簡易檢索 / 詳目顯示

研究生: 郭祐任
You-Ren Guo
論文名稱: 乙二醇純化之液液相平衡行為與分離程序之研究
Liquid-Liquid Equilibrium and Separation Process for Ethylene Glycol Purification
指導教授: 李明哲
Ming-Jer Lee
口試委員: 李豪業
Hao-Yeh Lee
吳弦聰
Hsien-Tsing Wu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 102
中文關鍵詞: 液液相平衡程序設計
外文關鍵詞: liquid-liquid equilibrium, process design
相關次數: 點閱:142下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究的目的在於純化乙二醇的分離程序設計,藉由使用適當之溶劑移除乙二醇中的雜質(1,2-丁二醇)。本文首先進行液-液相平衡與汽-液相平衡的量測,再由實驗數據訂定熱力學模式參數後,應用於此一分離程序的穩態模擬,最後以年度總操作成本為目標函數進行程序的最適化。


    The objective of this work is to design a separation process for purification of ethylene glycol. By using proper solvent to remove the impurity, 1,2-butanediol, from ethylene glycol. In the first step, the liquid-liquid equilibrium (LLE) and vapor-liquid equilibrium (VLE) data were measured. Using the thermodynamic model with the parameters determined from experimental data, we conducted steady-state simulation for the potential process. Finally, total annual cost (TAC) was taken as the objective function for the process optimization.

    中文摘要 I 英文摘要 II 致謝 III 目錄 IV 圖表索引 V 第一章 緒論 1-1 前言 1 1-2 液液平衡 2 1-3 液液平衡量測 4 1-4 化工程序設計 5 1-5 研究目的 6 1-6 萃取溶劑篩選 7 1-7 本文各章重點 8 第二章 液液相平衡量測 2-1 液液平衡量測裝置 12 2-2 實驗藥品 13 2-3 相平衡量測方法 14 2-4 分析方法 15 2-5 實驗結果 16 2-5-1 三成分液液相平衡量測結果 16 2-5-2 Othmer-Tobiase關聯式 17 2-5-3 分離因子與組成分布 18 第三章 液液相平衡計算 3-1 液液平衡計算 43 3-2 三成分液液平衡系統之計算結果 45 3-3 UNIFAC之預測 47 3-3-1 UNIFAC模式 48 3-3-2 UNIFAC應用於相平衡計算之結果 49 第四章 乙二醇純化系統設計 4-1 萃取流程設計 68 4-1-1 熱力學模型建立 68 4-1-2 萃取系統架構 69 4-1-3 流程單元設計 70 4-2 最適化設計 71 4-2-1 最適化設計步驟 72 4-2-2 最適化設計結果 73 第五章 結論與建議 5-1 結論 91 5-2 建議 92 符號說明 參考文獻

    [中文]
    徐永錢,「裝置設計與實習」,高立出版社(2004)
    [英文]
    Aspen Technology. Inc., “ASPEN PLUS Electrolytes Manual,” Cambridge, MA (1988).

    Behrens D.; Eckermann, R., “Liquid-Liquid Equilibrium Data Collection: Binary Systems,” Chemistry Data Series, 5, DECHEMA, Frankfurt Germany (1979).

    Bondi, A., “Physical Properties of Molecular Crystals Liquids Glasses, ” Wiley, New York, (1968).

    De Santis, R.; Marrelli, L.; Muscetta, P. N., “Liquid-Liquid Equilibria in Water-Aliphatic Alcohol Systems in the Presence of Sodium Chloride,” Chem. Eng. J., 11, 207-214 (1976).

    Douglas, J. M., “Conceptual Design of Chemical Process,” McGraw-Hill, New York, USA, 1998.

    Fredenslund, A.; Gmehling, J.; Rasmussen, P., “Vapor-Liquid Equilibria Using UNIFAC: A Group-Contribution Method,” Elsevier; Amsterdam, 1977.

    Gmehling, J.; Anderson, T. F.; Prausnitz, J. M., “Solid-Liquid Equilibria Using UNIFAC,” Ind. Eng. Chem. Fundam., 17, 269-273 (1978).

    Gmehling, J.; Li, J.; Schiller, M., “A Modified UNIFAC Model. 2. Present Parameter Matrix and Results for Different Thermodynamic Properties,” Ind. Eng. Chem. Res., 32,178-193 (1993).

    Gmehling, J.; Mollmann, C., “Synthesis of Distillation Processes Using Thermodynamic Models and the Dortmund Data Bank,” Ind. Eng. Chem. Res., 37, 3112-3123 (1998).

    Gmehling, J.; Rasmussen, P.; Fredenslund, A., “Vapor-Liquid Equilibria by UNIFAC Group Contribution. Revision and Extension. 2,” Ind. Eng. Chem. Process Des. Dev., 21, 118-127 (1982).

    Gottlieb, M.; Herskowitz, M., “Estimation of the χ Parameter for Poly (Dimethylsiloxane) Solutions by the UNIFAC Group Contribution Method,” Macromolecules, 14, 1468-1471 (1981).

    Gupte, P. A.; Danner, R. P., “Prediction of Liquid-Liquid Equilibria with UNIFAC: A Critical Evaluation,” Ind. Eng. Chem. Res., 26, 2036-2042 (1987).

    Han, S. J.; Lin, H. M.; Chao, K. C., “Vapor-Liquid Equilibrium of Molecular Fluid Mixtures by Equation of State,” Chem. Eng. Sci., 43, 2327-2367 (1988).

    Hooper, H. H.; Michel, S.; Prausnitz, J. M., “Correlation of Liquid-Liquid Equilibria for Some Water-Organic Liquid Systems in the Region 20-250℃,” Ind. Eng. Chem. Res., 27, 2182-2187 (1988).

    Jensen, T.; Fredenslund A.; Rasmussen, P., “Pure-Component Vapor Pressures Using UNIFAC Group Contribution,” Ind. Eng. Chem. Fundam., 20, 239-246 (1981).

    Kaim, A.; Oracz, P., “Terminal and Penultimate Models of Copolymerization in the Styrene-Acrylonitrile System in Bulk According to UNIFAC,” Polymer, 39, 3901-3904 (1998).

    Kolar, P.; Shen, J. W.; Tsuboi A.; Ishikawa, T., “Solvents Selection for Pharmaceuticals,” Fluid Phase Equilibria, 194-197, 771-782 (2002).

    Larsen, B. L.; Rasmussen, P.; Fredenslund, A., “A Modified UNIFAC Group-Contribution Model for Prediction of Phase Equilibria and Heats of Mixing,” Ind. Eng. Chem. Res., 26, 2274-2286 (1987).

    Lin, H. M.; Tseng, L. H.; Lee. L. S. “Multiphase Equilibria for Binary Ternary Mixture of Water + Ethanol with 1-Hexanol, Butyl Propionate, or Ethyl Caproate, ” J. Chem. Eng. Data, 48, 587-590(2003).

    Linek, J.; Wichterle, I., “Liquid-Vapor Equilibirum in the Ternary Isopropyl Acetate-Water-Acetic Acid and Isopropyl Acetate-Water –Acrylic Acid Systems at 200 Torr,” Collect. Czech. Chem. Commun., 39, 3395-3402 (1974).

    Magnussen, T.; Rasmussen, P.; Fredenslund, A., “UNIFAC Parameter Table for Prediction of Liquid-Liquid Equilibria,” Ind. Eng. Chem. Process Des. Dev., 20, 331-339 (1981).

    Ninni, L.; Camargo, M. S.; Meirelles, A. J. A., “Water Activity in Poly (Ethylene Glycol) Aqueous Solutions,” Thermochim. Acta, 328, 169-176 (1999).

    Oishi, T.; Prausnitz, J. M., “Estimation of Solvent Activities in Polymer Solutions Using a Group-Contribution Method,” Ind. Eng. Chem. Process Des. Dev., 17, 333-339 (1978).

    Olsen, E.; Nielsen, F., “Predicting Vapour Pressures of Organic Compounds from Their Chemical Structure for Classification According to the VOC-Directive and Risk Assessment in General,” Molecules, 6, 370-389 (2001).

    Othmer, D. F.; Tobias, P.E., “Tie Line Correlation,” Ind. Eng. Chem. Res. 34, 690-700 (1942).

    Othmer, D. F.; White, R. E.; Trueger, E., “Liquid-Liquid Extraction Data,” Ind. Eng. Chem., 33, 1240-1248 (1941).

    Prausnitz, J. M.; Lichtenthaler, R. N.; Azevedo, E. G., “Molecular Thermodynamics of Fluid-Phase Equilibria,” 2nd ed., Prentice-Hall Inc., Englewood Cliffs, N. J., (1986).

    Radecki A.; Kaczmark, B.; Grzyboski, J., “Liquid-Liquid Phase Equilibrium for Ternary Systems Hexamethyldisiloxane-Acetic Acid (Propionic Acid)-Water, ” J. Chem. Eng. Data, 20, 163-165 (1975).

    Smith, R. L. Jr; Acosta, G. M.; Arai, K., “Prediction and Correlation of Triglyceride-Solvent Solid-Liquid Equilibria with Activity Coefficient Models,” Fluid Phase Equilibria, 145, 53-68 (1998).

    Sørensen, J. M., “LLE Calculations Using Activity Coefficient Models,” Ph.D. Thesis, The Technical University of Denmark (1980).

    Sørensen, J. M.; Arlt, W., “Liquid-Liquid Equilibrium Data Cpllection,” DECHEMA, Frankfurt / Main, Germany (1980).

    Tan, T. C.; Aravinth, S., “Liquid-Liquid Equilibria of Water/Acetic Acid/1-Butanol System – Effects of Sodium (Potassium) Chloride and Collection, ” Fluid phase Equilibria 163, 243-257 (1999).

    Vakili-Nezhaad, G. R.; Modarress, H.; Mansoori, G. A., “Continuous Thermodynamics of Petroleum Fluids Fractions,” Chem. Eng. Process., 40, 431-435 (2001).

    Weidlich, U.;Gmehling, J. “A Modified UNIFAC Model. 1. Prediction of VLE, hE, and γ∞,” Ind. Eng. Chem. Res., 26, 1372-1381 (1987).

    Xia, S. “Isobaric Vapor−Liquid Equilibrium for the Binary System (Ethane-1,2-diol + Butan-1,2-diol) at (20, 30, and 40) kPa,” J. Chem. Eng. Data, 59, 825-831 (2014).

    無法下載圖示 全文公開日期 2020/07/29 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE