簡易檢索 / 詳目顯示

研究生: 劉藺葳
Lin-Wei Liu
論文名稱: 利用波長調動實現被動光網路的遠端互傳功能
Realization of Remote Unit Intercommunication for Passive Optical Networks by Using Wavelength Tuning
指導教授: 李三良
San-Liang Lee
口試委員: 李三良
San-Liang Lee
宋峻宇
Jiun-Yu Sung
呂政修
Jenq-Shiou Leu
楊淳良
Chun-Liang Yang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 73
中文關鍵詞: 電致吸收調變雷射光纖光柵遠端互連
外文關鍵詞: electro-absorption modulated lasers, FBG, RU interconnection
相關次數: 點閱:312下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文提出一種在分時分波被動光網路中,利用發射機的波長調動機制,實現光網路單元間相互通訊功能。此功能可以應用於下世代行動網路中提供射頻用戶間的交聯功能,大幅縮小用戶間通訊的延遲時間。
實驗架構使用了光纖光柵調諧器的特性,實現光網路單元之間能夠互相連通的功能,滿足低時延的情境需求。在高速率傳輸的情況下,電致吸收調變雷射已成為主要主軸,在本實驗中我們也採用此元件,然而在部分偏壓會造成訊號品質不穩定。將透過電致吸收調變雷射以及遠端單元互連的運作,將兩者建構出實驗跟模擬架構。
藉由適當的波長配置,可以實現上行、下行以及光網路單元間相互傳輸。從頻譜圖跟眼圖的結果,可以得到輸出訊號的明滅比以及品質因子,以驗證傳輸的訊號品質。同時也以實驗方式分析此新型光網路的傳輸效能,在上下行均傳輸10 Gb/s的NRZ訊號,加上不同長度的光纖,並採用前向錯誤更正傳輸誤碼率的條件下,觀察不同傳輸途徑的接收光功率與誤碼率變化。無論實驗與模擬的結果皆證實,在保持原上行與下行傳輸效能外,可以達成光網路單元間相互傳輸的功能。


In this thesis, the interconnection between two optical network units (ONUs) in a time-wavelength division multiplexing passive optical network (TWDM-PON) is realized by incorporating the wavelength tunability in the upstream optical transmitters. The TWDM-PON with ONU interconnect (ONUI) function can be applied to provide interconnection of the remote units (RUI) in the front-hauls of the next-generation mobile networks. The RUI function can reduce the latency for the signal transmission among remote units (RUs).
For the experimental demonstration, architecture utilizes the characteristics of fiber grating tuners to enable connectivity between remote units, meeting the low-latency requirements. In the case of high-speed transmission, electro-absorption modulated lasers (EML) have become the main focus. In this experiment, we also adopted the same laser; however, signal instability was observed at certain bias voltages. The experiment and simulation were conducted to construct a framework involving EML and RU inter-connection.
By wavelength allocation, three transmission modes, including upstream, downstream, and RU inter-connection, can be achieved. From the results of the spectrum and eye diagrams, the extinction ratio and quality factor of the output signals can be obtained, providing insights into the signal quality of the transmission. Finally, to simulate the real conditions of optical network transmission, 10 Gb/s NRZ signals were transmitted in both the upstream and downstream, along with different lengths of optical fiber. And the bit error rate(BER) performance can meet the requirement of forward error correction (FEC). The changes in received optical power and bite error rate for different transmission paths were observed. The results from the experiment and simulation successfully achieved the objectives of the RU inter-connection network.

摘要 i Abstract ii 致謝 iv 目錄 v 圖目錄 ix 表目錄 xiii 第一章 緒論 1 1.1 前言 1 1.2 被動式光纖網路 2 1.3 研究動機 5 1.4 論文結構 6 第二章 被動光網路架構 7 2.1 前言 7 2.2 被動光網路種類 8 2.2.1 分時多工被動光網路(TDM-PON) 8 2.2.2 分波多工被動光網路(WDM-PON) 9 2.2.3 分時分波多工被動光網路(TWDM-PON) 10 第三章 RUI網路架構 11 3.1 前言 11 3.2 混合式被動光網路架構 11 3.2.1 TDM_RU Inter-connection 11 3.2.2 WDM_RU Inter-connection 12 3.2.3 TWDM_RU Inter-connection 13 第四章 遠端互連通訊系統 14 4.1 前言 14 4.2 遠端單元互連原理 14 4.3 雙向傳輸實驗 17 第五章 使用元件 18 5.1 前言 18 5.2 元件介紹及其特性量測 18 5.2.1 EML 18 5.2.2 Tunable Optical Filter 28 5.2.3 摻鉺光纖放大器 28 5.2.4 1x4 Splitter 29 5.2.5 Fiber Bragg Grating Tuner (FBGT) 30 5.2.6 光調變模組 31 5.3 元件的量測 32 第六章 實驗及模擬結果 37 6.1 前言 37 6.2 實驗結果 37 6.2.1 頻譜量測結果 37 6.2.2 眼圖量測結果 41 6.3 上下行傳輸結果 46 6.3.1 下行傳輸 46 6.3.2 上行傳輸 47 6.3.3 RU互傳 48 6.3.4 誤碼率量測 49 6.3.5 大有效面積光纖 51 6.4 模擬結果 53 6.4.1 模擬架構 53 6.4.2 背對背傳輸結果 56 6.4.3 5公里傳輸結果 59 6.4.4 10公里傳輸結果 61 第七章 本論文之研究結果 65 7.1 結果與討論 65 7.2 未來研究方向 66 參考文獻 67

[1] J. A. d. Peral-Rosado, R. Raulefs, J. A. López-Salcedo and G. Seco-Granados, "Survey of Cellular Mobile Radio Localization Methods: From 1G to 5G," IEEE Communications Surveys & Tutorials, vol. 20, no. 2, pp. 1124 - 1148, 2017.
[2] J. Li, T. Hu, F. Ren, P. Zhu, Q. Mo, Y. He, Z. Li and Z. Chen, "Hybrid Passive Optical Network Enabled by Mode-Division-Multiplexing," in ICOCN 14th, Nanjing, 2015.
[3] T. Sugimoto, T. Shimizu, Y. Akimoto, M. Noguchi, J. Sone, T. Watanabe and Y. Urino, "A Small and Low Cost Bidirectional Transceiver Module with Polymer Waveguide for G-PON/GE-PON," in ECTC 57th, Sparks, NV, USA, 2007.
[4] A. M. Ragheb and H. Fathallah, "Performance analysis of next generation-PON (NG-PON) architectures," in HONET 8th, Riyadh, Saudi Arabia, 2011.
[5] D. Lecrosnier, G. Destefanis, A. Gnazzo, B. Jacobs and M. Pousa, "Optical enabling technologies for access networks: requirements and challenges an overview from FSAN and EURESCOM," in ECOC 24th, Madrid, Spain, 1998.
[6] C. ERIK EKUDDEN, "Five network trends," CTO TECHNOLOGY TRENDS 2021, pp. 1-10, 2021.
[7] C.-J. Chae, S.-T. Lee, G.-Y. Kim and H. Park, "A PON system suitable for internetworking optical network units using a fiber Bragg grating on the feeder fiber," IEEE Photonics Technology Letters, vol. 11, no. 12, pp. 1686 - 1688, 1999.
[8] H. Ueda, K. Okada, B. Ford, G. Mahony, S. Hornung, D. Faulkner, J. Abiven, S. Durel, R. Ballart and J. Erickson, "Deployment status and common technical specifications for a B-PON system," IEEE Communications Magazine, vol. 39, no. 12, pp. 134 - 141, 2001.
[9] K. Tajima, M. Miyabe, T. Shinomiya, H. Yamashita, M. Hirota and M. Kasa, "Asymmetric ATM-PON interface compliant to ITU-T/FSAN standard for global optical access systems," in APCOC, Beijing, China, 1999.
[10] J. Angelopoulos, H.-C. Leligou, T. Argyriou, S. Zontos, E. Ringoot and T. V. Caenegem, "Efficient transport of packets with QoS in an FSAN-aligned GPON," IEEE Communications Magazine, vol. 42, no. 2, pp. 92-98, 2004.
[11] D. Kiycioğlu and N. Ö. Ünverdi, "Applications of FTTX technology in optical communication systems," in SIU 26th, Izmir, Turkey, 2018.
[12] M. Tokoro and K. Tamaru, "Acknowledging Ethernet," in COMPCON, Washington, DC, USA, 1977.
[13] K. Yoshigoe and K. Christensen, "RATE control for bandwidth allocated services in IEEE 802.3 Ethernet," in COLCN 26th, Tampa, FL, USA, 2001.
[14] Y. Lee, D. Lee, H. Yoo, Y. Kim and Y. Kim, "Fast management of ONUs based on broadcast control channel for a 10-gigabit-capable passive optical network (XG-PON) system," Journal of Communications and Networks, vol. 15, no. 5, pp. 538-542, 2013.
[15] R. Dobinson, M. Dobson, S. Haas, B. Martin, M. LeVine and F. Saka, "IEEE 802.3 Ethernet, current status and future prospects at the LHC," in NSS/MIC, Lyon, France, 2000.
[16] K. M. Sharif, N. A. Ngah, A. Ahmad, K. Khairi, Z. Manaf and D. Tarsono, "Demonstration of XGS-PON and GPON Co-Existing in the Same Passive Optical Network," in IEEE ICP 7th, Langkawi, Malaysia, 2018.
[17] Y. Luo, X. Zhou, F. Effenberger, X. Yan, G. Peng, Y. Qian and Y. Ma, "Time- and Wavelength-Division Multiplexed Passive Optical Network (TWDM-PON) for Next-Generation PON Stage 2 (NG-PON2)," Journal of Lightwave Technology, vol. 31, no. 4, pp. 587-593, 2012.
[18] Y. Luo, J. Gao and F. Effenberger, "Next generation hybrid wireless-optical access with TWDM-PON," in WOCC 23rd, Newark, NJ, USA, 2014.
[19] X. Miao, M. Bi, Y. Fu, L. Li and W. Hu, "Experimental Study of NRZ, Duobinary, and PAM-4 in O-Band DML-Based 100G-EPON," IEEE Photonics Technology Letters, vol. 29, no. 17, pp. 1490-1493, 2017.
[20] J. S. Wey, "The outlook for PON standardization: A Tutorial," Journal of Lightwave Technology , vol. 38, no. 1, pp. 31-42, 2019.
[21] H. Shin, Y. Shim and S. Cho, "NG-PON2 Development for 10G Internet Service: A Study Case of SK," in OECC 23rd, Jeju, Korea (South), 2018.
[22] A. K. Garg and V. Janyani, "Direct ONU interconnection schemes towards latency-aware passive optical networks," in ICOCCE, Jaipur, India, 2017.
[23] M. Shirao, T. Fujita, A. Uchiyama, H. Miura, S. Okuda and N. Ohata, "A High-Speed EML on Sub-mount for 200G PAM4," in IPC, Vancouver, BC, Canada, 2022.
[24] Z.-Y. KUO, Design of Hybrid-PON with 50Gb/s High-Speed Signal Transmission Along Single-Mode Fiber, Taipei,Taiwan: NTLTD, 2019.
[25] Y.-H. Wen, K.-C. Feng, L.-W. Chung and S.-L. Lee, "Hybrid PONs with RU Interconnection for Future Mobile Networks," in FOAN, Valencia, Spain, 2022.
[26] 蔡瀞萱, 以超外插法量測電致吸收調變雷射之頻譜特性, Taipei, Taiwan: 國立台灣科技大學碩士論文, 2022.
[27] A. E. Abejide, C. Rodrigues, S. Pandey, M. R. Kota, M. J. N. Lima and A. Teixeira, "Analysis of signal extinction ratio and minimum mean launch power trade-off for type-A ONU 10G transmitter," in ICUMT 13th, Brno, Czech Republic, 2021.
[28] F. Andreas, L. Nikolaos, M. Georgios, P. Ioannis, K. Christoforos and K. Dimitrios, "Design of Optical Network Unit (ONU) for Hybrid," in ICECS, Cairo, Egypt, 2015.
[29] P. I. T. Ivaniga, "Evaluation of the bit error rate and Q-factor in optical networks," IOSR J. Electron. Commun.Eng, vol. 9, no. 5, pp. 01-04, 2014.

無法下載圖示 全文公開日期 2025/08/21 (校內網路)
全文公開日期 2025/08/21 (校外網路)
全文公開日期 2025/08/21 (國家圖書館:臺灣博碩士論文系統)
QR CODE