簡易檢索 / 詳目顯示

研究生: 蔡秉勳
Ping-Syun Tsia
論文名稱: 超疏滑連續式3D 列印成型技術之研究
Development of Continuous Vat-polymerization Slippery Forming Technology
指導教授: 鄭正元
Jeng-Ywan Jeng
何明樺
Ming-Hua Ho
口試委員: 鄭正元
Jeng-Ywan Jeng
何明樺
Ming-Hua Ho
林上智
Shang-Chih Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 190
中文關鍵詞: 光固化3D 列印高速列印連續列印低表面能超疏滑界面
外文關鍵詞: stereolithography, high speed printing, continuous printing, low surface energy, slippery interface
相關次數: 點閱:243下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 下照式光固化技術在積層製造中,有著最佳的列印精細度,但列印速度的提升總受限於列印層脫離樹脂槽底的拉應力問題,因此在現今還是大多應用於小面積尺寸列印。本研究製作超疏滑薄膜改善拉應力的產生,藉著低表面能薄膜降低硬化光敏材料的黏附,並由穩定劑維持低表面能的結構。過程中參考了眾多低表面能薄膜製程方法,在測試與選擇中挑選較佳的製程方案,不僅完成低表面能薄膜達到超疏水與疏油界面,更測試了多種市售可取得之樹脂槽,分別有硬底鐵氟龍槽、軟底鐵氟龍槽、矽膠槽、氧阻聚槽與超疏滑槽的拉應力特性比較,確認了超疏滑界面與降低拉應力有著明顯有效性,並可達成網狀物件的連續穩定列印,透過切換一般列印方法與連續列印方法,可使用於兩種主要特徵結構:網狀與實心物件,能夠列印多數產品的打樣於列印方法間的調整。


    The bottom-up stereolithography technology has excellent resolution and efficacy in 3D printing. However, the printing speed is often limited by the adhesive force between the curing layer and the bottom of the resin tank, restricting its large-scale applications. In this experiment, we prepared slippery membranes with low surface energy to overcome the problem of adhesive force. The slippery membrane was achieved by integrating nanostructures, surface activation, fluorination and the filling of fluorinated liquid. After that, the low surface energy structure was maintained by stabilizers. The experimental results indicated that we create super hydrophobic and oleophobic interface. From the comparisons with commercial bottom materials, including Teflon with hard-bottom, Teflon with soft-bottom, silicone tank and oxygen inhibition tank, it’s confirmed that the slippery interface fabricated in this research effectively reduced the adhesive force, allowing continuous and stable printing of lattice surface structures.

    摘要 i Abstract ii 致謝 iii 目錄 iv 圖目錄 vii 表目錄 xiv 第一章 緒論 1 1.1 前言 1 1.2 研究動機 3 1.3 研究方法 4 第二章 文獻回顧 5 2.1 積層製造技術 5 2.2 光固化聚合原理 13 2.3 一般列印與連續列印 15 2.4 市面上實行下照式VP連續列印之方法 17 2.5 低表面能技術 21 2.6 超疏滑表面技術 26 第三章 系統架設及設備簡介 28 3.1 實驗材料與藥品 28 3.2 實驗樣品製備 28 3.3 低表面能薄膜設備與軟體 29 3.4 機台架設 31 3.5 機構控制軟體 33 第四章 實驗方法 36 4.1 直接基材表面處理 37 4.2 結構控制 37 4.3 外表面改質 38 4.4 超疏滑表面 39 4.5 實機列印 40 第五章 製備低表面能薄膜 43 5.1 直接基材表面處理 43 5.2 結構控制 44 5.3 外表面改質 52 5.4 超疏滑表面 64 第六章 一般列印與連續列印比較 66 6.1 孔洞網狀結構列印 67 6.2 實心方柱結構列印 79 第七章 結論與未來研究 87 7.1 結論 87 7.2 未來研究方向 87 參考文獻 89 附錄I:UI介面 BingDLP 93 附錄II:主程式碼 CallBingDLP 132 附錄III:曝光顯示程式碼 Print_Show.py 161 附錄IV:全域變數 Globals 165 附錄IIV:韌體 167

    1. Wohlers, T.T., Production of AM parts from independent service providers. Wohlers Report 2021, 2021.
    2. Wohlers, T.T., 3D Printing Materials Market Distribution. Wohlers Report 2019, 2019.
    3. Wohlers, T.T., 3D Printing Materials Market Distribution. Wohlers Report 2021, 2021.
    4. 鄭正元, et al., 3D列印:積層製造技術與應用(第二版), 2021: p. 560.
    5. 張浩威, 大面積高速光固化3D列印成型技術之分離力研究, 國立台北市臺灣科技大學機械工程系, 2019: p. 73.
    6. 黃冠騰, 快速光固化懸浮式3D列印成型技術之研究, 國立台北市臺灣科技大學機械工程系, 2017: p. 103.
    7. Campbell, T., et al., Could 3D printing change the world. Technologies, Potential, and Implications of Additive Manufacturing, 2011
    8. 3D Systems, I., StereoLithography Interface Specification, 1988
    9. 張大衛, 利用電漿技術製備水溼性以及化學官能基梯度表面. 國立台北市臺灣科技大學化學工程系博士論文, 台北市, 2011
    10. W.R., 3D Printing and Additive Manufacturing State of the Industry, in Annual Worldwide Progress Report, 2014
    11. Gibson, I., D.W. Rosen, and B. Stucker, Additive manufacturing technologies (Vol. 238), 2010
    12. Hull, C.W., Apparatus for production of three-dimensional objects by stereolithography, 1984
    13. Bártolo, P.J., Stereolithography: Materials, Processes and Applications, 2011
    14. Nelson, P., DLP®Technology for Spectroscopy, T.I. Incorporated, 2016
    15. 賀彥儒, 桌上型3D列印機之行銷策略 -手機3D列印機案例分析, 國立台北市臺灣科技大學機械工程系, 2020: p. 145.
    16. Cherdo, L. The best resin 3D printers (SLA/DLP/LCD). 2021;
    <https://www.aniwaa.com/buyers-guide/3d-printers/the-best-resin-3d-printer-sla-and-dlp/.>
    17. 許峻豪, 低功率可見光固化製程之分析與研究許峻豪, 低功率可見光固化製程之分析與研究, 2016: p. 106.
    18. Cheng, S.W. LCD構造. 2007;
    19. 金養智, 光固化材料性能及應用手冊, 化學工業出版社.
    20. Yang, Z.J., et al., Preparation and mechanism of free-radical/cationic hybrid photosensitive resin with high tensile strength for three-dimensional printing applications. Journal of Applied Polymer Science, 2021. 138(8): p. 11.
    21. 楊國明, et al., 高分子化學. 2011: 高立圖書.
    22. 陳貞佑, 下照式DLP高速3D列印失敗因子之探討, 國立台北市臺灣科技大學機械工程系, 2019: p. 99.
    23. 連帝皓, 透析式高速光固化3D列印成型技術之研究, 國立台北市臺灣科技大學機械工程系, 2018: p. 104.
    24. Aizenberg, J., et al., SLIPPERY SELF-ILUBRICATING POLYMER SURFACES, in President and Fellows of Harvard College, 2013
    25. Tumbleston, J.R., et al., Continuous liquid interface production of 3D objects. Science, 2015. 347(6228): p. 1349-1352.
    26. Decker, C. and A.D. Jenkins, Kinetic approach of oxygen inhibition in ultraviolet- and laser-induced polymerizations. 1985.
    27. Zitelli, G., Reichental, and L. Tringali, METHOD AND APPARATUS FOR PHOTO-CURING WITH DISPLACEABLE SELF-ILUBRICATING SUBSTRATUM FOR THE FORMATION OF THREE-DIMIENSIONAL OBJECTS, in NEXA3D Inc., 2017
    28. Wu, L., et al., Bioinspired Ultra-Low Adhesive Energy Interface for Continuous 3D Printing: Reducing Curing Induced Adhesion. Science, 2018.
    29. 鄭正元, et al., 降低光固化材料成型過程的拉拔力之方法, 2018
    30. Park, S.-J. and M.-K. Seo, Interface Science and Composites, 2011.
    31. Chattoraj, D. and K.S. Birdi, Adsorption and the Gibbs Surface Excess. 1984: Springer, Boston, MA.
    32. Marshall, S. J., Bayne, S. C., Baier, R., Tomsia, A. P., & Marshall, G. W., A review of adhesion science. Dental Materials, 26(2), 2010
    33. 曾冠凱, 奈米粒子薄膜疏液表面的製備與應用, 國立台南市成功大學化學工程學系, 2015: p. 126.
    34. Dai, X.M., et al., Slippery Wenzel State. Acs Nano, 2015. 9(9): p. 9260-9267.
    35. Wenzel, R.N., RESISTANCE OF SOLID SURFACES TO WETTING BY WATER, 1936.
    36. Wang, J.C., et al., Influence of surface roughness on contact angle hysteresis and spreading work. Colloid and Polymer Science, 2020. 298(8): p. 1107-1112.
    37. Butt, H.-J., K. Graf, and M. Kappl, Physics and Chemistry of Interfaces. Uwe Krieg, Berlin: WILEY-VCH GmbH & Co. KGaA.
    38. Hare, E.F. and E.G.S.W.A. Zisman, Properties of Films of Adsorbed Fluorinated Acids, 1954.
    39. 黃尉桓, 堅固透明超疏水薄膜之製備與特性研究,國立台北市臺灣大學材料科學與工程學研究所, 2014: p. 160.
    40. Bravo, J., et al., Transparent superhydrophobic films based on silica nanoparticles. Langmuir, 2007. 23(13): p. 7293-7298.
    41. Park, E.J., et al., Transparent and superhydrophobic films prepared with polydimethylsiloxane-coated silica nanoparticles. Rsc Advances, 2013. 3(31): p. 12571-12576.
    42. Ebert, D. and B. Bhushan, Transparent, Superhydrophobic, and Wear-Resistant Coatings on Glass and Polymer Substrates Using SiO2, ZnO, and ITO Nanoparticles. Langmuir, 2012. 28(31): p. 11391-11399.
    43. Cao, L.L. and D. Gao, Transparent superhydrophobic and highly oleophobic coatings. Faraday Discussions, 2010. 146: p. 57-65.
    44. Lee, S.G., et al., Transparent Superhydrophobic/Translucent Superamphiphobic Coatings Based on Silica-Fluoropolymer Hybrid Nanoparticles. Langmuir, 2013. 29(48): p. 15051-15057.
    45. Wang, Y.X. and B. Bhushan, Wear-Resistant and Antismudge Superoleophobic Coating on Polyethylene Terephthalate Substrate Using SiO2 Nanoparticles. Acs Applied Materials & Interfaces, 2015. 7(1): p. 743-755.
    46. Amini, S., et al., Preventing mussel adhesion using lubricant-infused materials. Science, 2017. 357(6352): p. 668-+.
    47. MacCallum, N., et al., Liquid-Infused Silicone As a Biofouling-Free Medical Material. Acs Biomaterials Science & Engineering, 2015. 1(1): p. 43-51.
    48. Ward, L.J., et al., Solventless coupling of perfluoroalkylchlorosilanes to atmospheric plasma activated polymer surfaces. Polymer, 2005. 46(12): p. 3986-3991.
    49. Fadeev, A.Y. and T.J. McCarthy, Surface modification of poly(ethylene terephthalate) to prepare surfaces with silica-like reactivity. Langmuir, 1998. 14(19): p. 5586-5593.
    50. Chen, W. and T.J. McCarthy, Chemical surface modification of poly(ethylene terephthalate). Macromolecules, 1998. 31(11): p. 3648-3655.
    51. Zhao, B., W.J. Brittain, and E.A. Vogler, Trichlorosilane chemisorption on surface-modified poly(tetrafluoroethylene). Macromolecules, 1999. 32(3): p. 796-800.
    52. 李正中, 薄膜光學與鍍膜技術. 2020.
    53. Zhuravlev, L.T., The surface chemistry of amorphous silica. Zhuravlev model. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2000. 173(1-3): p. 1-38.
    54. Cao, L.L., et al., Super water- and oil-repellent surfaces on intrinsically hydrophilic and oleophilic porous silicon films. Langmuir, 2008. 24(5): p. 1640-1643.
    55. Israelachvili, J., Intermolecular and Surface Forces 3rd Edition, 2011, University of California.
    56. FOWKES, F.M., Dispersion Force Contributions to Surface and Interfacial Tensions, Contact Angles, and Heats of Immersion, F.M. Fowkes, Editor, 1964.
    57. Tamai, Y., K. Makuuchi, and M. Suzuki, Experimental Analysis of Interfacial Forces at the Plane Surface of Solids. 1967.
    58. Bauer, J., G. Drescher, and M. Illig, Surface tension, adhesion and wetting of materials for photolithographic process. Journal of Vacuum Science & Technology B, 1996. 14(4): p. 2485-2492.
    59. KAELBLE, D.H., Dispersion-Polar Surface Tension Properties of Organic Solids, Science Center, North American Rockwell Corporation., 1969
    60. Chu, Z.L. and S. Seeger, Superamphiphobic surfaces. Chemical Society Reviews, 2014. 43(8): p. 2784-2798.
    61. 周冠宇, 高固含量奈米級二氧化矽分散液之製備與鑑定, 國立台北市臺灣科技大學化學工程系, 2010: p. 88.
    62. Vansant, E.F., P.V.D. Voort, and K.C. Vrancken, Characterization and Chemical Modification of the Silica Surface, Elsevier Science, 1995
    63. Suni, T., et al., Effects of plasma activation on hydrophilic bonding of Si and SiO2. Journal of the Electrochemical Society, 2002. 149(6): p. G348-G351.
    64. Le, V.N.A., H.C. Chang, and J.W. Lin, Adhesion of SiO2 thin films to plasma-treated SUS304 stainless steel substrates, Journal of Adhesion, 2017. 93(9): p. 688-703.
    65. Xu, L.G., et al., Mechanically Robust, Thermally Stable, Broadband Antireflective, and Superhydrophobic Thin Films on Glass Substrates. Acs Applied Materials & Interfaces, 2014. 6(12): p. 9029-9035.
    66. Bergna, H.E., Colloid Chemistry of Silica. 1994. p. 1-47.
    67. Kundu, S., et al., Thermal Stability and Reducibility of Oxygen-Containing Functional Groups on Multiwalled Carbon Nanotube Surfaces: A Quantitative High-Resolution XPS and TPD/TPR Study. Journal of Physical Chemistry C, 2008. 112(43): p. 16869-16878.
    68. Pan, Z.H., et al., Superhydro-oleophobic bio-inspired polydimethylsiloxane micropillared surface via FDTS coating/blending approaches. Applied Surface Science, 2015. 324: p. 612-620.
    69. Mihaly, J., et al., FTIR and FT-Raman spectroscopic study on polymer based high pressure digestion vessels. Croatica Chemica Acta, 2006. 79(3): p. 497-501.
    70. Beddows, C., Reference Module in Materials Science and Materials Engineering. 2015.

    無法下載圖示 全文公開日期 2026/08/11 (校內網路)
    全文公開日期 2031/08/11 (校外網路)
    全文公開日期 2031/08/11 (國家圖書館:臺灣博碩士論文系統)
    QR CODE