簡易檢索 / 詳目顯示

研究生: 王伶綺
Ling-Chi Wang
論文名稱: 以單通道傳送25 Gb/s和56 Gb/s組成400 Gb/s單模光傳輸模組的高速電路板設計
Design of High-speed Circuit Board for 400 Gb/s Single-mode Transmitters with 25 Gb/s and 56 Gb/s Per-Channel Data Rates
指導教授: 李三良
San-Liang Lee
黃凡修
Fan-Hsiu Huang
口試委員: 曾昭雄
Chao-Hsiung Tseng
周一鳴
黃凡修
Fan-Hsiu Huang
李三良
San-Liang Lee
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 124
中文關鍵詞: 光傳輸模組光纖通訊不歸零編碼訊號四階脈衝振幅調變訊號電致吸收調變雷射高速印刷電路板
外文關鍵詞: optical transceivers, optical communication, NRZ, PAM4, electro-absorption modulation laser, printed circuit board
相關次數: 點閱:271下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於高速大量資訊傳輸時代來臨,頻寬與資料量的需求量快速成長且已供不應求,所以為了解決大量高速傳輸所需要消耗的成本以及技術的突破,全世界無論業界或是學術單位已極力研發相關高速訊號的傳輸元件技術。對於資料中心伺服器間的資料傳送來說,使用光纖通訊是最佳選擇。因此若100 Gb/s光傳輸模組商業化之後,研發重點將轉為研發製作400 Gb/s 光傳輸模組,而眾多研究相關結果也在國際期刊及研討會中發表,但還是有許多挑戰需要突破。
    本論文成功設計並優化單通道25 Gb/s 不歸零編碼訊號並載上高速電致吸收調變雷射,高速印刷版採用高頻板材來設計高 頻傳輸線以提高傳輸頻寬,並藉由差動訊號傳輸線減少共模雜訊降低阻抗匹配問題所造成的反射。由於在量測過程裡傳輸路徑上需經過上拉及電光吸收調變器電路,造成阻抗不匹配,因此本論文成功藉由模擬電路來驗證實驗結果並優化,藉由完成單通道25 Gb/s的成果進而完成設計單通道56 Gb/s之傳輸系統,設計結果將有利於後續實現8×56 Gb/s的400 Gb/s光傳輸模組。


    High-speed information transmission stimulates the fast increasing bandwidth demands that becomes very challenging for modern communication device and system developers to achieve. The researchers are working hard to develop high-speed data transmission technologies that can meet the bandwidth growth demand while lowering the cost and energy consumption of the optical transceivers. For data centers, optical communication is the most effective solution. After 100 Gb/s transceivers were commercialized, 400Gb/s optical transceivers become one of the hottest research topic and many advancements are published in the journals and conferences. However, there are many challenges yet to be overcome.
    In this thesis we successfully design and optimize the single-channel transmitters with high-speed electro-absorption modulation lasers for 25 Gb/s NRZ signals. The printed circuit board made of high-frequency material can increase the transmission line bandwidth. Differential-type transmission lines are designed to reduce the common-mode noise and impedance mismatch. The impedances mismatching by adding the pull-high and EAM circuits in the transmission path degrades the circuit performance. The high-frequency circuit design software is used to design and optimize the transmission lines and circuits We successfully demonstrated the single-channel 25 Gb/s optical transmitter and finish the design of circuit boards for single-channel 56 Gb/s transmitters. The design results will facilitate the subsequent implementation of 8×56 Gb/s transmitters for 400 Gb/s optical transmission.

    摘要 I Abstract II 致謝 III 目錄 V 圖目錄 IX 表目錄 XV 第一章 導論 1 1.1 前言 1 1.2 文獻探討 3 1.3 研究動機 7 1.4 論文架構 9 第二章 系統調變方法及元件介紹 10 2.1 前言 10 2.2 400 Gb/s乙太網路 10 2.3 訊號調變方式 12 2.3.1 不歸零編碼訊號調變訊號介紹 12 2.3.2 四階脈衝振幅調變訊號介紹 12 2.4 光收發次模組簡介 14 2.4.1 傳送驅動晶片介紹 14 2.4.2 時脈資料回復電路[9] 15 2.4.3 等化器(Equalizer, EQ) 16 2.4.4 線性放大器 16 2.4.5 電致吸收驅動電路 16 2.5 電致吸收調變雷射簡介 17 2.5.1 雷射外部調變器 18 2.5.2 熱敏電阻 21 2.5.3 致冷晶片 21 第三章 高速電路板設計及模擬結果 22 3.1 前言 22 3.2 傳輸線理論及介紹 22 3.2.1 傳輸線理論與介紹 22 3.2.2 單端傳輸線(Single-end transmission Line) 23 3.2.3 差動傳輸線(Differential Line) 25 3.2.3.1 奇模態傳輸分析 28 3.2.3.2 偶模態傳輸分析 31 3.3 高頻印刷板疊構設計 34 3.4 差動傳輸線設計及模擬 35 3.4.1 傳輸線阻抗設計 36 3.4.2 PCB layout 設計 37 3.5 差動傳輸線量測 37 3.5.1 差動傳輸線之S-parameter 37 第四章 25G/s光傳輸模組架構量測 42 4.1 前言 42 4.2 四通道EML TOSA特性 43 4.3 傳輸系統量測 46 4.3.1 傳輸驅動晶片電路 46 4.3.2 傳輸系統量測架構 47 4.3.3 改善傳輸電訊號 50 4.4 光傳輸系統量測 53 4.4.1 光傳輸系統架構 53 4.4.2 使用訊號產生器量測光傳輸系統 53 4.4.3 使用傳輸晶片產生訊號量測光傳輸模組系統 57 4.5 電路模擬及優化後量測結果 60 4.5.1 使用模擬軟體模擬電路眼圖 60 4.5.2 使用模擬軟體模擬電路S參數 66 4.5.3 更改被動元件量測結果 69 4.5.4 使用模擬軟體模擬電路最佳結果 78 第五章 28 Gbaud Linear Quad EML Driver 83 5.1 前言 83 5.2 EML Driver Block diagram 83 5.3 28 Gbaud Linear Driver傳輸版設計 85 5.4 高頻印刷版疊構設計 90 5.5 傳輸線模擬結果 91 5.5.1 TOSA版本單端傳輸線模擬 91 5.5.2 電接頭輸出版本單端傳輸線模擬 95 5.5.3 差動傳輸線模擬 99 第六章 結論 104 6.1 成果 104 6.2 未來研究方向與預期問題 106 6.2.1 對於單通道25 Gb/s 系統 106 6.2.2 對於單通道56 Gb/s 系統 106 參考文獻 107

    [1]The 2018 Ethernet Roadmap. https://ethernetalliance.org/the-2018-ethernet-roadmap/.
    [2]T. Tatsumi, K. Tanaka, S. Sawada, H. Naito, H. Onishi, H. Fujita, A. Ugai, T. Abe, “Development of Electro-Absorption Modulator Driver ICs for 25G/40G Transmission,” Sei Technical Review, No. 74, Apr 2012, pp. 1-3.
    [3]T. Tatsumi, N. Itabashi, K. Tanaka, A. Ugai, T. Abe, S. Ogita, “1.3µm, 28-Gbaud 4-PAM EML Module targeting to 400GbE, ” Semiconductor Laser Conference (ISLC), 2014 International.
    [4]陳力維, “100 Gb/s SR4 多模光纖光收發模組, ” 國立高雄應用科技大學碩士論文, 2015.
    [5]S. Bhoja, “PAM4 signaling for intra-data center and data center to data center connectivity (DCI),” Optical Fiber Communications Conference and Exhibition (OFC), 2017.
    [6]http://www.ieee802.org/3/bs/
    [7]C. Cole, Finisar, J. J. Maki, J. Networks, A. Srivastava, NTT Electronics, P. Stassar, Huawei, “400Gb/s 2km & 10km duplex SMF PAM-4 PMD Baseline Specifications, ” 400 Gb/s Ethernet Task Force IEEE 802.3 Interim Meeting, Pittsburgh, PA, 18 – 20 May 2015
    [8]A. Healey, C. Morgan, “A Comparison of 25 Gbps NRZ & PAM-4 Modulation Used in Legacy & Premium Backplane Channels, ” DesignCon, Santa Clara, CA, 2012.
    [9]B. Razavi, “Challenges in the design high-speed clock and data recovery circuits,” IEEE Communications Magazine, Aug 2002.
    [10]吳奇璋, “分佈反饋式雷射與行波式電致吸收調變器積體化元件製作,” 國立台灣科技大學碩士論文, 2010.
    [11]D. M Pozar, Microwave Engineering "2" ^"nd" , Wiley, 1998.
    [12]吳承穎, “高頻軟板及焊點之最佳化設計,” 國立高雄應用科技大學碩士論文, 2015.
    [13]S. H. Hall, H. L. Heck, Advanced Signal Integrity for High-Speed Digital Designs, 2009.
    [14]S. H. Hall, G. W. Hall, J. A. McCall, High Speed Digital System Design, “A Handbook of Interconnect Theory and Design Practices,” New York, Wiley, 2000
    [15]M. Shirao, N. Ohata, N. Yasui, K. Uto, T. Fukao, T. Hatta, H. Aruga, T. Mizuochi, “A 1.55 μm 40 Gb/s EML TOSA Employing a Novel FPC Connection,” Journal of Lightwave Technology, vol.32 , pp.3344-3350, Oct.1, 1 2014.
    [16]劉祐閩, “16×25 Gb/s單模光傳收模組高速電路板設計,” 國立台灣科技大學碩士論文, 2017.
    [17]S.Sinha, R. Doerner, F.J. Schmückle, S. Monayakul, M. Hrobak, N. G. Weimann, V. Krozer, W. Heinrich, Fellow, “Flip-Chip Approach for 500 GHz Broadband Interconnects,” IEEE Microwave Theory and Techniques Society, January 2017
    [18]賴其賢, “56 Gb/s高速單模光纖訊號傳輸,” 國立台灣科技大學碩士論文, 2017.

    QR CODE