簡易檢索 / 詳目顯示

研究生: 洪士博
Shih-bo Hung
論文名稱: 一階段及二階段酯化反應之反應蒸餾系統設計與控制
Design and Control of Reactive Distillation Systems: One-Stage and Two-Stage Esterification
指導教授: 李明哲
Ming-jer Lee
口試委員: 林河木
Ho-mu Lin
余政靖
Cheng-ching Yu
黃孝平
Hsiao-ping Huang
周宜雄
Yi-shyong Chou
汪上曉
David Shang-xiao Wong
黃奇
Chyi Huang
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2006
畢業學年度: 95
語文別: 中文
論文頁數: 162
中文關鍵詞: 反應蒸餾 酯化; 液液平衡; NRTL; UNIFAC; 非線性指標; 控制
外文關鍵詞: reactive distillaiton, liquid-liquid equilibrium, UNIFAC, nonlinearity index
相關次數: 點閱:345下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究在系統化地設計與控制兩種不同酯化類型之反應蒸餾程序。酯化反應使用酸性離子交換樹脂為觸媒。第一種反應類型為一階段酯化反應,包括五種不同的醇類(甲醇至戊醇),與醋酸反應的酯化系統;第二種反應類型為二階段酯化反應,在此以己二酸與甲醇的酯化反應系統來介紹。程序模擬部分,採用文獻上已有反應動力學的描述,熱力學模式則在進行模擬之前,先行與實驗數據比對確認。最後,以年總操作成本(TAC)為目標函數對程序進行最適化。
對於五種一階段醋酸酯化之反應蒸餾流程,共可歸類於三大類型,其分類可從各系統中混合物的相關之相行為來區分;如沸點排序、非均相區域的大小以及蒸餘曲線圖等。各系統的非線性程度評估,可從塔板溫度增益變號比例與Allogower所提非線性指標得到,而大部分的程序也多具有多重穩態的現象。雙溫度與一溫度一組成兩控制都能適用於各類型的反應蒸餾流程,以簡單的分散型控制(decentralized control)可有效地控制高度非線性的反應蒸餾系統。
對二階段反應的甲醇與己二酸酯化系統,為使在液液分離操作上的分析能夠準確,本工作量測了兩組三成分系統的液液相平衡數據,包括水、甲醇與酯類。液液相平衡數據以NRTL模式迴歸並得到最佳雙成分交互作用參數。二階段酯化系統有兩種反應蒸餾流程設計,同樣地也進行程序非線性估算。控制架構方面,這裡提出三種溫度架構用於此程序上,其皆可提供相當好的控制效果,但是不同的控制架構會使得程序能源需求上的不同。

總結不論是多複雜的反應系統,先行分析系統的特徵然後選擇正確控制策略,是成功且有效地完成反應蒸餾程序關鍵。如同文中所提,對於簡單的單一反應蒸餾塔或是複雜的整廠反應蒸餾流程,都能提供良好的操作性與控制性。


The design and control of various reactive distillation systems were systematically studied for two categories of heterogeneous catalytic esterification over acidic ion-exchange resins. A series of one-stage esterification of acetic acid with five different alcohols, from methanol to amyl alcohol, was selected as model systems for the first category, while two-stage esterification of adipic acid with methanol was chosen as an illustrative example for the second category. In the process simulations, the kinetic models were taken from literature and the thermodynamic models have been verified with experimental phase equilibrium data before use. The total annual cost (TAC) was adopted as the objective function for process optimization.
Three types of flowsheets were developed for those five one-stage esterification systems. The process development was mainly based on the phase behavior of the related mixtures such as boiling point ranking, immiscibility, and residue curve map (RCM). For each system, the degree of process nonlinearity was evaluated with the fraction of “sign reversal” of tray temperatures and the index of Allgower’s nonlinearity. The multiple steady-state phenomena were also found in most of the studied processes. Both dual-temperature control and one-temperature-one- composition control were investigated for each type of flowsheet. It was found that simple decentralized control was effective for those highly nonlinear reactive distillation systems.
For accurately analyzing the operation of liquid-liquid separation unit in the processes of two-stage esterification of adipic acid with methanol, liquid-liquid equilibrium (LLE) data of two ternary systems containing water, methanol and esters were measured in the present study. These LLE data were correlated with the NRTL model to determine the optimal binary interaction parameters. Two types of reactive distillation flowsheets were developed for this two-stage esterification system. Similarly, the process nonlinearity was also evaluated. Three kinds of temperature control structures were tested in this work. Satisfactory control performances have been achieved regardless of the control structures, but using different control structures lead to substantial difference in energy demands.
It is concluded that analysis the system characteristics first and then selection of correct control stratagem are keys to success for development of an efficient reactive distillation process, regardless of complexity of the reaction systems. As demonstrated in this study, good operability and controllability have been achieved for the processes which consist of only one reactive distillation column or plantwide complex reactive distillation systems.

致謝 I 摘要 III Abstract IV 目錄 VI 圖索引 IX 表索引 XII 1. 緒論 1 1.1. 前言. 1 1.2. 文獻回顧. 4 1.3. 研究動機與目的. 6 1.4. 組織章節. 9 2. 反應蒸餾程序之非線性分析 11 2.1. 前言. 11 2.2. 程序描述. 12 2.3. 定性分析. 13 2.4. 定量分析. 19 2.4.1決定操作變數 19 2.4.2增益變號分析 20 2.4.3非線性指數量測 23 2.4.4輸入型多重穩態分析 24 2.5. 比較與討論. 27 3. 反應蒸餾程序之動態分析 29 3.1. 前言. 29 3.2. 控制架構. 29 3.2.1靈敏度分析 32 3.2.2非方形相對增益 36 3.3. 控制架構與設計. 39 3.3.1控制器參數調諧法 40 3.4 雙溫度控制下動態響. 42 3.4.1煉量擾動 42 3.4.2進料比例擾動 45 3.4.3動態響應分析 49 3.5一組成一溫度控制架構 50 3.5.1煉量擾動 52 3.5.2進料比例擾動 55 3.5.3結果與比較 56 3.6結論 59 4. 己二酸酯化系統之熱力學與動力學模式 61 4.1. 前言. 61 4.2. 熱力學模式. 62 4.2.1飽和蒸汽壓 62 4.2.2汽-液相平衡計算使用之熱力學模式 64 4.2.3液-液相平衡計算使用之熱力學模式 69 4.2.3.1液-液平衡量測 70 4.2.3.2實驗藥品 70 4.2.3.3實驗量測裝置 71 4.2.3.4實驗步驟 72 4.2.3.5實驗結果 74 4.2.3.6液液相平衡計算 80 4.3. 蒸餘曲線圖. 87 4.4. 動力學模式. 88 4.5. 結論. 89 5. 己二酸酯化反應蒸餾系統設計 91 5.1. 前言. 91 5.2. 設計概念. 92 5.3. 反應蒸餾流程設計. 94 5.3.1反應蒸餾塔架構 94 5.3.2產品單元設計 95 5.4. 最適化設計. 100 5.4.1模擬假設 101 5.4.2 FSA最適化步驟 101 5.4.3 FSA最適化設計結果 102 5.4.4 FSB最適化步驟 106 5.4.5 FSB最適化設計結果 107 5.5. 結果與比較. 111 5.6. 結論. 112 6. 己二酸酯化反應蒸餾系統動態模擬與控制 119 6.1. 前言. 119 6.2. 控制環路設計. 120 6.3. 控制架構. 120 6.3.1控制架構分類(CS1a、CS1b與CS2) 120 6.3.2系統所承受的干擾 122 6.4. CS1a 控制架構. 123 6.4.1開環路靈敏度分析 125 6.4.2 CS1a程序非線性分析 127 6.4.3控制器參數調諧 130 6.4.4 CS1a動態模擬結果 131 6.5. CS2控制架構與非線性分析. 134 6.5.1 CS2動態模擬結果 136 6.6. CS1b控制架構. 139 6.6.1 CS1b 動態模擬結果 140 6.7. 結論. 143 7. 結論 145 符號說明 147 參考文獻 150 附錄A 年總成本計算公式 151 附錄B庫存控制環路控制器參數 157 作者簡介 160

http://www.dechema.de/detherm
詹凱雯,「己二酸與甲醇的非均相酯化反應動力行為研究」,國立台灣大學科技化學工程研究所碩士論文 (2004)

賴政海,「含甲醇、己二酸單甲酯與己二酸雙甲酯混合物的汽液相平衡研究」,國立台灣大學科技化學工程研究所碩士論文(2004)

童士哲,「反應蒸餾塔之概念性設計: 相對揮發度之影響」,國立台灣大學化學工程研究所碩士論文(2006)

Agreda, V. H.; Partin L. R.; Heise W. H., “High Purity Methyl Acetate via Reactive Distillation,” Chem. Eng. Prog., 1990, 86(2), 40

Al-Arfaj, M. A.; Luyben, W. L., “Effect of Number of Fractionating Trays on Reactive Distillation Performance Source.” AIChE J., 2000, 46(12), 2417.

Al-Arfaj, M. A.; Luyben, W. L., “Comparison of Alternative Control Structures for an Ideal Two-Product Reactive Distillation Column.” Ind. Eng. Chem. Res., 2000, 39(9), 3298.

Al-Arfaj, M. A.; Luyben, W. L., “Comparative Control Study of Ideal and Methyl Acetate Reactive Distillation.” Chem. Eng. Sci., 2002, 57, 5039.

Al-Arfaj, M. A.; Luyben, W. L., “Control of Ethylene Glycol Reactive Distillation Column.” AIChE J., 2002, 48(4), 905.

Bansal, V.; Perkins, J. D.; Pistikpoulos, E. N., “A Case Study in Simultaneous Design and Control Using Rigorous, Mixed-Integer Dynamic Optimization Models.” Ind. Eng. Chem. Res., 2002, 4, 760.

Barbosa, D.; Doherty, M. F., “Choosing the Right Control Structure for Industrial Distillation Columns.” Chem. Eng. Sci., 1988, 43(3), 541.

Burkett, R. J.; Rossiter, D. “Simple Distillation of Homogeneous Reactive Mixtures.” Proc. of Process Control and Instrumentation 2000, Glasgow, UK 2000 38, 541.

Chang J. W.; Yu C. C. “The Relative Gain for Non-square Multivariable Systems.” Chem. Eng. Sci., 1990, 45, 1309.

Chen, F.; Huss, R. S.; Malone, M. F.; Doherty, M. F., “Simulation of Kinetic Effects in Reactive Distillation.” Comput. Chem. Eng., 2000, 24(11), 2457.

Chen, F.; Huss, R. S.; Malone, M. F.; Doherty, M. F., “Multiple Steady States in Reactive Distillation: Kinetic Effects.” Comput. Chem. Eng., 2002, 26(1), 81.

Cheng, Y. C.; Yu, C. C. “Effects of Feed Tray Locations to the Design of Reactive Distillation and Its Implication to Control.” Chem. Eng. Sci., 2005, 60, 4661.

Chiang, S. F.; Kuo, C. L.; Yu, C. C.; Wong, D. S. H., “Design Alternatives for Amyl Acetate Process: Coupled Reactor/Column and Reactive Distillation.” Ind. Eng. Chem. Research., 2002, 41, 3233.

Doherty, M. F.; Buzad, G., “Reactive Distillation by Design.” Chem.Eng. Res. , 1992, 70(A5), 448.

Doherty, M. F. and Malone, M. F., Conceptual design of distillation systems, McGraw-Hill, New York, USA , 2001.

Douglas, J. M., Conceptual Design of Chemical Processes, McGraw-Hill, New York, USA, 1998.

Fredenslund, A.; Gmehling, J.; Rasmussen, P., Vapor-Liquid Equilibria Using UNIFAC: A Group-Contribution Method. Elsevier; Amsterdam, 1977.

Gangadwala, J.; Kienle, A.; Stein, E.; Mahajani, S., “Production of Butyl Acetate by Catalytic Distillation: Process Design Studies.” Ind. Eng. Chem. Res., 2004, 43, 136.

Gmehling, J.; Menke, J.; Krafczyk, J.; Fischer, K., Azeotropic Data, Weinheim : Wiely-VCH, Germany, 2004.

Gmehling, J.; Li, J.; Schiller, M., “A Modified UNIFAC Model. 2. Present Parameter Matrix and Results for Different Thermodynamic Properties.” Ind. Eng. Chem. Res., 1993, 32, 178.

Guttinger, T. E.; Morari, M., “Predicting Multiple Steady States in Equilibrium Reactive Distillation. 1. Analysis of Nonhybrid Systems.” Ind. Eng. Chem. Res., 1999a, 38(4), 1633.

Guttinger, T. E.; Morari, M., “Predicting Multiple Steady States in Equilibrium Reactive Distillation. 2. Analysis of Hybrid Systems.” Ind. Eng. Chem. Res., 1999b, 38(4), 1649.

Hanika, J.; Smejkal, Q.; Kolena, J., “Butylacetate vis Reactive Distillation- Modelling and Experiment.” Chem. Eng. Sci., 1999, 54, 5205.

Hayden, J. G.; O’Connell, J. P., “A Generalied Method for Predicting Second Virial Coefficients.” Ind. Eng. Chem. Proc. Des., 1975, 14, 209.

Hernjak N.; Doyle III, F. J., “Correlation of Process Nonlinearity with Closed-Loop Disturbance Rejection.” Ind. Eng. Chem. Res., 2003, 42, 4611.

Huang, S. G.; Kuo, C. L.; Hung, S. B.; Chen, Y. W.; Yu, C. C., “Temperature Control of Heterogeneous Reactive Distillation: Butyl Propionate and Butyl Acetate Esterification.” AIChE J., 2004, 50, 2203.

Huang, S. G.; Yu, C. C., “Sensitivity of Thermodynamic Parameter to the Design of Heterogeneous Reactive Distillation: Amyl Acetate Esterification.” J. Chin. Inst. Chem. Eng., 2003, 34, 345.

Jacobs, R.; Krishna, R., “Multiple Solutions in Reactive Distillation for Methyl Tert-Butyl Ether Synthesis.” Ind. Eng. Chem. Res., 1993, 32(8), 1706.

Kaymak, D. B.; Luyben, W. L., “Effect of the Chemical Equilibrium Constant on the Design of Reactive Distillation Columns.” Ind. Eng. Chem. Res., 2004, 43(14), 3666.

Kenig, E. Y.; Bader, H.; Groak, A.; Bebling, B.; Adrian, T.; Schoenmakers, H.; “Investigation of Ethyl Acetate Reactive Distillation Process.” Chem. Eng. Sci., 2001, 56, 6185.

Kumar A.; Daoutidis P., “Modeling, Analysis and Control of Ethylene Glycol Reactive Distillation Column.” AIChE J. 1999, 45, 51.

Luyben W. L., “Economic and Dynamic Impact of the Use of Excess Reactant in Reactive Distillation Systems.” Ind. Eng. Chem. Res. 2000, 39, 2935.

Luyben W. L., “Dynamics and Control of Recycle Systems. 1. Simple Open-Loop and Closed-Loop Systems.” Ind. Eng. Chem. Res. 1993, 32, 46.

Luyben, W. L.; Tyréus, B. D.; Luyben, M. L., Plantwide Process Control, McGraw-Hill: New York 1999.

Luyben, W. L.; Pszalgowski, K. M.; Schaefer, M. R.; Siddons, C., “ Design and Control of Conventional and Reactive Distillation Processes for the Production of Butyl Acetate.” Ind. Eng. Chem. Res., 2004, 43(25), 8014.

Luo, H. P.; Xiao, W. D., “A Reactive Distillation Process for a Cascade and Azeotropic Reaction System: Carbonylation of Ethanol with Dimethyl Carbonate.” Chem. Eng. Sci., 2001, 56, 403.

Magnussen, T.; Rasmussen, P.; Fredenslund, A., “UNIFAC Parameter Table for Prediction of Liquid-Liquid Equilibria.” Ind. Eng. Chem. Process Des. Dev., 1981, 20, 331.

Malone, M. F.; Doherty, M. F., “Reactive Distillation.” Ind. Eng. Chem. Res., 2000, 39(11), 3953.

Menold P. H; Allgöwer F.; Pearson R. K., “Nonlinear Structure Identification of Chemical Processes.” Computers Chem. Eng., 1997, 21, S137.

Nijhuis, S.A.; Kerkhof, F. P. J. M.; Mak, A. N. S. “Multiple Steady States During Reactive Distillation of Methyl Tert-Butyl Ether.” Ind. Eng. Chem. Res., 1993, 32(11), 2767.

Okasinski, M. J.; Doherty, M. F., “Design Method for Kinetically Controlled, Staged Reactive Distillation Columns.” Ind. Eng. Chem. Res., 1998, 37(7), 2821.

Robinson, D.; Chen, R.; McAvoy, T. J.; Schnelle, P. D., “An Optimal Control Approach to Designing Plantwide Control System Architectures.” J. Process Control., 2001, 11, 223.

Ryan, P J.; Doherty, M. F., “Design/Optimization of Ternary Heterogeneous Azeotropic Distillation Sequences.” AIChE J., 1989, 35(10), 1592.

Robert, H. S.; Cheng, F.; Malone M. F.; Doherty, M. F., “Reactive Distillation for Methyl Acetate Production.” Comput. Chem. Eng., 2003, 27, 1855.

Scali, C. and Ferrari, F., “Performance of Control Systems Based on Recycle Compensators in Integrated Plants.” Journal of Process Control., 1999, 9, 425.

Scenna, N. J.; Benz, S. J., “Start-up Operation of Reactive Columns with Multiple Steady States: The Ethylene Glycol Case.” Ind. Eng. Chem. Res., 2003, 42(4), 873.

Schweickhardt, T.; Allgöwer, F., Quantitative Nonlinearity Assessment: An Introduction to Nonlinearity Measure. Integration of Process Design and Control, Amsterdam: Seferlis, P. and Georgiadis, M. C. Eds., Elsevier, 2004.

Shen, S. H.; Yu, C. C., “Use of Relay-Feedback Test for Automatic Tuning of Multivariable Systems.” AIChE J., 1994, 40, 627.

Sneesby, M. G.; Tade, M. O.; Datta, R.; Smith, T. N., “ETBE Synthesis via Reactive Distillation. 1. Steady-State Simulation and Design Aspects.” Ind. Eng. Chem. Res., 1997a, 36, 1855.

Sneesby, M. G.; Tade, M. O.; Datta, R.; Smith, T. N., “ETBE Synthesis via Reactive Distillation. 2. Dynamic Simulation and Control Aspects.” Ind. Eng. Chem. Res., 1997b, 36, 1870.

Sneesby, M. G.; Tade, M. O.; Smith, T. N., “Two-point Control of a Reactive Distillation for Composition and Conversion.” Journal of Process Control, 1999, 9(1), 19.

Song, W.; Venimadhavan, G.; Manning, J. M.; Malone, M. F.; Doherty, M. F., “Measurement of Residue Curve Maps and Heterogeneous Kinetics in Methyl Acetate Synthesis.” Ind. Eng. Chem. Res., 1998, 37(5), 1917.

Sundmacher, K. and Kienle, A., Reactive Distillation:Status and Future Directions, Wiley-VCH Verlag GmbH & Co. KGaA:Weinheim, Germany 2003.

Tang, Y. T.; Chen, Y. W.; Huang, H. P.; Yu, C. C.; Hung, S. B.; Lee, M. J., “Design of Reactive Distillations for Acetic Acid Esterification.” AIChE J., 2005, 51(6), 1683.

Uusi-Penttilä, M.; Richards, R. J.; Blowers, P.; Torgerson, B. A.; Berglund, K. A., “Liquid-Liquid Equilibria of Selected Dibasic Ester + Water + Solvent Ternary Systems.” J. Chem. Eng. Data., 1996, 41, 235.

Vora, N.; Daoutidis, P., “Dynamic and Control of Ethyl Acetate Reactive Distillation”, Ind. Eng. Chem. Res., 2001, 40, 833.

Wang, P.; McAvoy, T. J., “Synthesis of Plantwide Control Systems Using a Dynamic Model and Optimization.” Ind. Eng. Chem. Res., 2001, 40, 5732.

Wang, S. J.; Wong, D. S. H.; Lee, E. K., “Effect of Interaction Multiplicity on Control System Design for a MTBE Reactive Distillation Column.” J. Proc. Cont., 2003, 13, 503

Wu, K. L.; Yu, C. C., “Reactor/Separator Processes with Recycle-1. Candidate Control Structure For Operability.” Computers Chem. Engng., 1996, 20, 1291.

QR CODE