簡易檢索 / 詳目顯示

研究生: 謝智宇
Chih-Yu Hsieh
論文名稱: 利用失焦法、新開發樹脂和人工智慧輔助設計並製造光固化微透鏡陣列
Applying Defocus Method, Newly Developed Photopolymer, and Artificial Intelligence to Design and Fabricate Photopolymer Microlens Arrays
指導教授: 陳品銓
Pin-Chuan Chen
口試委員: 陳品銓
林鼎晸
楊燿州
李昇憲
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 中文
論文頁數: 86
中文關鍵詞: 微透鏡陣列光固化失焦化高分子材料人工智慧設計
外文關鍵詞: microlens array, digital light process, defocusing, artificial intelligent design
相關次數: 點閱:72下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 微透鏡陣列(Micro Lens Arrays, MLA)被廣泛使用於各領域,本研究利用數位光處理(DLP)技術搭配灰階數位光罩,透過調整像素的灰度值,精確調節曝光能量,單個像素大小為5 μm,達到高速製造微透鏡陣列的效果,同時導入失焦法,透過偏移DLP系統中聚焦鏡頭的位置,消除微透鏡表面的階梯效應,降低微透鏡表面粗糙度。DLP製程利用數位光罩曝光樹脂,能透過調整曝光能量、失焦距離、光罩直徑等參數,調整微透鏡陣列的形貌。這使得能夠根據不同需求生產各種特性的微透鏡陣列,例如高數值孔徑、特定曲率、高解析度和高填充因子等。本研究亦使用新開發之光固化樹脂,其成型特性及光學性能較以往使用的泛用型樹脂更符合製造微透鏡陣列的需求。為了能快速設計微透鏡陣列的形貌,研究中開發一基於Python語言之人工智慧(Artificial Intellegence, AI)演算法,用於輸出指定形貌微透鏡陣列之對應灰階數位光罩,以實現迅速設計和製造具非傳統輪廓的微透鏡陣列。本研究進行了各種實驗以探討DLP系統曝光能量和失焦法對微透鏡形貌之影響,比較新開發樹脂和舊有樹脂在機械性質和光學性質方面的差異,並測試AI演算法設計的微透鏡陣列,其實際形貌和光學性能與理論值之誤差。實驗結果顯示本研究製程可於10分鐘內完成微透鏡陣列之製造,且微透鏡陣列的高度與曝光能量成正比。所製造之微透鏡陣列表面粗糙度(Sa)最低為52 nm,解析度最高為65.9 lp/mm,這相當或優於具有55 lp/mm解析度的商業塑膠微透鏡陣列,數值孔徑最高為0.98,填充因子最高77.98%,而微透鏡直徑最小為60 μm。搭配AI演算法設計微透鏡陣列,本研究製程可製造具多焦距(從21 μm到199 μm)、廣視角及非球面形貌之微透鏡陣列。本製程具有環保(積層製造而非減法加工)、高設計自由度(無需實體光罩或模具)和低成本(每個MLA材料成本小於新台幣100元)等優點,本研究的AI演算法被認為是「殺手應用」。所提出的製程和AI演算法的結合具有相當的潛力,非常適用於工業中微光學裝置的原型開發。


    In this study, digital light processing (DLP) technology was used in conjunction with grayscale digital masks to achieve the rapid production of micro lens arrays. The defocus method was also introduced to eliminate the step effect on the surface of the micro lenses by shifting the position of the focusing lens in the DLP system, reducing the surface roughness of the micro lenses. The study also employed a newly developed photocurable resin, which, compared to the generic resins used previously, better meets the manufacturing requirements of micro lens arrays in terms of molding properties and optical performance. In order to quickly design the morphology of micro lens arrays, an Artificial Intelligence (AI) algorithm based on the Python language was developed in the study to output corresponding grayscale digital masks for specified morphology of micro lens arrays, enabling the rapid design and production of micro lens arrays with non-traditional profiles.
    Various experiments were conducted in this study to investigate the effects of DLP system exposure energy and the defocus method on the morphology of the micro lenses. A comparison was made between the newly developed resin and the existing resin in terms of mechanical properties and optical properties. The microlens arrays designed by the AI algorithm were tested for the discrepancy between their actual morphology and optical performance and the theoretical values.The experimental results showed that the manufacturing process in this study can produce micro lens arrays within 10 minutes, and the height of the micro lens arrays is directly proportional to the exposure energy. The surface roughness (Sa) of the manufactured micro lens arrays was as low as 52 nm, with the highest resolution being 65.9 lp/mm, which is comparable to or better than commercially available plastic micro lens arrays with a resolution of 55 lp/mm. The highest numerical aperture was 0.98, the highest fill factor was 77.98%, and the smallest micro lens diameter was 60 μm. By using the AI algorithm to design micro lens arrays, the manufacturing process in this study can produce micro lens arrays with multiple focal lengths (ranging from 21 μm to 199 μm), wide field of view, and aspherical profiles. This process has the advantages of being environmentally friendly, high design flexibility, and low cost. The AI algorithm developed in this study is considered a "killer application." The combination of the proposed process and the AI algorithm has considerable potential and is highly suitable for prototyping micro-optical devices in the industry.

    摘要 III Abstract IV 致謝 V 目錄 VI 圖目錄 IX 表目錄 XV 第1章 緒論 1 1.1研究背景 1 1.2研究動機與目的 2 1.3研究方法 3 1.4論文架構 4 第2章 微透鏡製程與光固化樹脂文獻回顧 7 2.1微透鏡陣列製程相關文獻: 7 2.1.1熱回流法 7 2.1.2表面張力法 10 2.1.3熱擠壓法 12 2.1.4雷射加工法 13 2.1.5濕蝕刻法 15 2.1.6灰階光罩法 16 2.1.7數位光罩法 17 2.1.8雙光子雷射 21 2.2光固化樹脂性質研究: 22 2.3本實驗室先前之微透鏡陣列製程研究: 25 第3章 光固化微透鏡陣列設計與製程介紹 32 3.1人工智慧設計灰階數位光罩 32 3.1.1 Python程式語言編寫灰階數位光罩 32 3.1.2手動設定微透鏡陣列尺寸和焦距 33 3.1.3自動最佳化微透鏡陣列解析度與數值孔徑 34 3.2光固化3D列印製程 36 3.2.1光固化3D列印機操作設定 36 3.3微透鏡陣列製造流程 39 第4章 實驗設備與實驗方法 41 4.1研究用設備 41 4.1.1製程設備 41 4.1.2量測設備 42 4.2光固化樹脂性質、微透鏡陣列製程及人工智慧光學設計研究方法 48 4.2.1光固化樹脂之機械性質 50 4.2.2光固化樹脂之光學性質 51 4.2.3曝光能量對微透鏡形貌之影響 52 4.2.4失焦距離對微透鏡成形之影響 53 4.2.5失焦距離與微透鏡成像解析度之關係 53 4.2.6人工智慧光學設計與實際形貌之誤差 53 4.2.7嘗試製造各類型形貌微透鏡陣列 54 第5章 實驗結果與討論 60 5.1光固化樹脂之機械性質 60 5.2光固化樹脂之光學性質 60 5.3曝光能量對微透鏡形貌之影響 61 5.3.1曝光能量對微透鏡高度之影響 62 5.3.2曝光能量對微透鏡直徑之影響 63 5.4失焦距離對微透鏡成形之影響 64 5.4.1失焦距離與微透鏡形貌誤差之關係 64 5.4.2失焦距離與微透鏡表面粗糙度之關係 65 5.5失焦距離與微透鏡成像解析度之關係 66 5.6人工智慧光學設計與實際形貌之誤差 67 5.7各類型形貌微透鏡陣列之光學性能 67 第6章 結論與未來展望 76 6.1結論 76 6.2未來展望 77 第7章 參考文獻 79 附錄A-MLA成像解析度量測方式 84 附錄B-MLA焦距和數值孔徑量測方式 86

    [1] Schmidleithner, Christina, and Deepak M. Kalaskar. "Stereolithography." IntechOpen, 2018. 1-22.
    [2] Bastani, Saeed, and Majid Mohseni. "UV-Curable Nanocomposite Coatings and Materials." Handbook of Nanoceramic and Nanocomposite Coatings and Materials. Butterworth-Heinemann, 2015. 155-182.
    [3] Ge, Qi, et al. "Multimaterial 4D printing with tailorable shape memory polymers." Scientific reports 6.1 (2016): 1-11.
    [4] Zheng, Xiaoyu, et al. "Ultralight, ultrastiff mechanical metamaterials." Science 344.6190 (2014): 1373-1377.
    [5] Kowsari, Kavin, et al. "High-efficiency high-resolution multimaterial fabrication for digital light processing-based three-dimensional printing." 3D Printing and Additive Manufacturing 5.3 (2018): 185-193.
    [6] Li, Lei, and Y. Yi Allen. "Design and fabrication of a freeform microlens array for a compact large-field-of-view compound-eye camera." Applied optics 51.12 (2012): 1843-1852.
    [7] Balram, Nikhil, and Ivana Tošić. "Light‐field imaging and display systems." Information Display 32.4 (2016): 6-13.
    [8] Urey, Hakan, and Karlton D. Powell. "Microlens-array-based exit-pupil expander for full-color displays." Applied optics 44.23 (2005): 4930-4936.
    [9] Kim, Hyun Myung, et al. "Large area fabrication of engineered microlens array with low sag height for light-field imaging." Optics express 27.4 (2019): 4435-4444.
    [10] Yuan, Chao, et al. "Ultrafast three-dimensional printing of optically smooth microlens arrays by oscillation-assisted digital light processing." ACS applied materials & interfaces 11.43 (2019): 40662-40668.
    [11] Hsieh, Hsin-Ta, and Guo-Dung John Su. "A novel boundary-confined method for high numerical aperture microlens array fabrication." Journal of micromechanics and microengineering 20.3 (2010): 035023.
    [12] Jung, Hyukjin, and Ki-Hun Jeong. "Monolithic polymer microlens arrays with high numerical aperture and high packing density." ACS applied materials & interfaces 7.4 (2015): 2160-2165.
    [13] Zhou, Xiongtu, et al. "Fabrication of large-scale microlens arrays based on screen printing for integral imaging 3D display." ACS applied materials & interfaces 8.36 (2016): 24248-24255.
    [14] Zhang, Dawei, et al. "Fabrication of a microlens array with controlled curvature by thermally curving photosensitive gel film beneath microholes." ACS applied materials & interfaces 9.19 (2017): 16604-16609.
    [15] Xu, Qiao, et al. "Fabrication of polymer microlens array with controllable focal length by modifying surface wettability." Optics express 26.4 (2018): 4172-4182.
    [16] Liu, Yongshun, et al. "Polymeric microlens array fabricated with PDMS mold-based hot embossing." Journal of Micromechanics and Microengineering 24.9 (2014): 095028.
    [17] Yong, Jiale, et al. "Rapid fabrication of large-area concave microlens arrays on PDMS by a femtosecond laser." ACS applied materials & interfaces 5.19 (2013): 9382-9385.
    [18] Deng, Zefang, et al. "Fabrication of large-area concave microlens array on silicon by femtosecond laser micromachining." Optics letters 40.9 (2015): 1928-1931.
    [19] Lee, Joong Hoon, et al. "High-Identical Numerical Aperture, Multifocal Microlens Array through Single-Step Multi-Sized Hole Patterning Photolithography." Micromachines 11.12 (2020): 1068.
    [20] Bian, Hao, et al. "Direct fabrication of compound-eye microlens array on curved surfaces by a facile femtosecond laser enhanced wet etching process." Applied Physics Letters 109.22 (2016): 221109.
    [21] Audran, S., et al. "Grayscale lithography process study applied to zero-gap microlenses for sub-2μm CMOS image sensors." Advances in Resist Materials and Processing Technology XXVII. Vol. 7639. International Society for Optics and Photonics, 2010.
    [22] Deng, Qinyuan, et al. "Fabrication of micro-optics elements with arbitrary surface profiles based on one-step maskless grayscale lithography." Micromachines 8.10 (2017): 314.
    [23] Ouyang, Xia, et al. "Fabrication of dual-focus microlens array by using dynamic optical projection stereolithography." Conference on Lasers and Electro-Optics/Pacific Rim. Optical Society of America, 2018.
    [24] Huang, Shengzhou, et al. "Fabrication of high quality aspheric microlens array by dose-modulated lithography and surface thermal reflow." Optics & Laser Technology 100 (2018): 298-303.
    [25] Kowsari, Kavin, et al. "Photopolymer formulation to minimize feature size, surface roughness, and stair-stepping in digital light processing-based three-dimensional printing." Additive Manufacturing 24 (2018): 627-638.
    [26] Thiele, Simon, et al. "3D-printed eagle eye: Compound microlens system for foveated imaging." Science advances 3.2 (2017): e1602655.
    [27] Ju, Yang, et al. "Experimental study on mechanical and optical properties of printable photopolymer used for visualising hidden structures and stresses in rocks." Optical Materials 111 (2021): 110691.
    [28] Wang, Jian, et al. "High-density and high-quality holographic storage in a multilayer glass-like photopolymer." Optical Materials Express 12.2 (2022): 845-853.
    [29] Aloui, F., et al. "Refractive index evolution of various commercial acrylic resins during photopolymerization." Express Polymer Letters 12.11 (2018): 966-971.
    [30] Milovanović, Aleksa, et al. "The effect of time on mechanical properties of biocompatible photopolymer resins used for fabrication of clear dental aligners." journal of the mechanical behavior of biomedical materials 119 (2021): 104494.
    [31] Chen, Pin-Chuan, et al. "Microfabricated microfluidic platforms for creating microlens array." Optics Express 25.14 (2017): 16101-16115.
    [32] Chen, Pin-Chuan, Ren-Hao Zhang, and Liang-Ta Chen. "Using Micromachined Molds, Partial-curing PDMS Bonding Technique, and Multiple Casting to Create Hybrid Microfluidic Chip for Microlens Array." Micromachines 10.9 (2019): 572.
    [33] Chen, Pin-Chuan, Liang-Ta Chen, and Cing-Sung Yeh. "Tunable microlens array fabricated by a silicone oil-induced swelled polydimethylsiloxane (PDMS) membrane bonded to a micro-milled microfluidic chip." Optics Express 28.20 (2020): 29815-29828.
    [34] Chen, Pin-Chuan, Cing-Sung Yeh, and Chih-Yu Hsieh. "Defocus digital light processing stereolithography for rapid manufacture of microlens arrays." Sensors and Actuators A: Physical 345 (2022): 113819.
    [35] Chen, Pin-Chuan, and Chih-Yu Hsieh. "Studying the influence of the photopolymer material properties to the creation of MLAs with using digital light processing (DLP) stereolithography printing (SLA)."Sensors and Actuators A: Physical 360 (2023): 114546.

    無法下載圖示 全文公開日期 2028/12/25 (校內網路)
    全文公開日期 2028/12/25 (校外網路)
    全文公開日期 2028/12/25 (國家圖書館:臺灣博碩士論文系統)
    QR CODE