簡易檢索 / 詳目顯示

研究生: 黃卓浩
Cho-Hao Huang
論文名稱: 芳香烴分離程序中之混合物的液液相平衡研究
Liquid-Liquid Equilibrium for Mixtures Encountered in Aromatics Separation Processes
指導教授: 李明哲
Ming-Jer Lee
林河木
Ho-Mu Lin
口試委員: 談駿嵩
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 121
中文關鍵詞: 芳香烴分離程序液液相平衡研究
外文關鍵詞: Liquid-Liquid Equilibrium, Mixtures Encountered in Aromatics Separation Pro
相關次數: 點閱:209下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要

    本研究主要目的在於訂定可準確計算(環)烷烴 + 芳香烴 + 環丁碸系列混合物之液液相平衡性質的熱力學模式參數。實驗中分別量測nonane + benzene + sulfolane、nonane + p-xylene + sulfolane、hexane + p-xylene + sulfolane、hexane + m-xylene + sulfolane、cyclohexane + p-xylene + sulfolane 、cyclohexane + m-xylene + sulfolane六組三成份混合物系統在303.2 K~323.2 K溫度範圍內之液液相平衡數據,實驗結果顯示,兩相區會隨著溫度增加而變小。本研究分別使用NRTL與UNIQUAC兩種模式進行相平衡數據關聯,整體而言,以此兩種模式進行LLE數據關聯皆可得到良好的結果。本研究亦使用幾種UNIFAC模式預測液液相平衡性質,但僅有UNIFAC-LLE模式有較佳的預測結果。


    Abstract

    The objective of this work is to determine the thermodynamic model parameters for accurately calculating the phase properties of mixtures containing paraffines + aromatics + sulfolane at liquid-liquid equilibrium (LLE). The LLE data of six ternary systems, including nonane + benzene + sulfolane, nonane + p-xylene + sulfolane, hexane + p-xylene + sulfolane, hexane + m-xylene + sulfolane, cyclohexane + p-xylene + sulfolane, and cyclohexane + m-xylene + sulfolane, were measured at temperatures ranging from 303.2 K to 323.2 K. The experimental results showed that two-phase region became smaller as increase of temperature. All the LLE data were correlated with the NRTL and the UNIQUAC models, respectively. The correlated results are satisfactory from these two models. Various versions of the UNIFAC model were also used to predict the LLE properties. Only UNIFAC-LLE model yielded reasonable resultes.

    目 錄 中文摘要 I 英文摘要 II 致謝 III 目錄 IV 圖表索引 VI 第一章 緒論 1 1-1 前言 1 1-2 研究動機與目的 4 1-3 液液相平衡量測 5 1-4 本文各章重點 6 第二章 液液相平衡量測 7 2-1 液液相平衡量測裝置 7 2-2 實驗藥品 9 2-3 液液相平衡量測方法 11 2-4 GC分析方法 15 2-5 實驗結果 17 2-5-1 三成份液液相平衡量測結果 17 2-5-2 Othmer-Tobias關聯式 37 2-5-3 分離因子與組成分佈 45 第三章 液液相平衡計算 51 3-1 液液相平衡計算 51 3-2 三成份液液相平衡系統之計算結果 54 3-3 UNIFAC之預測 55 3-3-1 UNIFAC模式 56 3-3-2 UNIFAC應用於相平衡計算之結果 57 第四章 結論與建議 110 4-1 結論 110 4-2 建議 111 符號說明 112 參考文獻 115 附錄A 藥品結構式 120 個人簡介 121

    參考文獻
    1. Bondi, A., “Physical Properties of Molecular Crystals, Liquids and Glasses,” Wiley, New York (1968).

    2 Cassell, G. W.; Hassan, M. M.; Hines, A. L., “Correlation of the
    Phase Equilibrium Data for the Heptane + Toluene + Sutfolane and Heptane + Xylene + Sutfolane Systems,” J. Chem. Eng. Data, 34, 434-438 (1989).

    3. Fredenslund, A.; Gmehling, J.; Rasmussen, P., “Vapor-Liquid Equilibria Using UNIFAC: A Group-Contribution Method,” Elsevier, Amsterdam (1977).

    4. Gmehling, J.; Anderson, T. F.; Prausnitz, J. M., “Solid-Liquid Equilibria Using UNIFAC,” Ind. Eng. Chem. Fundam., 17, 269-273 (1978).

    5. Gmehling, J.; Li, J.; Schiller, M., “A Modified UNIFAC Model. 2. Present Parameter Matrix and Results for Different Thermodynamic Properties,” Ind. Eng. Chem. Res., 32,178-193 (1993).

    6. Gmehling, J.; Mollmann, C., “Synthesis of Distillation Processes Using Thermodynamic Models and the Dortmund Data Bank,” Ind. Eng. Chem. Res., 37, 3112-3123 (1998).

    7. Gmehling, J.; Rasmussen, P.; Fredenslund, A., “Vapor-Liquid Equilibria by UNIFAC Group Contribution. Revision and Extension. 2.” Ind. Eng. Chem. Process Des. Dev., 21, 118-127 (1982).

    8. Gottlieb, M.; Herskowitz, M., “Estimation of the χ Parameter for Poly (Dimethylsiloxane) Solutions by the UNIFAC Group Contribution Method,” Macromolecules, 14, 1468-1471 (1981).

    9 Gupte, P. A.; Danner, R. P., “Prediction of Liquid-Liquid Equilibria with UNIFAC: A Critical Evaluation,” Ind. Eng. Chem. Res., 26, 2036-2042 (1987).
    10 Hooper, H. H.; Michel, S.; Prausnitz, J. M., “Correlation of Liquid-Liquid Equilibria for Some Water-Organic Liquid Systems in the Region 20-250 “C” Ind. Eng. Chem. Res., 27, 2182-2187 (1988).

    11. Ibrahim, A.; Samir, I. A., “Liquid-Liquid Equilibria of Ternary and Six Component Systems Including Cyclohexane, Benzene, Toluene, Ethylbenzene, Cumene, and Sulfolane at 303.15 K,” J. Chem. Eng. Data, 51, 1717-1722 (2006).

    12. Jensen, T.; Fredenslund, A.; Rasmussen, P., “Pure-Component Vapor Pressures Using UNIFAC Group Contribution,” Ind. Eng. Chem. Fundam., 20, 239-246 (1981).

    13. Jian, C.; Zongcheng, L.; Liping, D., “Liquid-Liquid Equilibria of Ternary and Quaternary Systems Including Cyclohexane, 1-Heptene, Benzene, Toluene, and Sulfolane at 298.15 K,” J. Chem. Eng. Data, 45, 689-692 (2000).

    14. Ko, M.; Im, J.; Sung, J. Y.; Kim, H., “Liquid-Liquid Equilibria for the Binary Systems of Sulfolane with Alkanes,” J. Chem. Eng. Data, 52, 1464-1467 (2007).

    15. Kolar, P.; Shen, J. W.; Tsuboi, A.; Ishikawa, T., “Solvents Selection for Pharmaceuticals,” Fluid Phase Equilibria, 194-197, 771-782 (2002).

    16. Larsen, B. L.; Rasmussen, P.; Fredenslund, A., “A Modified UNIFAC Group-Contribution Model for Prediction of Phase Equilibria and Heats of Mixing,” Ind. Eng. Chem. Res., 26, 2274-2286 (1987).

    17 Lin, W. C.; Kao, N. H., “Liquid-Liquid Equilibria of Octane + (Benzene or Toluene or m-Xylene) + Sulfolane at 323.15, 348.15, and 373.15 K,” J. Chem. Eng. Data, 47, 1007-1011 (2002).

    18 Lee, S.; Kim, H., “Liquid-Liquid Equilibria for the Ternary Systems Sulfolane + Octane + Benzene, Sulfolane + Octane + Toluene and Sulfolane + Octane + p-Xylene,” J. Chem. Eng. Data, 40, 499-503 (1995).

    19 Lee, S.; Kim, H., “Liquid-Liquid Equilibria for the Ternary Systems Sulfolane + Octane + Benzene, Sulfolane + Octane + Toluene, and Sulfolane + Octane + p-Xylene at Elevated Temperatures,” J. Chem. Eng. Data, 43, 358-361 (1998).

    20. Lin, W. C.; Tsai, T. H.; Lin, T. Y.; Yang, C. H., “Influence of the Temperature on the Liquid-Liquid Equilibria of Heptane +
    Toluene + Sulfolane and Heptane + m-Xylene + Sulfolane” J. Chem. Eng. Data, 53, 760-764 (2008).

    21. Magnussen, T.; Rasmussen, P.; Fredenslund, A., “UNIFAC Parameter Table for Prediction of Liquid-Liquid Equilibria,” Ind. Eng. Chem. Process Des. Dev., 20, 331-339 (1981).

    22. Mario, M. G.; Ascencion, R. M.; Arturo, T., “Liquid-Liquid Equilibria for Ternary Systems. I. C6-isomers + Sulfolane + Toluene at 298.15 K,” Fluid Phase Equilibria, 64, 291-303 (1991).

    23. Maripuri, V. O.; Ratcliff, G. A., “Vapor-Liquid Equilibrium Data Collection- Aqueous Systems,” Chemistry Data Series, DECHEMA, Frankfurt, Germany (1972).

    24. Oishi, T.; Prausnitz, J. M., “Estimation of Solvent Activities in Polymer Solutions Using a Group-Contribution Method,” Ind. Eng. Chem. Process Des. Dev., 17, 333-339 (1978).

    25. Olsen, E.; Nielsen, F., “Predicting Vapor Pressures of Organic Compounds from Their Chemical Structure for Classification According to the VOC-Directive and Risk Assessment in General,” Molecules., 6, 370-389 (2001).

    26 Othmer, D. F.; Tobias, P. E., “Tie Line Correlation,” Ind. Eng. Chem. Res., 34, 690-700 (1942).

    27 Othmer, D. F.; White, R. E.; Trueger, E., “Liquid-Liquid Extraction Data,” Ind. Eng. Chem., 33, 1240-1248 (1941).

    28. Prausnitz, J. M.; Lichtenthaler, R. N.; Azevedo, E. G., “Molecular Thermodynamics of Fluid-Phase Equilibria,” 2nd ed., Prentice-Hall Inc., Englewood Cliffs, N. J. (1986).

    29 Radecki, A.; Kaczmarek, B.; Grzybowski, J., “Liquid-Liquid Phase Equilibria for Ternary Systems Hexameth yldisiloxane-Acetic Acid (Propionic Acid)- Water” J. Chem. Eng. Data, 20, 163-165 (1975).

    30. Rappel, R.; Góis, L. M. N.; Mattedi, S., “Liquid-Liquid Equilibria Data for Systems Containing Aromatic+ Nonaromatic + Sulfolane at 308.15 and 323.15 K,” Fluid Phase Equilibria, 202, 263-276 (2002).

    31. Santiago, R. S.; Aznar, M., “Liquid-Liquid Equilibria for Quaternary Mixtures of Nonane + Undecane + (Benzene or Toluene or m-Xylene) + Sulfolane at 298.15 and 313.15 K” Fluid Phase Equilibria, 253, 137-141 (2007).

    32. Sørensen, J. M., “LLE Calculations Using Activity Coefficient Models,” Ph.D. Thesis, The Technical University of Denmark (1980).

    33. Sørensen, J. M.; Arlt, W., “Liquid-Liquid Equilibrium Data Collection,” DECHEMA, Frankfurt / Main, Germany (1980).

    34. Smith, R. L. Jr.; Acosta, G. M.; Arai, K., “Prediction and Correlation of Triglyceride-Solvent Solid-Liquid Equilibria with Activity Coefficient Models,” Fluid Phase Equilibria, 145, 53-68 (1998).

    35. Trevor, M. L.; Gan, G. R.; Sarah, E. R.; Urszula, D., “Liquid-Liquid Equilibria of the Ternary Mixtures with Sulfolane at 303.15 K,” J. Chem. Eng. Data, 41, 634-638 (1996).

    36. Vakili-Nezhaad, G. R.; Modarress, H.; Mansoori, G. A., “Continuous Thermodynamics of Petroleum Fluids Fractions,” Chem. Eng. Process., 40, 431-435 (2001).

    37. Weidlich, U.; Gmehling, J., “A Modified UNIFAC Model. 1. Prediction of VLE, hE, and γ∞,” Ind. Eng. Chem. Res., 26, 1372-1381 (1987).

    38. Yu, Y. X.; He, M. Y.; Gao, G. H.; Li, Z. C., “Boiling Points for Five Binary Systems of Sulfolane with Aromatic Hydrocarbons at 101.33 kPa,” Fluid Phase Equilibria, 190, 61-71 (2001).

    中文部分
    1. 洪桂彬, “非均相共沸蒸餾分離水溶液共沸物之相平衡研究,” 博士論文, 國立台灣科技大學化工系, 民國九十二年七月。

    2. 郭昱清, “含油酯、甲醇、甲基酯、甘油、助溶劑混合物之液液平衡研究,” 碩士論文, 國立台灣科技大學化工系, 民國九十六年七月。

    3. 羅琬真, “含水、甲醇、脂肪酸甲基酯、甘油或環丁砜三成份混合物之液液平衡研究,”碩士論文, 國立台灣科技大學化工系, 民國九十七年七月。

    無法下載圖示 全文公開日期 2014/07/30 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE