簡易檢索 / 詳目顯示

研究生: 吳欣穎
Xin-Ying Wu
論文名稱: 細菌視紫質泛用型免疫光電晶片製備與原子力顯微鏡分析
Preparation and AFM Analysis of Bacteriorhodopsin Photoelectric Chips for Immunoassay
指導教授: 陳秀美
Hsiu-mei Chen
口試委員: 何明樺
Ming-hua Ho
王鐘毅
Chung-yih Wan
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 107
中文關鍵詞: 細菌視紫質紫膜原子力顯微鏡生物晶片
外文關鍵詞: Bacteriorhodopsin, AFM, biosensor
相關次數: 點閱:257下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 細菌視紫質存在於Halobacterium salinarum古生嗜鹽菌紫膜(purple membrane, PM)中,為一種光驅動質子幫浦。本研究藉由PM光電流響應與入射光強度間的線性關係,發展出具有對微生物辨識與檢測能力的泛用性免疫檢測PM晶片;選用ITO導電玻璃為電極,PM為感測器核心的生物性光電訊號轉換器,並使用protein A定向化大腸桿菌抗體作為生物辨識元件,如此可定量偵測大腸桿菌的存在,檢測靈敏度可達 1 CFU/mL。研究中,並利用拉曼分析光譜及原子力顯微鏡鑑定並確認PM晶片之表面改質、Protein A 與抗體固定化及大腸桿菌吸附。此外,以AFM分析PM表面形貌,可區分被固定PM膜之定向性,在不同固定化基材下,以胞外側固定之PM膜可呈現三種不同形貌,分別為細小花紋、具粒狀皺褶的細小裂痕與筆直斷裂之裂痕形貌;而胞內側固定之PM膜在不同基材上的形貌皆無太大差異;pH值對膜表面形貌影響較小。


    Bacteriorhodpsin (BR), a family of retinal-containing proteins, resides in the purple membrane (PM) of Halobacterium salinarum and functions as a light-driven proton pump. This study develops a PM-based immunesensor to recognize and detect microorganisms according to the linear relationship between the photocurrents generated by PM and the light-intensity illuminating on PM. ITO conductive glass was used as the electrode; PM was the signal transducer of the photoelectric biosensor; and anti-Escherichia coli antibodies orientationally immobilized by Protein A on PM chips were employed as the biological recognition element. The results show the photocurrents generated by the antibody-PM composite chip declined semi-log linearly with increasing of E. coli binding concentrations and a detection limit of 1 CFU/mL was achieved. The layer-by-layer fabrication of the antibody-PM composite chip as well as the binding of E. coli was confirmed by both Raman spectroscopy and AFM analysis. In addition, the orientations of PM patches immobilized on different substrates were investigated with AFM. Three different cracking topographies were observed for the PM patches attached with their extracellular side facing substrates: thin lightning-like cracks, thin cracks with tiny granules, and straight cracks. However, the topographies of the PM patches attached with their cytoplasmic side facing substrates were almost the same on different substrates. Finally, pH had a very little effect on the morphologies of both sides of immobilized PM.

    中文摘要 I 英文摘要 II 表目錄 V 圖目錄 VI 第一章 緒論 1 第二章 文獻回顧 2 2-1細菌視紫質(bacteriorhodopsin,BR) 2 2-1.1 H. salinarum 2 2-1.2 BR結構 3 2-1.3 BR光循環路徑 4 2-1.4 BR光電響應 7 2-2 PM於基材上之固定化 9 2-2.1 biotin/(strept)avidin生物親和固定化法 10 2-2.2結合氧化石墨烯與biotin/avidin生物親和之固定化法 10 2-3 PM原子力顯微鏡分析 13 2-3.1原子力顯微鏡(AFM) 13 2-3.2 PM之AFM形貌 16 2-3抗體、蛋白質A及其固定化分子 20 2-3-1免疫球蛋白 20 2-3-2蛋白質A 22 2-3-2蛋白質A固定化 23 第三章 實驗 25 3-1 實驗目的 25 3-2 實驗流程 26 3-3 實驗量測 27 第四章 結果討論 29 4-1 以AFM探討固定化基材對PM塗覆之影響 29 4.1.1固定化架橋之影響 29 4.1.2 不同定向PM膜之AFM分析 41 4-2 PM光電響應之探討與改善 65 4-2.1 以微分光流探討固定化基材對PM塗覆之影響 65 4.2.2以微流道製程改善PM晶片塗佈 68 4-3 泛用型免疫光電晶片製備 72 4.3.1以Raman分析光譜鑑定PM晶片改質之情形 73 4.3.2以AFM觀察PM晶片改質之形貌變化 76 4.3.3以微分光電流探討泛用型PM檢測晶片之功效 81 第五章 結論 87 第六章 參考資料 89

    余安棣 "製備具高度方向性之Bacteriorhodopsin生物光電晶片" 國立台灣科技大學化學工程研究所碩士論文 (2009)

    林其融 "AFM探討分別以結合氧化石墨烯之親和吸附與共價鍵結作用固定化之紫膜" 2012a. 國立台灣科技大學化學工程研究所碩士論文 (2012a).
    林承德 "AFM探討分別以結合氧化石墨烯之親和吸附與共價鍵結作用固定化之紫膜" 2012b. 國立台灣科技大學化學工程研究所碩士論文 (2012b).
    翁永進 "原子力顯微鏡(AFM)介紹與應用" 開南商工 (2008)
    黃柏竣 "還原劑、突變及量子點對細菌視紫質光電響應影響之探討" (2010)
    陳逸航 "定向性細菌視紫質晶片之光電與二倍頻響應探討" 國立台灣科技大學化學工程研究所碩士論文 (2010).
    蔡孟訓 "自排性單層分子膜於Bacteriorhodopsin光電晶片製備之探討" 國立台灣科技大學化學工程研究所碩士論文 (2011).
    蔡毓楨、薛富盛、呂福興、吳宗明"原子力顯微鏡實作訓練教材" 五南出版社 (2007).
    AnaSpec SpA產品資訊http://www.anaspec.com/
    Balashov, S.P. Protonation reactions and their coupling in bacteriorhodopsin. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 2000, 1460, 75-94.

    Balthazar, J.M.; Tusset, A.M.; Bueno, A.M.; Junior, B.R.d.P. On an overview of nonlinear and chaotic behavior and their controls of an atomic force microscopy (AFM) vibrating problem. 2012, doi: 10.5772/51834.
    Baumann, R.-P.; Eussner, J.; Hampp, N. pH-dependent bending in and out of purple membranes comprising BR-D85T. Physical Chemistry Chemical Physics, 2011, 13, 21375-21382.
    Binnig, G.; Quate, C.F.; Gerber, C. Atomic force microscope. Physical Review Letters, 1986, 56, 930-933.
    Bondar, A.-N.; Elstner, M.; Suhai, S.; Smith, J.C.; Fischer, S. Mechanism of primary proton transfer in bacteriorhodopsin. Structure, 2004, 12, 1281-1288.
    Butt, H.J.; Downing K.H.; Hansma, P.K. Imaging the membrane protein bacteriorhodopsin with the atomic force microscope. Biophysical Journal, 1990, 58, 1473-1480.
    Chen, H.-M.; Lin, C.-J.; Jheng, K.-R.; Kosasih, A.; Chang, J.-Y. Effect of graphene oxide on affinity-immobilization of purple membranes on solid supports. Colloids and Surfaces B: Biointerfaces, 2014, 116, 482-488.
    Chen, X., Lenhert, S.; Hirtz, M.; Lu, N.; Fuchs, H.; Chi, L. Langmuir–Blodgett patterning: A bottom–up way to build mesostructures over large areas. Accounts of Chemical Research, 2007, 40,393-401.
    Geim, A.K.; Novoselov, K.S. The rise of graphene. Nature Materials, 2007, 6, 183-191.
    Graille, M.; Stura, E.A; Corper, A.L.; Sutton, B.J.; Taussig, M.J.; Charbonnier, J.-B; Silverman, G.J. Crystal structure of a Staphylococcus aureus protein A domain complexed with the Fab fragment of a human IgM antibody: Structural basis for recognition of B-cell receptors and superantigen activity. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 5399-5404.

    Güven, N. Mica structure and fibrous growth of illite. Clays and Clay Minerals, 2001, 49, 189-196.
    Guss, B.; UhlÉN, M.; Nilsson, B.; Lindberg, M.; SjÖQuist, J.; SjÖDahl, J.; Region X, the cell-wall-attachment part of staphylococcal protein A. European Journal of Biochemistry, 1984, 138, 413-420.
    Hampp, N. Bacteriorhodopsin as a photochromic retinal protein for optical memories. Chemical Reviews, 2000, 100, 1755-1776.
    Heitzmann, H.; Richards, F.M. Use of the avidin-biotin complex for specific staining of biological membranes in electron microscopy. Proceedings of the National Academy of Sciences, 1974, 71, 3537-3541.
    Henderson, R.; Jubb, J.S.; Whytock, S. Specific labelling of the protein and lipid on the extracellular surface of purple membrane. Journal of Molecular Biology, 1978, 123, 259-274.
    Honzatko, R.B.; Williams, R.W. Raman spectroscopy of avidin: secondary structure, disulfide conformation, and the environment of tyrosine. Biochemistry, 1982, 21, 6201-6205.
    Jess, P.; Garces Chavez, V. G.; Smith, D.; Mazilu, M.; Paterson, L.; Riches, A.;. Herrington, C. S.; Sibbett, W.; Dholakia, K. Dual beam fibre trap for Raman microspectroscopy of single cells. Optics Express, 2006, 14, 5779-5791.
    Khorana, H.G.; Bacteriorhodopsin, a membrane protein that uses light to translocate protons. Journal of Biological Chemistry, 1988, 263, 7439-7442.
    Liu, T.-T.; Lin, Y.-H.; Hung, C.-S.; Liu, T.-J.; Chen, Y.; Huang, Y.-C.; Tsai, T.-H.; Wang, H.-H.; Wang, D.-W.; Wang, J.-K.; Wang, Y.-L.; Lin, C.-H. A high speed detection platform based on surface-enhanced Raman scattering for monitoring antibiotic-induced chemical changes in bacteria cell wall. PLoS ONE, 2009, 4, doi: 10.1371.

    Liu, Y.; Yu, D.; Zeng, C.; Miao, Z.; Dai, L. Biocompatible graphene oxide-based glucose biosensors. Langmuir, 2010, 26, 6158-6160.
    Lu, H.-C.; Chen, H.-M.; Lin, Y.-S.; Lin, J.-W. A reusable and specific protein A-coated piezoelectric biosensor for flow injection immunoassay. Biotechnology Progress, 2000, 16, 116-124.
    Lu, T.; Li B.-F.; Jiang, L.; Rothe, U.; Bakowsky, U. Temperature and pH-dependent inversion of photoelectric response in bacteriorhodopsin. Journal of the Chemical Society, Faraday Transactions, 1998, 94, 79-81.
    Müller, D.J.; Schoenenberger, C.A.; Büldt, G.; Engel, A. Immuno-atomic force microscopy of purple membrane. Biophysical Journal, 1996, 70, 1796-1802.
    Meyer, J.C.; Geim, A.K.; Katsnelson, M.I.; Novoselov, K.S.; Booth, T.J.; Roth. S. The structure of suspended graphene sheets. Nature, 2007, 446, 60-63.
    Miyasaka, T.; Koyama, K. Image sensing and processing by a bacteriorhodopsin-based artificial photoreceptor. Applied optics, 1993, 32, 6371-6379.
    Nasrollahzadeh, M.; Babaei, F.; Fakhri, P.; Jaleh, B. Synthesis, characterization, structural, optical properties and catalytic activity of reduced graphene oxide/copper nanocomposites. RSC Advances, 2015, 5, 10782-10789.
    Oesterhelt, D.; Stoeckenius, W. Isolation of the cell membrane of Halobacterium halobium and its fractionation into red and purple membrane. In Methods in Enzymology, 1974, 31, 667-678.
    Palazzo, G.; Magliulo, M.; Mallardi, A.; Angione, M.D.; Gobeljic, D.; Scamarcio, G.; Fratini, E.; Ridi, F.; Torsi, L. Electronic Transduction of Proton Translocations in Nanoassembled Lamellae of Bacteriorhodopsin. ACS Nano, 2014, 8, 7834-7845.
    Pletikapić, G.; Berquand, A.; Radić, T.M.; Svetličić, V. Quantitative nanomechanical mapping diatom in seawater using peak force tapping atomic force microscopy. Journal of Phycology, 2012, 48, 174-185.
    Richman, D.D.; Cleveland, P.H.; Oxman, M.N.; Johnson, K.M. The binding of staphylococcal protein A by the sera of different animal species. The Journal of Immunology, 1982, 128, 2300-2305.
    Saga, Y.; Watanabe, T.; Koyama, K.; Miyasaka, T. Buffer effect on the photoelectrochemical response of bacteriorhodopsin. Analytical Sciences, 1999, 15, 365-369.
    SjÖDahl, J. Repetitive sequences in protein A from Staphylococcus aureus. European Journal of Biochemistry, 1977, 73, 343-351.
    Spudich, J.L.; Yang, C.-S.; Jung, K.-H.; Spudich, E.N. Retinylidene proteins: structures and functions from archaea to humans. Annual Review of Cell and Developmental Biology, 2000, 16, 365-392.
    Stockburger, M.; Klusmann, W.; Gattermann, H.; Massig, G.; Peters, R. Photochemical cycle of bacteriorhodopsin studied by resonance Raman spectroscopy. Biochemistry, 1979, 18, 4886-4900.
    Voïtchovsky, K.; Contera, S.A.; Kamihira, M.; Watts, A.; Ryan, J.F. Differential stiffness and lipid mobility in the leaflets of purple membranes. Biophysical Journal, 2006, 90, 2075-2085.
    Wang, J.-P.; Yoo, S.-K.; Song, L.; El-Sayed, M.A.; Molecular mechanism of the differential photoelectric response of bacteriorhodopsin. The Journal of Physical Chemistry B, 1997, 101, 3420-3423.
    Wen, Z.-q.; Cao, X.; Department of Drug Product Development; Phillips, J. Application of Raman Spectroscopy in Biopharmaceutical Manufacturing. 2010
    Withers, N. Graphene oxide: surfactant sheets. Nature Chemistry, 2010, 83, 95-110
    Woof, J.M.; Burton, D.R. Human antibody-Fc receptor interactions illuminated by crystal structures. Nature Reviews Immunology, 2004, 4, 89-99.
    Worcester, D.L.; Kim, H.S.; Miller, R.G.; Bryant, P.J. Imaging bacteriorhodopsin lattices in purple membranes with atomic force microscopy. Journal of Vacuum Science & Technology A, 1990, 8, 403-405.
    Worcester, D.L.; Miller, R.G.; Bryant, P.J. Atomic force microscopy of purple membranes. Journal of Microscopy, 1988, 152, 817-821.
    Zlatanova, J.; Lindsay, S.M.; Leuba, S.H. Single molecule force spectroscopy in biology using the atomic force microscope. Progress in Biophysics and Molecular Biology, 2000, 74, 37-61.

    無法下載圖示 全文公開日期 2020/08/24 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE