簡易檢索 / 詳目顯示

研究生: 黃鵬翰
PENG-HAN HUANG
論文名稱: 光固化3D列印奈米碳管/高分子奈米複合材料製備及感測元件應用
Preparation of Carbon Nanotubes/Photocurable Resin Nanocomposites and Application for Sensing Element
指導教授: 邱智瑋
Chih-Wei Chiu
口試委員: 邱顯堂
Hsien-Tang Chiu
游進陽
Chin-Yang Yu
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 89
中文關鍵詞: 奈米碳管光固化3D列印奈米複合材料
外文關鍵詞: Carbon Nanotube, Vat Photo Polymerization, Nanocomposites
相關次數: 點閱:439下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來因為積層製造技術的種種優勢,如縮短產品研發週期、高品質、客製化、低成本、低庫存量等。研究單位對於直接製造各種應用的物件及結構有很大的研究興趣,但因加工材料受限導致了應用範圍的侷限,這問題降低了積層製造本身的附加價值,阻礙其發展。
    本研究主要是利用順向奈米碳管(Aligned Carbon Nanotube),混成丙烯酸脂基材製成光固化樹脂/奈米碳管複合材料,當導電填充物添加量達到複合導電材料的滲透閾值時,導電率會急劇提升並達到電性穩定,最後成功製備出導電性高分子奈米複合材料,並利用光固化列印機製作出3D複雜結構。
    為改善碳管的分散性,以自行設計之高分子型分散劑(SMA-amide)分散奈米碳管,分散劑以親油端的苯環和奈米碳管上的芳香族產生物理吸附及孤對電子對的相互作用,並藉由在奈米碳管周圍纏繞分子產生空間位阻,幫助穩定及分散溶劑中的碳管,並找出最佳分散劑種類及參數,提升奈米材料之分散性,隨後將分散劑、奈米碳管及光固化樹脂混合,製成光固化樹脂/奈米碳管奈米複合材料,探討了奈米碳管之添加量及列印參數,獲得最佳的導電性及成品質量。
    最後成功的製備出感測人體碰觸的人機接口設備(HID),複合導電材料本身具備導電性且能穩定感測觸碰訊號。搭配積層製造技術的種種優勢,在低成本的3D列印機上,生產者發揮創意自行設計感測元件的結構、樣式,甚至在未來生產各式傳感器且無須複雜的電路及生產設備,於眾多領域提供應用及發展。


    In recent years, due to various advantages of Additive Manufacturing technology, such as shortening product development cycle, high quality, low cost, customization, and low inventory. 3D printing has gained significant research interest recently for directly manufacturing 3D components and structures for use in a variety of applications, but the limitation of the application range due to the limitation of processing materials, which reduces the added value of the laminated manufacturing itself and hinders its development.
    This study mainly uses Aligned Carbon Nanotube material to form a photocurable resin/carbon nanotube composite material. When the amount of conductive filler added reaches the penetration threshold of the composite conductive material, the conductivity is sharply improved and electrically stable. Finally, the conductive polymer nanocomposite is successfully prepared, and the 3D complex structure is made by the photocuring printing mechanism. In order to improve the dispersibility of the carbon nanotube, the self-designed polymeric dispersant (SMA-amide) to enhance the dispersion of nanomaterials. The interaction of π bonds and lone pairs helps to stabilize and disperse carbon nanotubes in the solvent by winding molecules around the carbon nanotubes and creating steric hindrance. Find the best dispersant types and parameters, improve the dispersibility of nanomaterials, and then mix the dispersant, carbon nanotubes and photocurable resin to make photocurable resin/ carbon nanotube nanocomposite.
    Finally, the composite materials were successfully used in capacitive Human-Interface-Devices (HID). In the future, this composite material can produce various high-tech technologies on low-cost photopolymerization curing printers. Sensors without the need for complex circuit and sensor production facilities, and provide applications and development in many areas.

    誌謝 i 中文摘要 ii Abstract iv 目錄 vi 圖目錄 ix 表目錄 xiii 第一章、 緒論 1 1.1 前言 1 1.2 人類科技發展與列印技術之相關性 2 1.3 積層製造之特色優勢 3 1.4 研究動機 4 第二章、 文獻回顧與探討 5 2.1 積層製造技術 5 2.2 ASTM積層製造分類 5 2.3 光聚合固化技術 14 2.3.1 光聚合固化技術發展 14 2.3.2 光聚合固化技術材料簡介 16 2.3.3 光固化技術優缺點分析 22 2.4 奈米材料分散及穩定機制 23 2.4.1 奈米材料分散及穩定種類 24 2.4.2 界面活性劑介紹 25 2.4.3 聚醚胺介紹 26 2.5 碳材簡介 27 2.5.1 碳材料演變 27 2.5.2 奈米尺寸性質 29 2.5.3 奈米碳管(Carbon Nanotube, CNT) 32 2.5.4 奈米碳管型態 33 2.5.5 奈米碳管基本特性 35 2.5.6 奈米碳管製備方法 35 2.5.7 導電複合材料之滲透理論 36 2.6 積層製造技術近期概況 38 2.6.1 材料擠製成型技術(Material Extrusion, ME) 38 2.6.2 光聚合固化技術(Vat Photo Polymerization, VP) 39 第三章、 實驗方法 46 3.1 實驗材料與設備儀器 46 3.1.1 實驗材料 46 3.1.2 實驗設備及分析儀器 48 3.2 實驗流程圖 52 3.3 實驗步驟 53 3.3.1 光固化樹脂製備 53 3.3.2 高分子分散劑馬來酸酐-酰胺(SMA-Amide)的合成 53 3.3.3 奈米碳管分散液製備 54 3.3.4 光固化奈米複合材料製 54 第四章、 結果與討論 56 4.1 高分子型分散劑 56 4.1.1 苯乙烯馬來酸酐-酰胺(SMA-amide)的合成 56 4.1.2 苯乙烯馬來酸酐-酰胺(SMA-amide)的鑑定 57 4.1.3 高分子分散劑於不同溶劑下的溶解度測試 59 4.1.4 高分子型分散劑與奈米碳管分散機制 61 4.2 製備分散性良好之奈米碳管分散液 61 4.2.1 奈米碳管分散液之UV-vis穿透度分析 64 4.2.2 雷射奈米粒徑電位分析儀(Zetasizer)探討分散性 66 4.2.3 穿透式電子顯微鏡探討分散性 67 4.3 光固化樹脂製備 69 4.4 光固化奈米複合材料製備 72 4.4.1 導電材料奈米碳管滲透閾值 74 4.4.2 奈米碳管複合材料機械性質 77 4.5 以光聚合固化技術製備電容式感測鍵盤 80 第五章、 結論 83 參考文獻 85

    1. Park, S., Jun, S., Statistical Technology Analysis for Competitive Sustainability of Three Dimensional Printing. Sustainability 9, 1142 (2017).
    2. Joshi, S.C., Sheikh, A.A., 3D printing in aerospace and its long-term sustainability. Virtual and Physical Prototyping 10, 175-185 (2015).
    3. Ford, S., Despeisse, M., Additive manufacturing and sustainability: an exploratory study of the advantages and challenges. Journal of Cleaner Production 137, 1573-1587 (2016).
    4. Rayna, T., Striukova, L., From rapid prototyping to home fabrication: How 3D printing is changing business model innovation. Technological Forecasting and Social Change 102, 214-224 (2016).
    5. 鄭正元(主編)(民106)。3D列印:積層製造技術與應用。台灣:全華圖書。.
    6. Petrick, I.J., Simpson, T.W., 3D Printing Disrupts Manufacturing: How Economies of One Create New Rules of Competition. Research-Technology Management 56, 12-16 (2015).
    7. Karunakaran, K.P., Bernard, A., Suryakumar, S., Dembinski, L., and Taillandier, G., Rapid manufacturing of metallic objects. Rapid Prototyping Journal 18, 264-280 (2012).
    8. Levy, G.N., Schindel, R., and Kruth, J.P., Rapid Manufacturing and Rapid Tooling with Layer Manufacturing (Lm) Technologies, State of the Art and Future Perspectives. CIRP Annals 52, 589-609 (2003).
    9. Zhang, Y., Ramanujan, D., Ramani, K., and Chen, Y., The status, challenges, and future of additive manufacturing in engineering. Computer-Aided Design 69, 65-89 (2015).
    10. Hon, K.K.B., Li, L., Hutchings, I.M., Direct writing technology—Advances and developments. CIRP Annals 57, 601-620 (2008).
    11. Wei, M.Z., Feng,W.W., Alexandridis, P.Z., and Chi,W.G., 3D direct writing fabrication of electrodes for electrochemical storage devices. Journal of Power Sources 354, 134-147 (2017).
    12. Mohan P.P., Venkata R.N., and Dhande, S.G. Slicing procedures in layered manufacturing: a review. Rapid Prototyping Journal 9, 274-288 (2003).
    13. Bak, D., Rapid prototyping or rapid production? 3D printing processes move industry towards the latter. Assembly Automation 23, 340-345 (2003).
    14. Kruth, J.P., Leu, M.C., and Nakagawa, T., Progress in Additive Manufacturing and Rapid Prototyping. CIRP Annals 47, 525-540 (1998).
    15. Williams, C.B. Mistree, F., and Rosen, D.W., A functional classification framework for the conceptual design of additive manufacturing technologies. J Mech Des 133, 12 (2011). .
    16. Standard Terminology for Additive Manufacturing Technologies No. F2792-12a (2012).
    17. Vayre, B., Vignat, F., and Villeneuve, F., Metallic additive manufacturing: state-of-the-art review and prospects. Mechanics & Industry 13, 89-96 (2012).
    18. Turner, B.N., Strong, R.S., and Gold, A., A review of melt extrusion additive manufacturing processes: I. Process design and modeling. Rapid Prototyping J 20, 192–204 (2014).
    19. Ahn, S.H., Montero, M., Odell, D., Roundy, S., and Wright, P.K., Anisotropic material properties of fused deposition modeling ABS. Rapid Prototyping Journal 8, 248-257 (2002).
    20. Feng, W., Fuh, J.Y.H., and Wong, Y.S., Development of a Drop-On-Demand Micro Dispensing System. Materials Science Forum 505-507, 25-30 (2006).
    21. Mendez, P.F., Eagar, T.W.F., Gao and Sonin, A. A., Precise deposition of molten microdrops: The physics of digital microfabrication, Proc. R. Soc. Lond. A, Math. Phys. Sci 444, 533–554 (2003).
    22. Gibson, I., Rosen, D., and Stucker, B., Additive Manufacturing Technologies. New York, NY, USA: Springer Science, (2010).
    23. Leon, A.C., Qiyi, C., Napolabe B.P., Jerome, O., Jill, M., and Rigoberto C., High performance polymer nanocomposites for additive manufacturing applications. Reactive and Functional Polymers 103, 141-155 (2016).
    24. Manapat, J.Z., Chen, Q., Ye, P., and Advincula, R.C., 3D Printing of Polymer Nanocomposites via Stereolithography. Macromolecular Materials and Engineering 302, 1600553 (2017).
    25. Nandwana, P., Elliott, AM., Siddel, D., Merriman, A., Peter, WH., and Babu, SS., Powder bed binder jet 3D printing of Inconel 718: Densification, microstructural evolution and challenges. Current Opinion in Solid State and Materials Science 21, 207-218 (2017).
    26. Calignano, F., Manfredi, D., Ambmbrosio, E.P., Biamino, S., Lombmbardi, M., Atzen.i, E., Salmi, A., Minetola, P., and Fino, P., Overview on Additive Manufacturing Technologies. Proceedings of the IEEE 105, 593-612 (2017).
    27. Dudek, P., Rapacz-Kmita, A., Rapid Prototyping: Technologies, Materials and Advances. Archives of Metallurgy and Materials 61, 891-896 (2016).
    28. Hull, C. (UVP, Inc.) Apparatus for Production of Three-Dimensional Objects by Stereolithography. U.S. Patent 4575330, (1986).
    29. Ahn, B.U., Lee, S.K., Lee, S.K., Jeong, H.M., and Kim, B.K., High performance UV curable polyurethane dispersions by incorporating multifunctional extender. Progress in Organic Coatings 60, 17-23 (2007).
    30. Bowman, C.N., and Kloxin, C.J., Toward an enhanced understanding and implementation of photopolymerization reactions. AIChE Journal 54, 2775-2795 (2008).
    31. Corcione, C.E., Cataldi, A., and Frigione, M., Measurements of size distribution nanoparticles in ultraviolet-curable methacrylate-based boehmite nanocomposites. Journal of Applied Polymer Science 128, 4102-4109 (2013).
    32. de Hazan, Y., Thänert, M., Trunec, M., and Misak, J., Robotic deposition of 3d nanocomposite and ceramic fiber architectures via UV curable colloidal inks. Journal of the European Ceramic Society 32, 1187-1198 (2012).
    33. Lin, S.H., Hsiao, Y.N., and Hsu, K.Y., Preparation and characterization of Irgacure 784 doped photopolymers for holographic data storage at 532 nm. Journal of Optics A: Pure and Applied Optics 11, 024012 (2009).
    34. Haitao, L., Jianhua, M., Study on Nanosilica Reinforced Stereolithography Resin. Journal of Reinforced Plastics and Composites 29, 909-920 (2009).
    35. Hoyle, C.E., Lee, T.Y., and Roper, T., Thiol-enes: Chemistry of the past with promise for the future. Journal of Polymer Science Part A: Polymer Chemistry 42, 5301-5338 (2004).
    36. Tumbleston, J.R., Shirvanyants, D., Ermoshkin, N., Janusziewicz, R., Johnson, A.R., and Kelly, D., Continuous liquid interface production of 3D objects. Science 347, 1349-1352 (2015).
    37. Wesley Machado Cunico, M. de Carvalho, J. Development of acrylate-based material using a multivariable approach: additive manufacturing applications. Rapid Prototyping Journal 20, 121-132 (2014).
    38. Liu, H., Electrically conductive strain sensing polyurethane nanocomposites with synergistic carbon nanotubes and graphene bifillers. Nanoscale 8, 12977-12989 (2016).
    39. Moazzami Gudarzi, M., and Sharif, F., Enhancement of dispersion and bonding of graphene-polymer through wet transfer of functionalized graphene oxide. Express Polymer Letters 6, 1017-1031 (2012).
    40. Xie, X., Mai, Y., and Zhou, X., Dispersion and alignment of carbon nanotubes in polymer matrix: A review. Materials Science and Engineering: R: Reports 49, 89-112 (2005).
    41. Punetha, V.D., Functionalization of carbon nanomaterials for advanced polymer nanocomposites: A comparison study between CNT and graphene. Progress in Polymer Science 67, 1-47 (2017).
    42. Tang, Z., Wei, Q., and Guo, B., A generic solvent exchange method to disperse MoS2 in organic solvents to ease the solution process. Chem Commun (Camb) 50, 3934-3937 (2014).
    43. Deshmukh, A.A., Mhlanga, S.D., and Coville, N.J., Carbon spheres. Materials Science and Engineering: R: Reports 70, 1-28 (2010).
    44. Iijima, S., Helical microtubules of graphitic carbon. Nature 354 , 56-58 (1991).
    45. Collins, P.G., Avouris, P., Nanotubes for electronics. Scientific American, 283 62-69 (2000).
    46. Stoller, M.D., Park, S., Zhu, Y., An, J., and Ruoff, R.S., Graphene-based ultracapacitors. Nano Lett 8, 3498-3502 (2008).
    47. Balandin, A.A., Superior thermal conductivity of single-layer graphene. Nano Lett 8, 902-907 (2008).
    48. Wallace, P.R., The Band Theory of Graphite. Physical Review 71, 622-634 (1947).
    49. Kroto, H.W., Heath, J.R., O'Brien, S.C., Curl, R.F., and Smalley, R.E., C60: Buckminsterfullerene. Nature 318, 162-163 (1985).
    50. Kuilla, T., Recent advances in graphene based polymer composites. Progress in Polymer Science 35, 1350-1375 (2010).
    51. Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S. and Geim, A.K., The electronic properties of graphene. Reviews of Modern Physics 81, 109-162 (2009).
    52. Paul, D.R., and Robeson, L.M., Polymer nanotechnology: Nanocomposites. Polymer 49, 3187-3204 (2008).
    53. Novoselov, K.S., Jiang Zhang, Z.Y., Morozov, S.V., Stormer, H.L., and Zeitler, U., Room-temperature quantum Hall effect in graphene Science 315 (2007).
    54. Katsnelson, M.I., Novoselov, K.S., and Geim, A.K., Chiral tunnelling and the Klein paradox in graphene. Nature Physics 2, 620-625 (2006).
    55. Ma, P.C., Siddiqui, N.A., Marom, G. and Kim, J.K., Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review. Composites Part A: Applied Science and Manufacturing 41, 1345-1367 (2010).
    56. Zhang, Q., Huang, J.Q., Qian, W.Z., Zhang, Y.Y., and Wei, F., The road for nanomaterials industry: a review of carbon nanotube production, post-treatment, and bulk applications for composites and energy storage. Small 9, 1237-1265 (2013).
    57. Motaghi, A., Hrymak, A., and Motlagh, G.H., Electrical conductivity and percolation threshold of hybrid carbon/polymer composites. Journal of Applied Polymer Science 132, 148-152 (2015).
    58. Bauhofer, W., and Kovacs, J.Z., A review and analysis of electrical percolation in carbon nanotube polymer composites. Composites Science and Technology 69, 1486-1498 (2009).
    59. Ram, R., Rahaman, M., Aldalbahi, A., and Khastgir, D., Determination of percolation threshold and electrical conductivity of polyvinylidene fluoride (PVDF)/short carbon fiber (SCF) composites: effect of SCF aspect ratio. Polymer International 66, 573-582 (2017).
    60. Wei, X.J., Li, D., Jiang, W., Gu, Z.M., Wang, X.J., Zhang, Z.X., and Sun, Z.Z., 3D Printable Graphene Composite. Sci Rep 5, 11181 (2015).
    61. Zhu, C. 3D printed functional nanomaterials for electrochemical energy storage. Nano Today 15, 107-120 (2017).
    62. Chen, Q.Y., Mangadlao, J.D., Wallat, J., De Leon, A., Pokorski, J.K., Advincula, and R.C., 3D Printing Biocompatible Polyurethane/Poly(lactic acid)/Graphene Oxide Nanocomposites: Anisotropic Properties. ACS Appl Mater Interfaces 9, 4015-4023 (2017).
    63. Kalsoom, U., Peristyy, A., Nesterenko, P.N., and Paull, B. A., 3D printable diamond polymer composite: a novel material for fabrication of low cost thermally conducting devices. RSC Advances 6, 38140-38147 (2016).
    64. Leigh, S.J., Bradley, R.J., Purssell, C.P., Billson, D.R., and Hutchins, D.A., A simple, low-cost conductive composite material for 3D printing of electronic sensors. PLoS One 7, e49365 (2012).
    65. Taormina, G., Sciancalepore, C., Bondioli, F., and Messori, M., Special Resins for Stereolithography: In Situ Generation of Silver Nanoparticles. Polymers 10, 212 (2018).
    66. Patel, D.K., Sakhaei, A.H., Layani, M., Zhang, B., and Ge, Q., Highly Stretchable and UV Curable Elastomers for Digital Light Processing Based 3D Printing. Adv Mater 29 (2017).
    67. Yamada, T., Hayamizu, Y., Yamamoto, Y., Yomogida, Y., Izadi-Najafabadi, A., Futaba, D.N., and Hata, K.A., Stretchable carbon nanotube strain sensor for human-motion detection. Nat Nanotechnol 6, 296-301 (2011).
    68. Avramov-Zamurovic, S., Dagalakis, N.G., Lee, R.D., Yoo, J.M., Kim, Y.S., and Yang, S.H., Embedded Capacitive Displacement Sensor for Nanopositioning Applications. IEEE Transactions on Instrumentation and Measurement 60, 2730-2737 (2011).
    69. Wang, Y., Park, S., Yeow, J.T.W., Langner, A., and Müller, F. A., Capacitive humidity sensor based on ordered macroporous silicon with thin film surface coating. Sensors and Actuators B: Chemical 149, 136-142 (2010).

    無法下載圖示 全文公開日期 2024/07/25 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE