簡易檢索 / 詳目顯示

研究生: 張鴻彥
Hung-Yen Chang
論文名稱: 利用微電極陣列感測探針探討痛覺刺激與穀氨酸於脊髓丘腦徑之神經傳導的關聯
Investigating the Correlation of Noxious Stimuli and Glutamate Releases through the Spinothalamic Tract Using Microelectrode Array Biosensors
指導教授: 曾婷芝
Tina T.-C. Tseng
口試委員: 陳建宏
Edward Chen
江志強
Jyh-Chiang Jiang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 113
中文關鍵詞: 生物感測器半導體微影製成穀氨酸神經傳導微電極陣列探針
外文關鍵詞: Biosensor, semiconductor manufacturing technology, microelectrode array probe, glutamate, glutamate biosensor
相關次數: 點閱:261下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用半導體加工製程技術製備微電極陣列感測探針,製程的部分共分成為三個階段,第一階段為金屬圖案之定義,使金屬導線,封裝端與電極端的圖案成形。第二階段為探針導線區域絕緣,對整片晶圓沉積介電層後,運用蝕刻技術將電極端與封裝端之金屬裸露出來,僅剩金屬導線絕緣達到部分區域絕緣之目的。第三階段為探針邊界輪廓定義,運用微影製程將探針邊界定義出來,再搭配蝕刻製程將探針從矽晶圓上取下。成功取下之再探針經過封裝、表面修飾與酵素塗佈後製備成榖氨酸感測探針,並透過一系列的效能測試,包括干擾物測試、線性範圍測試、穩定度測試以及靈敏度測試等,評估所製備的榖氨酸感測探針是否可進行植入型動物實驗。最後將榖氨酸感測探針植入白鼠腦部丘腦的區域,對白鼠後肢與尾巴進行痛覺刺激,藉由監控丘腦瞬時的榖氨酸釋放量,來達到研究神經傳遞途徑的目的。本研究不僅成功製備出微電極陣列感測探針,並在動物實驗上得到榖氨酸感測訊號與實驗結果,證明神經傳導途徑為對側傳導。由於植入型動物實驗的成功,因此可預期未來是可以應用在許多神經傳導物質研究的領域。


    In this study, we used the semiconductor manufacturing technology to prepare microelectrode array (MEA) probes which were used for the fabrication of glutamate biosensors and the application for in vivo tests. The semiconductor manufacturing process to prepare MEA probes was divided into three parts. The first part was formation of the specific pattern of platinum metal layer on the silicon wafer. This specific pattern was to define the body of MEA probes which includes electrode sites, channels and bonding pads. The second part was to insulate the channels. We used plasma enhanced chemical vapor deposition (PECVD) to deposit the dielectric layer (polypyrrole and Nafion®) on the wafer, then we used the etching process to etch electrode sites and bonding sites so there were insulation layers on the channels The third part was to define the outline of MEA probes. We used photolithography process to define the outline region, and then we uses inductively coupled plasma (ICP) to etch the outline. Deep etching through the wafer was required so that MEA probes could be taken off from the wafer. After we finish the process for the preparation of MEA probes, it was required to modify the electrode surface with permselective polymer layers and the glutamate oxidase layer. The glutamate oxidase layer can make the glutamate sensor with better specificity and permselective layers can prevent signals form interferent.
    The goal of this study is to apply this glutamate biosensor in vivo for real-time monitoring the concentration changesof glutamate, and correlate the glutamate release in thalamus of rates to the noxious stimuli through spinothalamic tract. Before in vivo test, it was required to evaluate the performance of glutamate biosensors that we fabricated by several tests to confirmation the feasibility of its application in vivo (experimental results was shown in Chapter 4). Finally, the glutamate biosensor was implanted in the thalamus of rat’s brain for monitoring the release of glutamate before and after the noxious stimuli. Calibration cures of the glutamate sensor before and after the implantation were established (experimental results was shown in Chapter 5).
    In this study, we demonstrated a sensitive, small, and fast glutamate sensor based on the MEA probe fabricated by semiconductor manufacturing. The in vivo study confirmed that the ascending pathway of spinothalamic tract was contralateral.

    研究動機 I 中文摘要 II Abstract III 致謝 V 目錄 VI 圖目錄 X 表目錄 XIV 第一章、緒論 1 1-1、生物感測器簡介 1 1-1-1、微電極陣列植入型穀氨酸生物感測器 2 1-1-2、微電極陣列製程之選擇與電極材料選擇 3 1-2、穀氨酸生物感測器簡介 4 1-2-1、穀氨酸簡介 4 1-2-2、穀氨酸生物感測器簡介與文獻回顧 5 1-3、穀氨酸感測探針應用於痛覺刺激後神經傳導途徑分析 8 1-3-1、痛覺神經傳導途徑簡介 8 1-3-2、微電極陣列榖氨酸感測探針應用於痛覺神經傳導途徑之研究 10 1-4、導體加工技術簡介 10 1-4-1、微影製程簡介 11 1-4-2、蝕刻製程簡介 14 1-4-3、薄膜沉積 17 第二章、微電極陣列探針製程 19 2-1、晶圓預先處理 19 2-1-1、晶圓濕式清洗 20 2-1-2、爐管濕式熱氧化 20 2-2、金屬圖案成形 21 2-2-1、第一道微影製程-定義金屬層圖形 22 2-2-2、金屬層沉積-白金與鉻之沉積 26 2-2-3、探針表面絕緣-介電層沉積 27 2-3、第二道微影製程-定義探針封裝端與電極端 29 2-3-1、蝕刻製程-探針封裝端與電極端蝕刻 30 2-4、第三道微影製程-定義探針邊界輪廓 32 2-4-1、RIE探針邊界輪廓介電層蝕刻 34 2-4-3、ICP探針邊界輪廓矽晶圓深度蝕刻 36 第三章、微電極陣列穀氨酸感測器製備方法 38 3-1、實驗設備 38 3-2、實驗藥品與耗材 40 3-2-1、藥品配置 41 3-3、穀氨酸感測探針之製備 43 3-3-1、探針清洗 43 3-3-2、探針封裝 43 3-3-3、電化學量測組態 45 3-3-4、探針電極端之清洗 45 3-3-5、電極表面修飾 46 3-3-6、手動塗佈酵素 47 3-4、實驗測量方法 48 3-4-1、分析量測組態 48 3-4-2、實驗量測方法 49 3-5、動物實驗 51 第四章、微電極陣列結果討論 53 4-1、第一道微影製程-金屬沉積 53 4-1-1、第一道微影製程結果分析 53 4-1-2、 金屬層沉積圖型結果與分析 55 4-1-3、晶圓表面絕緣 56 4-2、第二道微影製程-探針絕緣 57 4-2-1、第二道微影製成結果分析 57 4-2-2、介電層蝕刻結果分析 59 4-3、第三道微影製程-探針輪廓定義 60 4-3-1、第三道微影製程結果分析 60 4-3-2、RIE介電層蝕刻結果分析 62 4-3-3、 ICP矽的深蝕刻結果分析 63 4-4、探針基本測試 65 第五章、微電極陣列榖氨酸感測探針效能評估與植入型動物實驗之結果與討論 67 5-1、電位平台測試 67 5-2、干擾物測試與穀氨酸靈敏度測試 68 5-3、穀氨酸感測探針線性範圍測試 70 5-4、穩定度測試-穀氨酸、多巴胺與抗壞血酸 71 5-5、長期穩定度測試 75 5-6、微電極陣列穀氨酸感測探針植入白鼠腦部進行動物實驗之結果(本章節之動物實驗的操作由台北醫學大學神經外科張成富醫師進行) 76 5-6-1、動物實驗前後穀氨酸感測器靈敏度比較 76 5-6-2、後肢中長期(60秒)痛覺刺激觀測腦部右視丘中榖氨酸釋放量 77 5-6-3、後肢長期(300秒)痛覺刺激觀測腦部右視丘中榖氨酸釋放量 81 結論 84 參考文獻 85 附錄 88 附錄A:微電極陣列探針製備流程表 88 附錄B : 代工廠商資訊 92 附錄C:微電極陣列製程耗材廠商資訊 92 附錄D:恆電位儀使用注意事項 92 附錄E:微電極封裝流程 93 附錄F:榖胺酸氧化酵素(250 U/ml)配製方法 94 附錄G:穀氨酸氧化酵素的固定方法 94 附錄H:利用銀線製備參考電極(Ag/AgCl)的方法 95 附錄I:動物實驗時儀器接法 95

    1 S. B. Hall, E. A. Khudaish, and A. L. Hart, 'Electrochemical Oxidation of Hydrogen Peroxide at Platinum Electrodes. Part 1. An Adsorption-Controlled Mechanism', Electrochimica Acta, 43 (1998), 579-88.
    2 Iniouchine, M.Y., et al., Blockers of monoamine transporters influence high dopamine concentration uptake in rat brain slices. Doklady Biological Sciences, 2008. 419(1): p. 80-82.
    3 Hallström, Å., et al., Simultaneous determination of lactate, pyruvate, and ascorbate in microdialysis samples from rat brain, blood, fat, and muscle using high-performance liquid chromatography. Journal of Pharmacological Methods, 1989. 22(2): p. 113-124.
    4 C. Debiemme-Chouvy, 'A Very Thin Overoxidized Polypyrrole Membrane as Coating for Fast Time Response and Selective H2o2 Amperometric Sensor', Biosensors & Bioelectronics, 25 (2010), 2454-57.
    5 S. T. Pan, and M. A. Arnold, 'Selectivity Enhancement for Glutamate with a Nafion/Glutamate Oxidase Biosensor', Talanta, 43 (1996), 1157-62.
    6 R. D. O'Neill, S. C. Chang, J. P. Lowry, and C. J. McNeil, 'Comparisons of Platinum, Gold, Palladium and Glassy Carbon as Electrode Materials in the Design of Biosensors for Glutamate', Biosensors & Bioelectronics, 19 (2004), 1521-28.
    7 M. Ammam, and J. Fransaer, 'Highly Sensitive and Selective Glutamate Microbiosensor Based on Cast Polyurethane/Ac-Electrophoresis Deposited Multiwalled Carbon Nanotubes and Then Glutamate Oxidase/Electrosynthesized Polypyrrole/Pt Electrode', Biosensors & Bioelectronics, 25 (2010), 1597-602.
    8 O. Frey, T. Holtzman, R. M. McNamara, D. E. H. Theobald, P. D. van der Wal, N. F. de Rooij, J. W. Dalley, and M. Koudelka-Hep, 'Enzyme-Based Choline and L-Glutamate Biosensor Electrodes on Silicon Microprobe Arrays', Biosensors & Bioelectronics, 26 (2010), 477-84.
    9 S. Govindarajan, C. J. McNeil, J. P. Lowry, C. P. McMahon, and R. D. O'Neill, 'Highly Selective and Stable Microdisc Biosensors for L-Glutamate Monitoring', Sensors and Actuators B-Chemical, 178 (2013), 606-14.
    10 M. Jamal, J. Xu, and K. M. Razeeb, 'Disposable Biosensor Based on Immobilisation of Glutamate Oxidase on Pt Nanoparticles Modified Au Nanowire Array Electrode', Biosensors & Bioelectronics, 26 (2010), 1420-2
    11 L. H. Tang, Y. H. Zhu, L. H. Xu, X. L. Yang, and C. Z. Li, 'Amperometric Glutamate Biosensor Based on Self-Assembling Glutamate Dehydrogenase and Dendrimer-Encapsulated Platinum. Nanoparticles onto Carbon Nanotubes', Talanta, 73 (2007), 438-43.
    12 M. Zhang, C. Mullens, and W. Gorski, 'Amperometric Glutamate Biosensor Based on Chitosan Enzyme Film', Electrochimica Acta, 51 (2006), 4528-32.
    13 T. T. C. Tseng, J. Yao, and W. C. Chan, 'Selective Enzyme Immobilization on Arrayed Microelectrodes for the Application of Sensing Neurotransmitters', Biochemical Engineering Journal, 78 (2013), 146-53.
    14 N. Wahono, S. Qin, P. Oomen, T. I. F. Cremers, M. G. de Vries, and B. H. C. Westerink, 'Evaluation of Permselective Membranes for Optimization of Intracerebral Amperometric Glutamate Biosensors', Biosensors & Bioelectronics, 33 (2012), 260-66.
    15 M. Saleem, H. J. Yu, L. Wang, Zain-ul-Abdin, H. Khalid, M. Akram, N. M. Abbasi, and J. Huang, 'Review on Synthesis of Ferrocene-Based Redox Polymers and Derivatives and Their Application in Glucose Sensing', Analytica Chimica Acta, 876 (2015), 9-25.
    16 S. Qin, M. van der Zeyden, W. H. Oldenziel, T. I. F. H. Cremers, and B. H. C. Westerink, 'Microsensors for in Vivo Measurement of Glutamate in Brain Tissue', Sensors, 8 (2008), 6860-84.
    17 H. M. Deng, A. K. L. Teo, and Z. Q. Gao, 'An Interference-Free Glucose Biosensor Based on a Novel Low Potential Redox Polymer Mediator', Sensors and Actuators B-Chemical, 191 (2014), 522-28.
    18 Xiao, H. 著. 羅正忠, 張鼎張 譯. (2002) 半導體製程技術概論 (Introduction to Semiconductor Manufacturing Technology), 台北, 台灣培生教育出版: 學銘圖書發行

    QR CODE