簡易檢索 / 詳目顯示

研究生: 游易霖
Yi-Lin Yu
論文名稱: 長波長環型摻鉺光纖雷射特性分析與優化
The Optimum Investigation and characteristic analysis of L-band Ring-Cavity Erbium-Doped Fiber
指導教授: 廖顯奎
Shien-Kuei Liaw 
口試委員: 張嘉男
Chia-Nan Chang
呂海涵
Hai-Han Lu
董正成
Jeng-Cherng Dung
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 76
中文關鍵詞: 摻鉺光纖雷射環形雷射布拉格光纖光柵
外文關鍵詞: Erbium doped fiber laser, Fiber ring laser, Fiber Bragg grating
相關次數: 點閱:314下載:19
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文介紹環型摻鉺光纖雷射,對摻鉺光纖雷射的原理,以及布拉格光纖光柵的製作與應用。
    在環型摻鉺光纖雷射的介紹分成三個部分。首先是環型雷射其又可分為前向泵激與後向泵激兩種,我們先使用模擬軟體Optisystem 6.0簡介環型摻鉺光纖的動作原理,並利用圖示深入了解其內容。
    第二部分則改由實際的光學元件得來結果,包含使用不同長度的摻鉺光纖、不同波長的布拉格光纖光柵,可以得到環型架構之最佳結果為使用摻鉺光纖7m、光柵波長1597nm、臨界功率8.34mW、斜線效率11.9%。無論前向或後向泵激架構,皆以1597nm波長輸出之效果較好。
    第三部分,我們從動作原理了解環型摻鉺光纖雷射在能源上有一定之浪費,由之前實驗中可得到由泵激光源與自發性輻射兩方面改善,設計出泵激光源的回收使用,以及自發性放大輻射之回收使用。前者藉由寬頻譜反射鏡將殘餘泵激光源導回摻鉺光纖,此種改善在泵激光源100mW可提升輸出功率0.9dB、斜線效率2.66%;後者我們設計將摻鉺光纖分為兩段使用,此種改善在相同的泵激光源下可提升輸出功率2.8dB、斜線效率5.89%。
    最後,再將線性型與環型兩種架構做比較,包含雷射輸出的功率、斜線效率及應用性。由比較的結果發現,線性型雷射的輸出特性較佳;而環型的應用性則有較好的表現。


    In the thesis, we studied and investigated ring-cavity erbium-doped fiber laser (EDFL). In the beginning, we introduced the theories of both EDFL and tunable fiber Bragg grating (FBG). Then the simulation software Optisystem 6.0 was used to calculate the characteristics of ring-cavity EDFL. To confirm the calculated results, several experiments were conducted by varying the parameters of fiber components. The vary parameters including erbium doped fiber (EDFs) length, FBG wavelength and FBG reflectivity. In both forward and backward pump schemes, 1597 nm have better performance than those of 1581 nm under 100 mW pump power. At 1597 nm, we found that 7-m EDF and 100% reflectivity of FBG may result in threshold power, output power, slope efficiency and signal to noise ratio (SNR) of 8.34 mW, 10.96 dBm, 11.9 % and 66.66 dB, respectively. Although longer EDF such as 10- or 12 m may lead to lower output power when compares to 7 m ring-cavity EDFL, the problem could be solved by recycling the residual pump power using a broadband fiber mirror and/or separating the EDF into two sections. Under 100 mW pump power, the laser output power and slope efficiency are 0.9 dB and 2.66% improved for the first case. On the other hand, the laser output power and slope efficiency are 2.8 dB and 5.89% improved for the second case, respectively. We compared several measured characteristics between ring-cavity EDFL and previous studies of linear-cavity EDFL in our laboratory. Under the same pump power, the linear-cavity EDFL has larger output power and slope efficiency than those of ring-cavity EDFL. On the other hand, the ring-cavity EDFL has better SNR and performance when acts as a fiber sensor source, as compared to those of linear-cavity EDFL.

    摘要 I Abstract II 圖表所引 IV 目錄 VII 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 論文架構 3 第二章 掺鉺光纖與布拉格光纖光柵簡介 5 2.1 摻鉺光纖理論 5 2.1.1 摻鉺光纖之三階鉺離子速率方程式 5 2.1.2 摻鉺光纖雷射理論 9 2.2 布拉格光纖光柵簡介 11 2.2.1 光柵的種類 11 2.2.2 布拉格光纖光柵之製作方式 13 2.2.3 布拉格光纖光柵之應用 14 2.3 可調式之布拉格光纖光柵原理 16 2.3.1 製作方式 16 2.3.2 波長可調之光纖光柵理論 16 2.3.3 波長可調之光纖光柵實際量測 19 第三章 L band 環型摻鉺光纖雷射 23 3.1 環型摻鉺光纖雷射工作原理 23 3.1.1 L band 摻鉺光纖放大原理 23 3.1.2 環型摻鉺光纖雷射架構 25 3.1.3 工作原理 26 3.2 前向環型摻鉺光纖雷射 29 3.2.1 波長1581nm之雷射 29 3.2.2 波長1597nm之雷射 31 3.2.3 不同波長之比較 33 3.3 後向環型摻鉺光纖雷射 34 3.3.1 波長1581nm之雷射 34 3.3.2 波長1597nm之雷射 37 3.3.3 不同波長之比較 39 3.4 前後架構之輸出特性比較 40 第四章 L band 環型雷射之特性探討與改善 43 4.1 環型摻鉺光纖雷射參數探討 43 4.1.1 增益介質對光纖雷射之影響 43 4.1.2 光纖光柵對於光纖雷射之影響 46 4.2 環型摻鉺光纖雷射改善 48 4.2.1 殘餘泵激光源分析 48 4.2.2 殘餘泵激光源回收之改善 51 4.2.3 殘餘自發性放大輻射回收之改善 55 第五章 環型與線性型共振腔雷射比較 61 5.1 L band 線性雷射介紹 61 5.1.1 線性架構之簡介 61 5.1.2 線性型光纖雷射參數分析 62 5.2 線性型與環型之特性比較 63 5.2.1 線性型與環型之架構比較 63 5.2.2 線性型與環型架構輸出雷射之特性比較 64 5.3 線性型與環型架構應用之比較 65 5.3.1 傳輸方面之應用 66 5.3.2 光纖感測方面之應用 68 第六章 結論與未來展望 72 參考文獻 74

    [1] 廖顯奎譯,”光纖通訊”,高立圖書有限公司,2005。
    [2] G. Keiser, FTTx Concepts And Application, New Jersey: John Wiley & Sons, 2006.
    [3] 洪寬綸,“建構於光纖光柵之光纖雷射、光感測與光監控技術之研究”,國立台灣科技大學碩士論文,2006。
    [4] 鐘國興,“建構於光纖光柵之光纖雷射研製”,國立台灣科技大學碩士論文,2007。
    [5] G. Keiser, “Optical Fiber Communications”, Tata McGRAW HILL, 2008.
    [6] P. W. milonni and J. H. Eberly, Lasers. New York: John Wiley & Sons, 1988.
    [7] 陳宣臣,“波長可調光纖光柵之研製與應用”,國立台灣科技大學碩士論文,2004。
    [8] 相偉龍,“長波段光纖雷射之研製”,國立台灣科技大學碩士論文,2007。
    [9] A. J. Poustie and N. Finlayson, “Multiwavelength fiber laser using a spatial mode beating filter, ” Opt. Lett., vol. 19, pp.716-718, 1994.
    [10] G. A. Ball and W. H. Glenn, “Design of a single-mode linear-cavity erbium fiber laser utilizing Bragg reflectors,” J. Lightwave Technol., vol. 10, pp. 1338–1343, 1992.
    [11] 王俊容,“光纖光柵與光循環器組成之光纖雷射”,國立台灣科技大學碩士論文,2005。
    [12] P. C. Becker, N. A. Olsson, and J. R. Simpson, Erbium-Doped Fiber Amplifiers, Fundamentals and Technology. New York: Academic, 1999.
    [13] H. J. Dutton, “Understanding optical communication,” Prentice Hall, 1999.
    [14] 李楊漢,許立根,“光纖通信網路”,五南圖書出版公司,2007年7月.
    [15] 廖顯奎, “當代光電工程”,滄海書局,民國95年11月.
    [16] F. T. S. Yu and S. Yin, “Fiber optic sensors”, New York, Marcel Dekker, 2002.
    [17] P. C. Peng, H. Y. Tseng, and S. Chi, “Long-distance FBG sensor system using a linear-cavity fiber Raman laser scheme,” IEEE Photonics Technol. Lett., vol. 16, pp. 575 -577, 2004.
    [18] Y. Sun, J. L. Zyskind, and A. K. Srivastava, “Average Inversion Level, Modeling and Physics of Erbium-Doped Fiber Amplifiers,” IEEE Journal of Quantum Electronics, vol. 3, no. 4, August 1997.
    [19] D. B. Mortimore, S. W. Harun, P. Poopalan, and H. Ahmad, “Gain enhancement in L-band EDFA through a double-pass technique,” IEEE Phonics Technology Letters, vol. 14, no. 3, March 2001.
    [20] H. Meng, Y. Liu, W. Gao, H. Ahang, S. Yuan, and X. Dong, “Reflection L-band Erbium-doped fiber amplifier based on a fiber loop mirror,” Microwave And Optical Technology Letters, vol. 36, no. 6, March 2003.
    [21] P. A. Andrekson, N. A. Olsson, P. C. Becker, J. R. Simpson, T. Tanbun-Ek, R. A. Logan, and K. W. Wecht, “Observation of multiple wavelength soliton collisions in optical systems with fiber amplifiers,” Applied Physics Letters, vol. 57, pp. 1715-1717, October 1990.
    [22] M. M. Liu, “Principles and applications of optical communications,” vol. 35, issue. 12, pp. 3642-3643, December 1996.
    [23] H. Ono, M. yamada et al., “1.58-um band gain-flattened Erbium-Doped Fiber Amplifiers for WDM transmission systems,” Journal of Lightwave Technology, vol. 17, no. 3, March 1999.
    [24] 洪繼宇,“L-Band摻鉺光纖放大器功率轉換效率改善之研究”,國立清華大學碩士論文,2004.

    QR CODE