簡易檢索 / 詳目顯示

研究生: 曾正宗
CHENG-TSUNG TSENG
論文名稱: 岩石隧道輪進開挖引致之三維應力再分配特性
Characterization of Three-Dimensional Stress Redistribution from Sequential Tunneling in Rock
指導教授: 陳志南
Chee-Nan Chen
口試委員: 陳堯中
Yao-Chung Chen
林宏達
Horn-Da Lin
林德貴
Der-Guey Lin
林志森
Chi-Shen Lin
李宏徹
Horng-Cheh Lee
學位類別: 博士
Doctor
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 218
中文關鍵詞: 隧道關鍵輪進三維應力再分配主應力空間二維隧道掘進圖安全係數
外文關鍵詞: Tunnel, Key cycles, 3D stress redistribution, Principal stress space, 2D tunneling chart, Safety factor
相關次數: 點閱:179下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隧道開挖會引致周遭岩盤之應力重分配及變形調整,在整個隧道開挖過程中,工作面推進對測站之影響範圍及最危險的區間可由數值分析探求,此最危險的區間本研究稱之為「關鍵輪進」,其應力、變形之變化與預估公式之建立是本論文之研究課題。本研究之數值模式為模擬跨度為8公尺之馬蹄型隧道,穿過RMR=70、30以及12之良劣不同之三種岩盤,包含三種不同側向壓力係數(K=0.5、1、2)之初始應力情況,及三種不同隧道覆蓋深度(H=10、40、300公尺)。關鍵輪進利用數值分析由隧道頂拱上方之垂直應力掘進變化曲線及頂拱沉陷評估,可以合理的定為工作面到達位置之前後三個輪進屬之,並可以評估三維應力再分配之安全性質。並就不同組合情況下探討三維應力之再分配路徑及安全評估。三維應力再分配可以利用主應力空間及摩爾-庫倫破壞準則來表示,但是不同輪進開挖對應之軸差平面大小可能會不同而無法疊加套繪,導致應力變化難以連續表達,因此本研究根據主應力空間探求出三維應力可以集中在單一之正規化二維圖形上呈現,清楚的表達出輪進開挖之三維應力調整及評估安全評估。

    本研究針對隧道頂拱處之垂直應力及垂直變位之掘進變化進行探討並提出預估公式。此外根據頂拱上方岩體隨著隧道工作面掘進引致之垂直應力調整調整變化曲線,於三種不同側向壓力係數情況下,找出工作面在不同輪進掘進之垂直應力變化最大處移動趨勢,可以作為Terzaghi地拱岩壓之參考。此外本研究亦模擬地下貯存場對應之複式交叉隧道,就交叉隧道之開挖掘進對主隧道及其間之三角楔形岩柱,進行相關之力學行為之探討並提出結論。


    Redistribution of stress and displacement will occur during excavation of underground tunnels. The most critical excavation cycles during tunneling and monitoring were found by numerical analysis, which are called the “key cycles” in this research. A tunneling of horseshoe shaped 8m diameter tunnel was simulated in rock with three different rock mass rating (RMR) of 70,30and 12, three different lateral pressure cofficient (K) of 0.5, 1.0 and 2.0, and three different overburden depth (H) of 10, 40 and 300m. The key cycles were determined based on the calculated vertical stress and settlement redistribution during tunneling. Key cycles are reasonably proposed at the tunnel working face within 3 rounds fore and aft of the monitoring station according to the numerical results. The redistribution of three-dimension (3D) principal stress variation of stress path and safety assessment for tunneling are also investigated in this study. Numerical simulations of tunneling were performed, leading to integration of principal stress space with Mohr-Coulomb failure criterion. Different rounds have different three-dimensional redistributed stress within their individual deviatoric planes. These planes can’t be superimposed, making their comparison difficult. However, deviatoric planes representing rounds can be combined one normalized plane whereupon the stress path is plotted, allowing comparison with the cycles. A way creating the normalized deviatoric plane, with stress path therein representing the cycles, is proposed and demonstrated. This way clearly delivers the 3D redistributed stress path into a 2D tunneling chart and enables to assess the tunneling safety.
    Predictable formulae based on the calculated vertical stress redistribution and settlement of roof during tunneling are proposed. The height, between the inflection point of vertical stress redistribution curve and tunnel roof during tunneling, may be a good index related to early development of ground arch and Terzaghi’s rock loads. Tunneling behavior of pillar near the intersection are also analyzed and some conclusions are proposed.

    摘要 I 目錄 IV 表目錄 X 圖目錄 XII 符號說明 XX 第一章 緒論 1 1.1 前言 1 1.2 研究目的 1 1.3 論文內容及範圍 2 第二章 文獻回顧 5 2.1 隧道的應力分佈:單一隧道開挖完成時之周圍岩體的應力分佈彈性解 5 2.2 隧道開挖完成時的彈塑性行為 9 2.3 開挖過程中之應力調整與破壞準則 12 2.3.1 開挖過程中之應力調整與二維表示法(應力路徑) 12 2.3.2 開挖過程中之應力重分配與三維表示法(主應力空間) 14 2.3.3 二維與三維之Mohr-Coulomb破壞準則 18 2.3.4 其他破壞準則 22 2.4 隧道開挖的應力再分配-隧道交叉情況 25 2.5 隧道開挖的應力再分配-拱效應與岩體支撐 27 2.5.1 Terzaghi隧道開挖後之地拱與岩壓理論 27 2.5.2 Bierbäumer隧道開挖後之地拱與岩壓理論 33 2.5.3 Protodyakonov之隧道開挖後之地拱與岩壓理論 36 2.5.4岩體支撐 39 2.6 隧道開挖的應力再分配分析-岩體參數之評估 42 2.6.1 岩體變形模數Em 42 2.6.2 剪力模數G與體積模數B 46 2.6.3岩體現地應力 46 2.6.4 岩體強度參數 49 2.6.5 隧道支撐參數評估 54 2.7 隧道開挖的應力再分配-數值分析模式 55 第三章 數值分析方法與三維數值模式之建立 57 3.1 數值分析方法 57 3.2 FLAC3D的基本理論架構 62 3.2.1 FLAC3D的基本用詞 62 3.2.2 FLAC3D的運算程序 66 3.3 FLAC3D的組合律模式 70 3.3.1 FLAC3D之組合律模式 70 3.3.2 FLAC3D之結構元件 75 3.3.3 邊界與初始條件 76 3.4 網格之建立及參數設定 79 3.4.1 數值分析三維網格之建立 79 3.4.2 數值模式參數的選定 80 第四章 隧道掘進開挖關鍵輪進之力學行為探討 87 4.1 數值分析網格建置 89 4.2 數值模式之應力掘進分析與關鍵輪進決定 91 4.2.1 單孔(主)隧道隨工作面掘進引發之應力掘進變化曲線(H=40公尺及RMR=70) 91 4.2.2 不同K值之隧道頂拱應力重分配之二維應力再分配路徑變化(p-q)及安全評估(深度H=40公尺及RMR=70) 93 4.3 頂拱上方岩體在關鍵輪進掘進於不同K值(0.5、1.0、2.0)之垂直應力重分配特性 99 4.3.1 淺隧道於良好岩體於關鍵輪進掘進之垂直應力重分配曲線(H=40公尺及RMR=70) 99 4.3.2 不同K值下關鍵輪進開挖伴隨頂拱上方σv再調整之分布模式 101 4.3.3 隧道不同K值(0.5、1.0、2.0)及不同深度(H=40及300公尺)之關鍵輪進開挖伴隨頂拱上方σv再調整量化及其趨勢 106 4.4 隧道穿越好壞不同地層對其頂拱上方關鍵輪進開挖之σv重分配影響 111 4.5 極淺隧道(H=10公尺)關鍵輪進開挖階段地拱能否發展之推論 113 4.6 隧道掘進過程中之頂拱垂直變位δz探討 115 4.7 良好地層(RMR=70)全程掘進之工作面到達不同掘進位置之頂拱垂直應力σv重分配值之預估(不同K值與覆蓋深度10公尺到300公尺) 117 4.7.1 全程掘進工作面到達不同掘進位置之頂拱垂直應力重分配σv曲線(於不同K值及不同覆蓋深度H情況) 117 4.7.2 頂拱處之垂直應力變化之正規化 117 4.8 良好地層(RMR=70)全程掘進之工作面到達不同掘進位置之頂拱沉陷量δz之預估(不同K值與覆蓋深度40公尺到300公尺) 123 4.8.1全程掘進工作面到達不同掘進位置之頂拱垂直沈陷變化δz曲線(於不同K值及不同覆蓋深度H情況) 123 4.8.2 頂拱處垂直變位之正規化 124 4.9良好地層(RMR=70)關鍵輪進之隧道頂拱沉陷δz與垂直應力σv之相互影響關係(不同K值與覆蓋深度10至300公尺) 129 第五章 三維應力再分配路徑以2D之圖形展示 133 5.1 三維應力調整與主應力空間展示 133 5.1.1 主應力空間與三維應力分布 133 5.1.2 以三維主應力空間進行隧道開挖之安全評估 133 5.2 二維正規化軸差平面及隧道開挖之三維應力再分配路徑 138 5.3 正規化軸差平面之特性與三維應力再分配路徑之判讀 138 5.4 二維正規化軸差平面之應用舉例 141 第六章 弧形交叉隧道掘進之三維主應力調整 145 6.1 隧道弧形交叉之開挖數值模擬 145 6.2 弧形交叉測點的選取 146 6.3 弧形交叉隧道部分之應力與變形 155 6.3.1 弧形交叉重疊隧道頂拱之應力 155 6.3.2 弧形交叉重疊隧道頂拱之變形 156 6.4 分岔隧道之三角楔形岩柱(Ms33、Ms39及Ds39)的變位及應力 160 6.4.1 最大、最小應力掘進曲線及應力再分配路徑安全評估 160 6.4.2 岩柱側壁掘進變位曲線 161 6.5 弧形交叉形成岩柱之三維應力變化探討(初始K=1.0及RMR=30) 167 6.5.1 測點Ms33 167 6.5.2 測點Ms39 168 6.5.3 測點Ds39 170 6.5.4 分岔隧道開挖對分岔處岩柱之安全評估(RMR=30及K=1.0) 170 6.5.5 正規化2D圖形應用 170 6.6 分岔隧道形成岩柱之掘進變位、塑性區及主應力發展 178 6.6.1 隧道穿越良好岩盤(RMR=70)於Y=27、33及39公尺三處測站之開挖面週遭岩盤應力與變位調整 178 6.6.2 隧道穿越不良岩盤(RMR=30)及良好岩盤(RMR=70)於Y=27、33及39公尺三處測站之開挖面週遭岩盤塑性區發展與分布 185 6.7 隧道掘進開挖複式交叉之變位及主應力探討 189 第七章 結論與建議 197 7.1 結論 197 7.2 建議 203 附錄 209 附錄A: Derivation of normalized deviatoric plane 211 附錄B:隧道穿越破碎地層(RMR=12)可能引致過量垂直變位δz之探討 215

    1. Kirsch, G., “Die Theorie der Elastizitat und Die Budurfnisse der Festigkeitslehre”, Veit Verein Deutscher Ingenieure, 42 (28), pp797–807 (1898)
    2. Goodman, R.E., Introduction to Rock Mechanics , John Wiley and Sons, New York (1989)
    3. Hoek, E., and Brown, E.T., Underground Excavations in Rock, The Institution of Mining and Metallurgy, London (1980)
    4. Károly Széchy , The Art of Tunneling, Akadémiai kiadó , Budapest (1973) (間接引用)
    5. Brown, E.T., Bray, J.W., Ladanyi, B. , and Hoek, E., “Ground Response Curves for Rock Tunnels”, Journal of the Geotechnical Engineering, ASCE, vol. 109, No.1, pp.15-39 (1983)
    6. Bray, J.W., “A study of jointed and fractured rock, II. Theory of limiting equilibrium. Felsmechanik und Ingenieurgeologie”, Rock Mechanics and Engineering Geology 5, pp.197-216 (1967)
    7. Ladanyi, B., 1974. “Use of the long term strength concept in the determination of ground pressure on tunnel linings”, Proc. 3RD Cong. ISRM (Denver) Vol. 2B, pp. 1150-1156
    8. 陳正勳、黃燦輝,「岩石隧道周圍破裂區及非軸對稱隧道問題之地盤反應曲線」,1992岩盤工程研討會論文專集,台南,第359-371頁 (1992)。
    9. 洪秋金,「隧道地盤反應曲線及破裂區發展之三向度數值分析」,碩士論文,國立台灣工業技術學院營建工程技術研究所,台北 (1995)。
    10. 林瑤明,「現地應力及應變軟化模式對隧道變形之影響」,碩士論文,國立台灣工業技術學院營建工程技術研究所,台北 (1996)。
    11. 林志明,「岩石隧道掘進之變形行為研究」,博士論文,國立台灣科技大學營建工程技術研究所,台北 (2000)。
    12. Lambe, T. W., “Methods of Estimating Settlement”, Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 90, No. SM5, pp.47-74 (1964)
    13. Lambe, T. W., and Marr, W.A., “Stress Path Method: Second Edition,” Journal of the Geotechnical Engineering Division, ASCE, Vol. 105, No. GT6, pp.727-738 (1979)
    14. Chen, W.F. and Han, D.J., Plasiticity for structural Engineers, Springer-Verlag New York Inc. (1988)
    15. Desai, C. S., and Siriwardane, H. J., Constitutive Laws for Engineering Materials with Emphasis on Geologic Materials, Prentice-Hall, Englenood Cliffs, (1984)
    16. Geisler, H., Wanger, H., Zieger, O., Mertz, W., Swoboda, G., “Practical and Theoretical Aspects of the Three-Dimensional Analysis of Finally Lined Intersections”, Fifth International Conference on Numerical Methods in Geomechanics, Naoya, pp.1175-1183, 1-5, April (1985)
    17. 許正立,「聯絡道斷面尺寸對隧道交叉段力學行為之影響」,碩士論文,國立台灣工業技術學院,台北 (1997)。
    18. Terzaghi, K., Rock Defects and Load on Tunnel Supports, Rock Tunneling with Steel Supports, eds. R. V. Proctor and T. White, Commercial Shearing and stamping Co., Youngstown, Ohio, pp.15-99 (1946)
    19. Bieniawski, Z.T, “ Empirical methods of design,” Rock Mechanics Design in Mining and Tunneling, A.A.Balkema Publishers, Netherlands, pp.97-135 (1984) (間接引用)
    20. 謝敬義,「隧道工程與地質」,地工技術,第28期,第5-24頁,台北 (1989)。(間接引用)
    21. Chappell, B.A., “Deformational response in discontinua”, International Journal Rock Mechanics Sciences & Geomechanics, Vol.4, pp.377-390 (1979)
    22. Brady, B.H.G., and Brown, E.T., Rock mechanics for underground mining, 2nd edition, Chapman & Hall. pp289-296 (1993) (間接引用)
    23. 張森源,「隧道設計」,隧道工程實務(陳志南主編),科技圖書股份有限公司,第49-110頁,台北 (1998)。
    24. Oettl, G., Stark, R.F., and Hofstetter, G., “A comparison of elastic-plastic soil models for 2D FE analyses of tunneling”, Computers and Geotechnics 23: pp19-38 (1998)
    25. Galli, G., Grimaldi, A., and Leonardi, A., “Three-dimensional modeling of tunnel excavation and lining”, Computers and Geotechnics 31, pp171-183 (2004)
    26. Bieniawski, Z.T., “Determining Rock Mass Deformability:Experience from Case Histories,” Int. J. Rock Mech. Min. Sci., Vol. 15, pp.237-248 (1978)
    27. Serafim, J. L. and Pereira, “Considerations of the Geomechanics Classification of Bieniawski,” Proc. Int. Symp. on Engineering Geology and Underground Construction, LNEC, Lisbon, Portugal (1983)
    28. 陳錦清、張玉僯、李國榮、俞旗文,「岩體變形特性與RMR岩體評分值關係之研究」,中興工程顧問社大地力學研究中心研究報告,台北 (1997)。
    29. Barton, N, “The Influence of Joint Properties in Modelling Jointed Rock Masses,” Keynote Lecture, 8th ISRM Congress, Tokyo, Vol. III of Proceedings, (1995)
    30. 鄺寶山、王文禮,「FLAC程式於隧道工程之實例分析」,地工技術雜誌,第41期,第50-61頁 (1993)。
    31. Hoek, E. ,and Brown, E.T , “Practical Estimates of Rock Mass Strength ,” Int. J. Rock Mech. Min. Sci. & Geomech. Abster. Vol. 34, No.8, pp.1165-1186 (1997)
    32. Hoek, E., Rock Engineering, Course Note for Rock Engineering in the Department of Civil Engineering at the University of Toronto, pp.176-181 (1999)
    33. Lee, K.M., and Rowe, R.K., “Finite element modeling of the three-dimensional ground deformations due to tunneling in soft cohesive soils: part 2 – results”, Computers and Geotechnics 10: 111-138 (1990)
    34. Hamamoto, Kenichi., “Shield tunneling in Japan”, EIT-JSCE-AIT Joint Seminar on Bangkok, October 7-8, pp21-41 (1992)
    35. Dasari, G. R., Rawlings, C. G., and Bolton, M. D., “Numerical modelling of a NATM tunnel construction in London Clay” Geotechnical Aspects of Underground Construction in Soft Ground, Mair & Tayor (eds), Balkema, Rotterdam. ISBN 90 5410 856 8,pp.491-496 (1996)
    36. Barla, G., and Barla, M., “Numerical Simulation of Squeezing Behavior in Tunnel,” FLAC and Numerical Modeling in Geomechanics, Proc. of 2th Int. FLAC Symp., Lyon, France,pp.323-328 (2001)
    37. Ellis, H.L., Feldman, A.I., and Buechel, G.J., “Numerical Analysis of the Bosten Red Line Tunnel,” FLAC and Numerical Modeling in Geomechanics, Proc. of the Int. FLAC Symp. In Geomechanics, Minneapolis, Minnesota, USA, pp.323-328 (1999)
    38. Abdel-Meguid, M., Rowe, R.K. and Lo, K.Y., “Three-dimensional Analysis of Unlined Tunnels in Rock Subjected to High Horizontal Stress,” Canadian Geotechnical Journal, 40(6), pp.1208-1224 (2003)
    39. Basarir, H., Ozsan, A., and Karakus, M., “Analysis of support requirements for a shallow diversion tunnel at Guledar dam site”, Turkey. Eng. Geol. 81, 131-145 (2005)
    40. Ren, G., Smith, J.V., Tang, J.W., and Xie, Y.M., “Underground excavation shape optimization using an evolutionary procedure”, Computers and Geotechnics 32: pp.122-132. (2005)
    41. Oreste, P., “A probabilistic design approach for tunnel supports”, Computers and Geotechnics 32: pp.520-534 (2005)
    42. Chen, C.N., and Huang, W.Y., “Investigation of tunnel stress path during face advancement”, Journal of Mechanics 21 (4), pp.451-458 (2007)
    43. Hisatake, M., and Hieda, Y., “Three-dimensional back-analysis method for the mechanical parameters of the new ground ahead of a tunnel face”, Tunnelling and Underground Space Technology 23, pp. 373-380 (2008)
    44. Lee, Y.Z., and Schubert, W, “Determination of the round length for tunnel excavation in weak rock”, Tunnelling and Underground Space Technology 23, pp.221-231 (2008)
    45. Kwon, S., Lee, C.S., Cho, S.J., Jeon, S.W., and Cho, W.J., “An investigation of the excavation damaged zone at the KAERI underground research tunnel”, Tunnelling and Underground Space Technology 24, pp.1-13 (2009)
    46. Itasca Consulting Group, Inc., Fast Lagrangian Analysis of Continua in 3 Dimensions, User’s manual, Version 2.10, Minneapolis, Minnesota, U.S.A. (2002)
    47. Rocscience Inc., Roc Lab User’s Guide, Version 1.021, (2002) (http://www.rocscience.com)
    48. Chen, W.F., Constitutive Equations for Engineering Materials, Volume 2: Plasticity and Modeling, Elsevier, Netherlands (1994)
    49. U.S. Department of Energy, Yucca Mountain Science and Engineering Report Rev 1 DOE/RW-0539-1, Technical Information Supporting Site Recommendation Consideration (February 2002) (http://www.ocrwm.doe.gov/documents/ser_b/index.htm)
    50. 鄭文隆,「國內隧道工程展望」,內政部營建署營建自動化人才培訓課程系列(二),台北,第1-30頁 (1996)。

    QR CODE