h). 79 Figure 3-11 Nitrogen adsorption-desorption isotherms (a, c and e) and the corresponding pore size distributions (b, d, and f) by BJH method. (a) and (b): SBA-15; (c) and (d): NiO-a-400; (e) and (f) NiO-400 (opened circle) and NiO-900 (filled circle) 84 Figure 3-12 Schematic illustrated the difference of the nanoarchitecture between the NiO-400 (or NiO-900) and NiO-a-400 85 Figure 3-13 TPR for NiO-400 and NiO-a-400 89 Figure 3-14 XRD patterns for reduced NiO-400 and NiO-a-400 (Ni (asterisk) and NiO are indexing based on JCPDS-ICDD no. 87-0712 and no. 78-0429, respectively) 89 Figure 4-1 Schematic illustration of the component of the used coin cell 95 Figure 4-2 XRD patterns for (a) Nano-NiO and (b) CA-NiO 100 Figure 4-3 TEM images of (a) CA-NiO and (b, c and d) Nano-NiO (a) Low magnification image, scale bar: 20 nm; (b) Low magnification image, scale bar: 20 nm; (c) high magnification, scale bar: 10 nm; (d) High resolution image, scale bar: 2 nm. (Images obtained with JEOL JEM-2010) 101 Figure 4-4 Representative EDS spectrum of Nano-NiO 101 Figure 4-5 Capacity retention test of the electrochemical cells assembled by (a and c)Nano-NiO and (b) CA-NiO cycling between 3 to 0.01 V (a) cycling rate: 0.2 C; (b) cycleing rate: 0.2 C; (c) cycling rate: 1 C. 104 Figure 4-6 Voltage-capacity plots for the cells by (a) Nano-NiO and (b) CA-NiO electrodes cycled between 3 to 0.01 V 108 Figure 5-1 High rate capabilities Fe3O4-based Cu nano-architectured electrodes and the corresponding rate-capability tests【130】(a) schematic illustration for fabrication process of Cu nano-rods by AAO membrane as templates; (b) bare Cu nano-rods and Fe3O4-deposited Cu nano-rods; (c) Rata-capabilities of the electrodes by Fe3O4- deposited Cu nano-rods with various deposition times and by conventional slurry-casting method with Fe3O4 powders; and (d) Rata-capabilities of the electrodes by Fe3O4-deposited Cu nano-rods and by Fe3O4-deposited Cu foils. 113 Figure 5-2 Nickel-foam-supported reticular CoO–Li2O composite anode materials for Li-ion batteries【131】 (a) porous Ni foam substrate; (b) dense CoO-Li2O film on nickel foam; (c) reticular CoO-Li2O film on nickel foam; (d) Cross-section view of (c); (e) Capacity retention tests for electrodes by Ni-foam-supported dense CoO-Li2O film (opened circle) and by Ni-foam-supported reticular CoO-Li2O film (solid circle) at a cycling rate of 0.2 C; (f) rate-capability tests for electrodes by Ni-foam-supported dense CoO-Li2O film (opened circle) and by Ni-foam-supported reticular CoO-Li2O film (solid circle) 114 Figure 5-3 Schematic illustration of the synthesized NiO/ CMK-3 nanocomposites with the nanoarchitecture of novel 3-D nano-current collector/ nano-electrolyte. 118 Figure 5-4 TGA results of the synthesized CMK-Ni 125 Figure 5-5 Wide-angle XRD pattern for CMK-Ni (Indexing is based on JCPDS-ICDD no. 78-0429) 125 Figure 5-6 Low-angle XRD patterns for CMK-3 (solid circle) and CMK-Ni (opened circle). 128 Figure 5-7 SEM images taken at various magnifications and the representative EDS spectrum for CMK-3 (a) scale bar: 100 nm; (b) scale bar: 1 μm; (c) scale bar: 1 μm; (d) EDS spectrum 129 Figure 5-8 SEM images taken at various magnifications and the representative EDS spectrum for CMK-Ni (a) scale bar: 100 nm; (b) scale bar: 1 μm; (c) scale bar: 1 μm; (d) EDS spectrum 130 Figure 5-9 TEM images of (a, b and c) as-prepared CMK-3 and (d, e, and f) CMK-Ni (a) low magnification image, scale bar: 200 nm; (b) image with electron beam perpendicular to the pore channels of CMK-3, scale bar: 20 nm; (c) image with electron beam parallel to the pore channels of CMK-3, scale bar: 50 nm; (d) low magnification image, scale bar: 50 nm; (e) image with electron beam perpendicular to the pore channels of CMK-Ni, scale bar: 20 nm; (f) high resolution image of NiO in CMK-Ni with lattice image of (200) plane, scale bar: 5 nm. (Images obtained by JEOL JEM-2010 transmission electron microscope) 133 Figure 5-10 (a) Nitrogen adsorption/ desorption isotherms and (b) pore size distributions of CMK-3 (solid square) and CMK-Ni (solid circle) 136 Figure 5-11 Electrochemical performances of CMK-Ni, CMK and CA-NiO. (a) Rate capability tests of the cells assembled by CMK-Ni (circle), CMK (square) and CA-NiO (asterisk) electrodes; discharge state: opened, charge state: solid; (b) Capacity retention test of the cells assembled by CMK-Ni (circle), CMK (square) and CA-NiO (asterisk) electrodes cycling at a rate of 1000 mAh g−1; discharge state: opened, charge state: solid; (c) Potential-capacity relationship of the cells assembled by CMK-Ni electrode with a cycling rate of 1000 mAh g−1; (d) Potential-capacity relationship of the cells assembled by CMK electrode with a cycling rate of 1000 mAh g−1; (e) Potential-capacity relationship of the cells assembled by CA-NiO electrode with a cycling rate of 1000 mAh g−1. 144 List of Tables Table 2-1 Various pathways for synthesis of ordered mesoporous silicas【8】 7 Table 2-2 Relationship between surfactant organization and g【14】 10 Table 2-3 The resulted ordered mesoporous silica with changing head group of the surfactant【14】 11 Table 2-4 Estimated battery market in 2003 (market size: Millions of US dollars)【73】 34 Table 3-1 List of the chemicals used in this study 56 Table 3-2 List of calculated unit cell parameter D for the synthesized materials 67 Table 3-3 Textural property of SBA-15, NiO-400, NiO-900, and NiO-a-400 85 Table 4-1 List of the chemicals used in this study 94 Table 4-2 Composition of Nano-NiO by EDS technique 102 Table 5-1 List of the chemicals used in this study 119 Table 5-2 Composition of the as-prepared CMK-3 from EDS analysis 128 Table 5-3 Textual properties of CMK-3 and CMK-Ni 135

    Reference
    1. D. R. Rolison, Science 2003, 299, 1698.
    2. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck, Nature 1992, 359, 710.
    3. J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T-W. Chu, D. H. Olson, E. W. Sheppard, S. B. McCullen, J. B. Higgins, J. L. Schlenker, J. Am. Chem. Soc. 1992, 114, 10834.
    4. A. Monnier, F. Schüth, Q. Huo, D. Kumar, D. Margolese, R.S. Maxwell, G.D. Stucky, M. Krishnamurty, P. Petroff, A. Firouzi, M. Janicke, B.F. Chmelka, Science 1993, 261, 1299.
    5. M. Hartmann, Chem. Mater. 2005, 17, 4577.
    6. F. Hoffmann, M. Cornelius, J. Morell, M. Fröba, Angew. Chem. Int. Ed. 2006, 45, 3216.
    7. A. Galarneau, H. Cambon, F. D. Renzo, F. Fajula, Langmuir 2001, 17, 8328.
    8. A. Taguchi, F. Schüth, Microporous Mesoporous Mater. 2005, 77, 1.
    9. J. N. Israelachvili, D. J. Mitchell, B. W. Ninham, J. Chem. Soc. , Faraday Trans. 2 1976, 72, 1525.
    10. J. N. Israelachvili, D. J. Mitchell, B. W. Ninham, Biochim. Biophys. Acta 1977, 470, 185.
    11. S. M. Gruner, J. Phys Chem. 1989, 93, 7562.
    12. S. T. Hyde, Pure Appl. Chem. 1992, 64, 1617.
    13. A. Fogden, S. T. Hyde, G. Lundberg, J. Chem. Soc., Faraday Trans. 1991, 87, 949.
    14. Q. Huo, D. I. Margolese, G. D. Stucky, Chem. Mater. 1996, 8, 1147.
    15. D. Zhao, P. Yang, N. Melosh, J. Feng, B. F. Chmelka, G. D. Stucky, Adv. Mater. 2002, 14, 19.
    16. S. Baskaran, J. Liu, K. Domansky, N. Kohler, X. Li, C. Coyle, G. E. Fryxell, S. Thevuthasan, R. E. Williford, Adv. Mater. 2000, 12, 291.
    17. C. M. Yang, A. T. Choi, F. M. Pan, T. G. Tsai, K. J. Chao, Adv. Mater. 2001, 13, 1099.
    18. H. Fan, H. R. Bentley, K. R. Kathan, P. Clem, Y. Lu, C. J. Brinker, J. Non-Cryst. Solids 2001, 285, 79.
    19. F. Schüth, W. Schmidt, Adv. Mater. 2002, 14, 629.
    20. A. Corma, A. Martinez, V. Martinez-Soria, J. B. Monton, J. Catal. 1995, 153, 25.
    21. A. Corma, M. S. Grande, V. Gonzales-Alfaro, A. V. Archilles, J. Catal. 1996, 159, 375.
    22. J.-H. Kim, M. Tanabe, M. Niwa, Microporous Mater. 1997, 10, 85.
    23. S. B. Pu, J. B. Kim, M. Seno, T. Inui, Microporous Mater. 1997, 10, 25.
    24. M. Onaka, R. Yamazaki, Chem. Lett. 1998, 259.
    25. R. T. Yang, T. J. Pinnavaia, W. Li, W. Zhang, J. Catal. 1997, 172, 488.
    26. C. Liu, X. Ye, Y. Wu, Catal. Lett. 1996, 36, 263.
    27. L. Frunza, H. Kosslick, H. Landmesser, E. Höft, R. Fricke, J. Mol. Catal. A: Chem. 1997, 123, 179.
    28. D. Trong On, P. N. Joshi, S. Kaliaguine, J. Phys. Chem. 1996, 100, 6743.
    29. L. Y. Chen, Z. Ping, G. K. Chuah, S. Jaenicke, G. Simon, Microporous Mesoporous Mater. 1999, 27, 231.
    30. R. Anwander, Chem. Mater. 2001, 13, 4419.
    31. D. E. De Vos, M. Dams, B. F. Sels, P. A. Jacobs, Chem. Rev. 2002, 102, 3615.
    32. C. Bianchini, D. G. Burnaby, J. Evans, P. Frediani, A. Meli, W. Oberhauser, R. Pasaro, L. Sordelli, F. Vizza, J. Am. Chem. Soc. 1999, 121, 5961.
    33. S. S. Kim, W. Z. Zhang, T. J. Pinnavaia, Catal. Lett. 1997, 43, 149.
    34. X. Feng, G. E. Frywell, L.-Q. Wang, A. Y. Kim, J. Liu, K. M. Kemner, Science 1997, 276, 923.
    35. M. Grün, A. A. Kurganov, S. Schacht, F. Schüth, K. K. Unger, J. Chromatogr. A 1996, 740, 1.
    36. S. Ernst, M. Hartmann, S. Munsch, Stud. Surf. Sci. Catal. 2001, 135, 4566.
    37. Y. Wan, H. Yang, D. Zhao, Acc. Chem. Res. 2006, 39, 423.
    38. A.-H. Lu, F. Schüth, Adv. Mater. 2006, 18, 1793.
    39. R. Ryoo, S. H. Joo, S. Jun, J. Phys. Chem. B 1999, 103, 7743.
    40. J. Lee, S. Yoon, T. Hyeon, S. M. Oh, K. B. Kim, Chem. Commun. 1999, 2177.
    41. X. Liu, B. Tian, C. Yu, F. Gao, S. Xie, B. Tu, R. Che, L.-M. Peng, D. Zhao, Angew, Chem. Int. Ed. 2002, 41, 3876.
    42. S. Che, A. E. Garcia-Bennett, X. Liu, R. P. Hodgkins, P. A. Wright, D. Zhao, O. Terasaki, T. Tatsumi, Angew, Chem. Int. Ed. 2003, 42, 3930.
    43. F. Kleitz, S. H. Choi, R. Ryoo, Chem. Commun. 2003, 2136.
    44. S. Jun, S. H. Joo, R. Ryoo, M. Kruk, M. Jaroniec, Z. Liu, T. Ohsuna, O. Terasaki, J. Am. Chem. Soc. 2000, 122, 10712.
    45. M. Kruk, M. Jaroniec, C. H. Ko, R. Ryoo, Chem. Mater 2000, 12, 1961.
    46. M. Impéror-Clerc, P. Davidson, A. Davidson, J. Am. Chem. Soc. 2000, 122, 11925.
    47. S. H. Joo, R. Ryoo, M. Kruk, M. Jaroniec J. Phys. Chem. B 2002, 106, 4640.
    48. S. H. Joo, S. J. Choi, I. Oh, J. Kwak, Z. Liu, O. Terasaki, R. Ryoo, Nature 2001, 412, 169.
    49. M. Kruk, M. Jaroniec, T.-W. Kim, R. Ryoo, Chem. Mater. 2003, 15, 2815.
    50. A. H. Lu, W. Schmidt, B. Spliethoff, F. Schüth, Adv. Mater. 2003, 15, 1602.
    51. A. Lu, A. Kiefer, W. Schmidt, F. Schüth, Chem. Mater. 2004, 16, 100.
    52. C. M. Yang, C. Weidenthaler, B. Spliethoff, M. Mayanna, F. Schüth, Chem. Mater. 2005, 17, 355.
    53. T.-W. Kim, I.-S. Park, R. Ryoo, Angew. Chem. Int. Ed. 2003, 42, 4375.
    54. H. Yang, Y. Yan, Y. Liu, F. Zhang, R. Zhang, Y. Meng, M. Li, S. Xie, B. Tu, D. Zhao, J. Phys. Chem. B 2004, 108, 17320.
    55. C. H. Kim, D.-K. Lee, T. J. Pinnavaia, Langmuir 2004, 20, 5157.
    56. Y. Xia, R. Mokaya, Adv. Mater. 2004, 16, 1553.
    57. H. Yang, Q. Shi, B. Tian, Q. Lu, F. Gao, S. Xie, J. Fan, C. Yu, B. Tu, D. Zhao, J. Am. Chem. Soc. 2003, 125, 4724.
    58. B. Tian, X. Liu, H. Yang, S. Xie, C. Yu, B. Tu, D. Zhao, Adv. Mater. 2003, 15, 1370.
    59. Y. M. Wang, Z. Y. Wu, H. J. Wang, J. H. Zhu, Adv. Funct. Mater. 2006, 16, 2374.
    60. Y. Wang, C.M. Yang, W. Schmidt, B. Spliethoff, E. Bill, F. Schüth, Adv. Mater. 2005, 17, 53.
    61. F. Jiao, K. M. Shaju, P. G. Bruce, Angew. Chem. Int. Ed. 2005, 44, 6550.
    62. C. Yang, H. Sheu, K. Chao, Adv. Funct. Mater. 2002, 12, 143.
    63. M.H. Huang, A. Choudrey, P. Yang, Chem. Commun. 2000, 1063.
    64. H. Yang, Q. Lu, F. Gao, Q. Shi, Y. Yan, F. Zhang, S. Xie, B. Tu, D. Zhao, Adv. Funct. Mater. 2005, 15, 1377.
    65. K.-J. Lin, L.-J. Chen, M. R. Prasad, C.-Y. Cheng, Adv. Mater. 2004, 16, 1845.
    66. H. Song, R. M. Rioux, J. D. Hoefelmeyer, R. Komor, K. Niesz, M. Grass, P. Yang, G. A. Somorjai, J. Am. Chem. Soc. 2006, 128, 3027.
    67. L. X. Zhang, J. L. Shi, J. Yu, Z. L. Hua, X. G. Zhao, M. L. Ruan, Adv. Mater. 2002, 14, 1510.
    68. L. Li, J. L. Shi, L. X. Zhang, L. M. Xiong, J. N. Yan, Adv. Mater. 2004, 16, 1079.
    69. K. B. Lee, S. M. Lee, J. Cheon, Adv. Mater. 2001, 13, 517.
    70. C. M. Yang, P. H. Liu, Y. F. Ho, C. Y. Chiu, K. J. Chao, Chem. Mater. 2003, 15, 275.
    71. Y. M. Wang, Z. Y. Wu, L. Y. Shi, J. H. Zhu, Adv. Mater. 2005, 17, 323.
    72. M. Winter, R. J. Brodd, Chem. Rev. 2004, 104, 4245.
    73. M. Arakawa, J. Yamaki, J. Electroanal. Chem. 1987, 219, 273.
    74. R. Fong, U. von Sacken, J. R. Dahn, J. Electrochem. Soc. 1990, 137, 2009.
    75. D. Aurbach, Y. Ein-Eli, O. Chusid, Y. Carmeli, M. Babai, H. Yamin, J. Electrochem. Soc. 1994, 141, 603.
    76. H. Nakamura, H. Komatsu, M. Yoshio, J. Powder Sources 1996, 62, 219.
    77. M. Yoshio, H. Wang, K. Fukuda, Y. Hara, Y. Adachi, J. Electrochem. Soc. 2000, 147, 1245.
    78. H. Wang, M. Yoshio, J. Power Sources, J. Powder Sources 2001, 93, 123.
    79. H. Wang, M. Yoshio, T. Abe, Z. Ogumi, J. Electrochem. Soc. 2002, 149, A499.
    80. H. Wang, T. Ikeda, K. Fukuda, M. Yoshio, J. Powder Sources 1999, 83, 141.
    81. M. Yoshio, H. Wang, K. Fukuda, Angew. Chem. Int. Ed. 2003, 42, 4203.
    82. E. Frakowiak, F. Beguin, Carbon 2002, 40, 1775.
    83. E. Frakowiak, S. Gautier, H. Gaucher, S. Bonnamy, F. Beguin, Carbon 1999, 37, 61.
    84. T. Zheng, J. S. Xue, J. R. Dahn, Chem. Mater. 1996, 8, 389.
    85. T. Zheng, Y. Liu, E. W. Fuller, S. Tseng, U. V. Sacker, J. R. Dahn, J. Electrochem. Soc. 1995, 142, 2581.
    86. M. Alamgir, Q. Zuo, K. M. Abraham, J. Electrochem. Soc. 1994, 141, L143.
    87. T. Zheng, W. R. Mckinnon, J. R. Dahn, J. Electrochem. Soc. 1996, 143, 2137.
    88. J. S. Xue, J. R. Dahn, J. Electrochem. Soc. 1995, 142, 3668.
    89. Y. Idota, T. Kubota, A. Matsufuji, Y. Maekawa, T. Miyasaka, Science 1997, 276, 1395.
    90. H. Li, L. Shi, W. Lu, X. Huang, L. Chen, J. Electrochem. Soc. 2001, 148, A915.
    91. B. A. Boukamp, G. C. Lesh, R. A. Huggins, J. Electrochem. Soc. 1981, 128, 725.
    92. N. Pereira, M. Balasubramanian, L. Dupont, J. McBreen, L. C. Klein, G. G. Amatucci, J. Electrochem. Soc. 2003, 150, A1113.
    93. S.-H. Ng, J. Wang, D. Wexler, K. Konstantinov, Z.-P. Guo, H.-K. Liu, Angew. Chem. Int. Ed. 2006, 45, 6896.
    94. M. Noh, Y. Kwon, H. Lee, J. Cho, Y. Kim, M. G. Kim, Chem. Mater. 2005, 17, 1926.
    95. K. T. Lee, Y. S. Jung, S. M. Oh, J. Am. Chem. Soc. 2003, 125, 5652.
    96. K. D. Kepler, J. T. Vaughey, M. M. Thackeray, Electrochem. Solid-State Lett. 1999, 2, 307.
    97. L. Y. Beaulieu, J. R. Dahn, J. Electrochem. Soc. 2000, 147, 3237.
    98. O. Mao, R. A. Dunlap, J. R. Dahn, J. Electrochem. Soc. 1999, 146, 405.
    99. D. Larcher, L. Y. Beaulieu, D. D. MacNeil, J. R. Dahn, J. Electrochem. Soc. 2000, 147, 1658.
    100. J. T. Vaughey, J. O’Hara, M. M. Thackeray, Electrochem. Solid-State Lett. 2000, 3, 13.
    101. K. C. Hewitt, L. Y. Beaulieu, J. R. Dahn, J. Electrochem. Soc. 2001, 148, A402.
    102. D. Aurbach, A. Nimberger, B. Markovsky, E. Levi, E. Sominski, A. Gedanken, Chem. Mater. 2002, 14, 4155.
    103. J. Chouvin, J. Olivier-Fourcade, J. C. Jumas, B. Simon, Ph. Biensan, F. J. Fernandez Madrigal, J. L. Tirado, C. Perez Vicente, J. Electroanal. Chem. 2000, 494, 136.
    104. A. Hightower, P. Delcroix, G. Le Caër, C.-K. V. Huang, B. V. Ratnakumar, C. C. Ahn, B. Fultz, J. Electrochem. Soc. 2000, 147, 1.
    105. A. N. Mansour, S. Mukerjee, X. Q. Yang, J. Mcbreen, J. Electrochem. Soc. 2000, 147, 869.
    106. Y. Wang, J. Sakamoto, S. Kostov, A. N. Mansour, M. L. den Boer, S. G. Greenbaum, C.-K. Huang, S. Surampudi, J. Power Sources 2000, 89, 232-236.
    107. P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.-M. Tarascon, Nature 2000, 407, 496.
    108. D. Larcher, G. Sudant, J.-B. Leriche, Y. Chabre, J.-M. Tarascon, J. Electrochem. Soc. 2002, 149, A234.
    109. F. Badway, I.Plitz, S. Grugeon, S. Laruelle, M. Dollé, A. S. Gozdz, J.-M. Tarascon, Electrochem. Solid-State Lett. 2002, 5, A115.

    110. R. Yang, Z. Wang, J. Liu, L. Chen, Electrochem. Solid-State Lett. 2004, 7, A496.
    111. W.-Y. Li, L.-N. Xu, J. Chen, Adv. Funct. Mater. 2005, 15, 851.
    112. G.X. Wang, Y. Chen, K. Konstantinov, J. Yao, J.-H. Ahn, H.K. Liu, S.X. Dou, Journal Alloys and Compounds 2002, 340, L5–L10.
    113. D. Larcher, C. Masquelier, D. Bonnin, Y. Chabre, V. Masson, J.-B. Leriche, J.-M. Tarascon, J. Electrochem. Soc. 2003, 150, A133.
    114. J.-M. Tarascon, S. Grugeon, S. Laruelle, D. Larcher, P. Poizot, Lithium Batteries Science and Technology, Kluwer Academic/Plenum, Boston 2004, Ch. 7, 220.
    115. A. R. Armstrong, G. Armstrong, Garcia J. R. Canales, P. G. Bruce, Adv. Mater. 2005, 17, 862.
    116. Q. Wang, Z. Wen, J. Li, Inorg. Chem. 2006, 45, 6944.
    117. A. S. Aricò, P. Bruce, B. Scrosati, J.-M. Tarascon, W. Van Schalkwijk, Nature Materials 2005, 4, 366.
    118. J. W. Long, B. Dunn, D. R. Rolison, H. S. White, Chem. Rev. 2004, 104, 4463.
    119. W. C. Choi, S. I. Woo, M. K. Jeon, J. M. Sohn, M. R. Kim, H. J. Jeon, Adv. Mater. 2005, 17, 446.
    120. L. Li, H. Song, X. Chen, Electrochim. Acta 2006, 51, 5715.
    121. A.B. Fuertes, G. Lota, T.A. Centeno, E. Frackowiak, Electrochim. Acta 2005, 50, 2799.
    122. H. Zhou, S. Zhu, M. Hibino, I. Honma, M. Ichihara, Adv. Mater. 2003, 15, 2107.
    123. S. Zhu, H. Zhou, M. Hibino, I. Honma, M. Ichihara, Adv. Funct. Mater. 2005, 15, 381.
    124. D. Zhao, Q. Huo, J. Feng, B. F. Chmelka, G. D. Stucky, J. Am. Chem. Soc. 1997, 119, 2749.
    125. S. A. Needham, G. X. Wang, H. K. Liu, J. Power Sources 2006, 159, 254.
    126. J. Jamnik, J. Maier, Phys. Chem. Chem. Phys. 2003, 5, 5215.
    127. J.-M. Tarascon, M. Armand, Nature 2001, 414, 359.
    128. S.-Y. Chung, J. T. Bloking, Y.-M. Chiang, Nature Materials 2002, 1, 123.
    129. K. Kang, Y. S. Meng, J. Bréger, C. P. Grey, G. Ceder, Science 2006, 311, 977.
    130. P. L. Taberna, S. Mitra, P. Poizot, P. Simon, J.-M. Tarascon, Nature Materials 2006, 5, 567.
    131. Y. Yu, C.-H. Chen, J.-L. Shui, S. Xie, Angew. Chem. Int. Ed. 2005, 44, 7085.
    132. E. Hosono, S. Fujihara, I. Honma, M. Ichihara, H. Zhou, J. Electrochem. Soc. 2006, 153, A1273.
    133. M. Dollé, P. Poizot, L. Dupont, J.-M. Tarascon, Electrochem. Solid-State Lett. 2002, 5, A18.

    QR CODE