簡易檢索 / 詳目顯示

研究生: Saidah Altway
Saidah - Altway
論文名稱: 添加生物相容緩衝劑MOPS或MOPSNa之有機水溶液的液液平衡行為研究
Liquid-Liquid Equilibrium of Aqueous Solutions in the Presence of Biological Buffer MOPS or MOPS Sodium Salt
指導教授: 李明哲
Ming-Jer Lee
口試委員: 林河木
Ho-Mu Lin
李亮三
Liang-sun Lee
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 148
中文關鍵詞: liquid-liquid equilibriumbuffering-outMOPS bufferMOPS sodium salt bufferNRTL
外文關鍵詞: liquid-liquid equilibrium, buffering-out, MOPS buffer, MOPS sodium salt buffer, NRTL
相關次數: 點閱:159下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Separation and extraction process are often applied in industries. Liquid-liquid equilibrium data are needed for rational design and optimal separation operation. The objective of this study is to determine liquid-liquid equilibrium (LLE) and solid-liquid-liquid equilibrium (SLLE) data for ternary systems of acetonitrile, acetone, 1-propanol, 2-propanol, tert-butanol, 1,3-dioxolane, 1,4-dioxane, or tetrahydrofuran + water + MOPS (3-(N-morpholino)propane sulfonic acid) or MOPS sodium salt (3-(N-morpholino)propanesulfonic acid sodium salt) as biological buffer at 298.2 K under atmospheric pressure. Buffer precipitation method (buffering-out) may be used to recover organic solvents from their aqueous solutions. Two liquid phases were formed after adding a certain amount of MOPS or MOPS sodium salt in the aqueous solutions. The solubility of MOPS is higher than that of MOPS sodium salt in the aqueous solutions. However, MOPS sodium salt may be more useful for industries than MOPS, since with the lower amount of solid (buffer) added into the solutions MOPS sodium salt can give higher content of organic solvent in organic-rich phase at SLLE condition. The effective excluded volume (EEV) values of buffers were obtained from the LLE phase boundary data and tie-line data. The reliability of the experimental tie-line data was satisfactorily ascertained by the Othmer-Tobias correlation. The experimental LLE tie-line data were also accurately correlated with the NRTL model.


    Separation and extraction process are often applied in industries. Liquid-liquid equilibrium data are needed for rational design and optimal separation operation. The objective of this study is to determine liquid-liquid equilibrium (LLE) and solid-liquid-liquid equilibrium (SLLE) data for ternary systems of acetonitrile, acetone, 1-propanol, 2-propanol, tert-butanol, 1,3-dioxolane, 1,4-dioxane, or tetrahydrofuran + water + MOPS (3-(N-morpholino)propane sulfonic acid) or MOPS sodium salt (3-(N-morpholino)propanesulfonic acid sodium salt) as biological buffer at 298.2 K under atmospheric pressure. Buffer precipitation method (buffering-out) may be used to recover organic solvents from their aqueous solutions. Two liquid phases were formed after adding a certain amount of MOPS or MOPS sodium salt in the aqueous solutions. The solubility of MOPS is higher than that of MOPS sodium salt in the aqueous solutions. However, MOPS sodium salt may be more useful for industries than MOPS, since with the lower amount of solid (buffer) added into the solutions MOPS sodium salt can give higher content of organic solvent in organic-rich phase at SLLE condition. The effective excluded volume (EEV) values of buffers were obtained from the LLE phase boundary data and tie-line data. The reliability of the experimental tie-line data was satisfactorily ascertained by the Othmer-Tobias correlation. The experimental LLE tie-line data were also accurately correlated with the NRTL model.

    Abstract i Acknowledgement ii Table of Contents iv List of Figures vi List of Tables x Chapter 1 Introduction 1 1.1 Research background 1 1.2 Previous studies 9 1.3 Problem statement 12 1.4 Research objective 13 1.5 Research organization 13 Chapter 2 Thermodynamic Framework 15 2.1 Liquid-Liquid Equilibrium (LLE) 15 2.2 NRTL (nonrandom two-liquid) model 20 Chapter 3 Experimental Section 22 3.1 Materials 22 3.2 Procedures 25 3.2.1 Solubility measurements 25 3.2.2 Phase boundary measurements 27 3.2.3 Tie-lines measurements 28 Chapter 4 Results and Discussion 41 4.1 Ternary liquid-liquid and solid-liquid-liquid equilibrium measurement results 41 4.2 Othmer-Tobias correlation 50 4.3 Correlation with the NRTL (nonrandom two-liquid ) model 51 4.4 Conceptual of separation process 54 Chapter 5 Conclusion 120 References 122 Nomenclatures 129

    Chen, R.; Wu, J.; Li, H.; Cheng, G.; Lu, Z.; Che, C.-M. Fabrication of gold nanoparticles with different morphologies in HEPES buffer. Rare Met., 2010, 29, 180-186.

    Dinsmore, A. D.; Hsu, M. F.; Nikolaides, M. G.; Marquez, M.; Bausch, A. R.; Weitz, D. A. Colloidosomes : Selectively permeable capsules composed of colloidal particles. Science, 2002, 298, 1006-1009.

    Feng, Z.; Li, J. Q.; Sun, X.; Sun, L.; Chen, J. Liquid-liquid equilibria of aqueous systems containing alcohol and ammonium sulfate. Fluid Phase Equilib., 2012, 317, 1-8.

    Ghanadzadeh, H.; Ghanadzadeh, A.; Alitavoli, M. LLE of ternary mixtures of water/acetone/2-ethyl-1-hexanol at different temperatures. Fluid Phase Equilib., 2004, 219, 165-169.

    Good, N. E.; Winget, G. D.; Winter, W.; Connolly, T. N.; Izawa, S.; Singh, R. M. M. Hydrogen ions buffers for biological research. Biochem., 1966, 5, 467-477.

    Guan, Y.; Lilley, T. H.; Treffry, T. E. A new excluded volume theory and its application to the coexistence curves of aqueous polymer two-phase systems. Macromolecules, 1993, 26, 3971-3979.

    Habib, A.; Tabata, M.; Wu, Y. G. Formation of gold nanoparticles by Good’s buffers. Bull. Chem. Soc. Jpn., 2005, 78, 262-269.

    Helfrich, M. R.; El-Kouedi, M.; Etherton, M. R.; Keating, C. D. Partitioning and assembly of metal particles and their bioconjugates in aqueous two-phase systems. Langmuir, 2005, 21, 8478-8486.

    Hung, S.-B.; Lin, H.-M.; Yu, C.-C.; Huang, H.-P.; Lee, M.-J. Liquid-liquid equilibria of aqueous mixtures containing selected dibasic esters and/or methanol. Fluid Phase Equilib., 2006, 248, 174-180.

    Jurkiewicz, K. Phase equilibrium in the system of water, alcohol or ketone, and sodium chloride. Fluid Phase Equilib., 2007, 251, 24-28.

    Kirkwood, J. G. Theory of solutions of molecules containing widely separated charges with special application to zwitterions. J. Chem. Phys., 1934, 2, 351-361.

    Le, Q.; Shong, L.; Shi, Y. Extraction of erythromycin from fermentation broth using salt-induced phase separation processes. Sep. Purif. Technol., 2001, 24, 85-91.

    Lee, M.-J.; Lo, Y.-C.; Lin, H.-M. Liquid-liquid equilibria for mixtures containing water, methanol, fatty acid methyl esters, and glycerol. Fluid Phase Equilib., 2010, 299, 180-190.

    Li, H.; Lu, Z.; Li, Q.; So, M.-H.; Che, C.-M.; Chen, R. Hydrothermal synthesis and properties of controlled α-Fe2O3 nanostructures in HEPES solution. Chem. Asian J., 2011, 6, 2320-2331.

    Li, H.; Lu, Z.; Wu, J.; Yu, H.; Yu, X.; Chen. R. Hydrothermal synthesis of transition metal oxide nanomaterials in HEPES buffer solution. Mater Lett., 2010, 64, 1939-1942.

    Lin, H.-M.; Yeh, C.-E.; Hong, G.-B.; Lee, M.-J. Enhancement of liquid phase splitting of water + ethanol + ethyl acetate mixtures in the presence of a hydrophilic agent or an electrolyte substance. Fluid Phase Equilib., 2005, 237, 21-30.

    Olaya, M. M.; Botella, A.; Marcilla, A. Liquid-liquid-solid equilibria for the quaternary system water + ethanol + 1-pentanol + sodium chloride at 25oC. Fluid Phase Equilib., 1999, 157, 197-211.

    Othmer, D. F.; Tobias P. E. Liquid-liquid extraction data- tie line correlation. Ind. Eng. Chem., 1942, 34, 693-696.

    Pedraza, R.; Ruiz, F.; Saquete, M. D.; Gomis, V. Liquid-liquid and liquid-liquid-solid equilibrium for the water + sodium chloride + potassium chloride + 1-propanol quaternary system at 25oC. Fluid Phase Equilib., 2004, 221, 97-101.

    Pirahmadi, F.; Dehghani, M. R.; Behzadi, B. Experimental and theoretical study on liquid-liquid equilibrium of 1-butanol + water + NaNO3 at 25 and 35oC. Fluid Phase Equilib., 2010, 299, 122-126.
    Poling, B. E.; Prausnitz, J. M.; O’Connell, J. P. The properties of gases and liquids, 5th ed., 2001, McGraw-Hill, New York.

    Renon, H.; Prausnitz, J. M. Local compositions in thermodynamic excess functions for liquid mixtures. AIChE J., 1968, 14, 135-144.

    Serizawa, T.; Hirai, Y.; Aizawa, M. Novel synthetic route to peptide-capped gold nanoparticles. Langmuir. 2009, 25, 12229-12234.

    Silver, B. R.; Fülöp, V.; Unwin, P. R. Protein crystallization at oil/water interfaces. New J. Chem., 2011, 35, 602-606.

    Smith, J. M.; Van Ness, H. C.; Abbott, M. M. Introduction to chemical engineering thermodynamics, 6th ed., 2001, McGraw-Hill, New York.

    So, M.-H.; Ho, C.-M.; Chen, R.; Che, C.-M. Hydrothermal synthesis of platinum-group-metal nanoparticles by using HEPES as a reductant and stabilizer. Chem. Asian J., 2010, 5, 1322-1331.

    Solimo, H. N.; Bonatti, C. M.; Zurita, J. L.; Gramajo de Doz, M. B. Liquid-liquid equilibria for the system water + propionic acid + 1-butanol at 303.2 K. Effect of addition of sodium chloride. Fluid Phase Equilib., 1997, 137, 163-172.

    Taboada, M. E.; Rocha, O. A.; Graber, T. A. Liquid-liquid and solid-liquid equilibria of the poly(ethylene glycol) + sodium sulfate + water system at 298.15 K. J. Chem. Eng. Data, 2001, 46, 308-311.
    Taboada, M. E. Liquid-liquid and solid-liquid equilibrium of the 1-propanol + lithium sulfate + water system at 25, 35 and 45oC. Fluid Phase Equilib., 2003, 204, 155-165.

    Taha, M.; Lee, M.-J. Buffers and ionic salts: densities and solubilities of aqueous and electrolyte solutions of tris(hydroxymethyl)aminomethane and N-tris[hydroxymethyl]-4-amino-butanesulfonic acid. J. Chem. Eng. Data, 2009 a, 54, 2501-2512.

    Taha, M.; Lee, M.-J. Buffer interactions: densities and solubilities of some selected biological buffers in water and in aqueous 1,4-dioxane solutions. Biochem. Eng. Journal, 2009 b, 46, 334-344.

    Taha, M.; Lee, M.-J. Buffer interactions: solubilities and transfer free energies of TRIS, TAPS, TAPSO, and TABS from water to aqueous ethanol solutions. Fluid Phase Equilib., 2010, 289, 122-128.

    Taha, M.; Lee, M.-J. Solubility and phase separation of 4-morpholinepropane sulfonic acid (MOPS), and 3-morpholino-2-hydroxypropanesulfonic acid (MOPSO) in aqueous 1,4- dioxane and ethanol solutions. J. Chem. Thermodyn., 2011 a, 43, 1723–1730.

    Taha, M.; Lee, M.-J. Solubility and phase separation of 2-(N-morpholino)ethanesulfonic acid (MES) and 4-(N-morpholino)butanesulfonic acid (MOBS) in aqueous 1,4-dioxane and ethanol solutions. J. Chem. Eng. Data, 2011 b, 56, 4436-4443.
    Taha, M.; Teng, H.-L.; Lee, M.-J. The buffering-out effect and phase separation in aqueous solutions of EPPS buffer with 1-propanol, 2-propanol, or 2-methyl-2-propanol at T = 298.15 K. J. Chem. Thermodyn., 2012 a, 47, 154-161.

    Taha, M.; Teng, H.-L.; Lee, M.-J. Phase diagrams of acetonitrile or (acetone + water + EPPS) buffer phase separation systems at 298.15 K and quantum chemical modeling. J. Chem. Thermodyn., 2012 b (dx.doi.org/10.1016/j.jct.2012.03.026).

    Tan, S.; Erol, M.; Attygalle, A.; Du, H.; Sukhishvili, S. Synthesis of positively charged silver nanoparticles via photo reduction of AgNO3 in branched polyethyleneimine/HEPES solutions. Langmuir, 2007, 23, 9836-9843.

    Teng, H.-L. Liquid-liquid equilibrium of aqueous solutions in the presence of biological buffer EPPS, MS Thesis, 2011, Department of Chemical Engineering, National Taiwan University of Science and Technology.

    Vakili-Nezhaad, G. R.; Mohsen-Nia, M.; Taghikhani, V.; Behpoor, M.; Aghahosseini, M. Salting-out effect of NaCl and KCl on the ternary LLE data for the systems of (water + propionic acid + isopropyl methyl ketone) and of (water + propionic acid + isobutyl methyl ketone). J. Chem. Thermodyn., 2004, 36, 341-348.

    Wang, Y.; Hu, S.; Han, J.; Yan, Y. Measurement and correlation of phase diagram data for several hydrophilic alcohol + citrate aqueous two-phase systems at 298.15 K. J. Chem. Eng. Data, 2010 a, 55, 4574-4579.

    Wang, Y.; Mao, Y.; Han, J.; Liu, Y.; Yan, Y. Liquid-liquid equilibrium of potassium phosphate/potassium citrate/sodium citrate + ethanol aqueous two-phase systems at (298.15 and 313.15) K and correlation. J. Chem. Eng. Data, 2010 b, 55, 5621-5626.

    Wang, Y.; Yan, Y.; Hu, S.; Han, J.; Xu, X. Phase diagrams of ammonium sulfate + ethanol/1-propanol/2-propanol + water aqueous two-phase systems at 298.15 K and correlation. J. Chem. Eng. Data, 2010 c, 55, 876-881.

    Xie, J.; Lee, J. Y.; Daniel, W. Seedless, surfactantless, high-yield synthesis of branched gold nanocrystals in HEPES buffer solution. Chem. Mater., 2007, 19, 2823-2830.

    Zheng, L.; Li, J. Self-assembly of ordered 3D Pd nanospheres at a liquid/liquid interface. J. Phys. Chem. B., 2005, 109, 1108-1112.

    Tables of Azeotropes and Nonazeotropes, in Azeotropic Data-III. American Chemical Society, 1973, 1-613.

    QR CODE