簡易檢索 / 詳目顯示

研究生: Tran Thi Bich Quyen
Tran - Thi Bich Quyen
論文名稱: 自组装核壳纳米复合材料和纳米结构的三金属作为高灵敏度的SERS基质的生物标志物的检测
Self-assembled Core-shell Nanocomposites and Trimetallic Nanostructure as Highly Sensitive SERS Substrates for the Detection of Biomarkers
指導教授: 黃炳照
Bing-Joe Hwang
口試委員: 陳生明
Shen-Ming Chen
楊明長
Ming-Chang Yang
杜景順
Jing-Shan Do
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 102
語文別: 英文
論文頁數: 144
中文關鍵詞: Au@SiO2 核/壳纳米粒子R6G纳米棒三金属纳米立方体Rd3BCEA抗原SERS
外文關鍵詞: SERS, Au@SiO2 core/shell nanoparticles, nanorods, R6G, trimetallic nanocubes, Rd3B, CEA antigen
相關次數: 點閱:189下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 最近科学家表明在疾病的诊断协议的发展极大的兴趣与检测极低限(LOD) ,高灵敏度和选择性。本研究的目标是开发一个表面增强拉曼散射通过使用金基核/壳纳米结构三金属(SERS )的诊断协议与检出限低,灵敏度高,选择性。
    首先,利用金@二氧化硅核/壳纳米颗粒组合与高度敏感的表面增强拉曼光谱研究了葡萄糖和尿酸在本研究的决心。罗丹明6G ( R6G ),染料分子被用来评估对合成区@二氧化硅的核/壳纳米粒子与各种二氧化硅壳的厚度的SERS增强因子。从R6G的SERS信号的增强,发现增加与壳厚度的减少。芯/壳组合为1-2纳米的二氧化硅层(用NaOH (0.1M)溶液的较厚的二氧化硅层2-3毫微米的烧蚀)在一个Au纳米颗粒的∼ 36 nm的显示出最高的SERS信号。我们的研究结果表明,表面增强拉曼光谱技术能够检测血糖和尿酸在较宽的浓度范围内,即20毫微克/升∼20毫克/分升( 10-12 - 10-3 M)和16.8 ng / dL到2.9毫克/分升( 10-11 - 1.72 × 10-4 M)分别为∼ 14.6纳克/升( ∼ 0.73 × 10-12 M)和∼ 12.3纳克/升( ∼ 0.73 × 10-11关联较低的检出限(LOD ) M) 。
    第二种方法是使用欧@二氧化矽核/壳纳米棒的癌胚抗原( CEA)检测,以建立一个高度敏感的自聚焦表面增强拉曼散射(SERS )方法。的SERS增强因子各向异性金@二氧化硅纳米棒与各种厚度,赖以罗丹明6G ( R6G )染料应用的报道分子的定量测定CEA的二氧化硅壳进行了评价。最高R6G信号被获得了1-2纳米厚度的[使用HF ( 30 %)溶液更厚的二氧化硅层( 6-8纳米)的烧蚀]的二氧化硅层。自聚焦字符来源于抗体 - 抗原相互作用这有利于SERS探针组装和显著增加CEA的检测灵敏度。我们的结果表明,表面增强拉曼光谱技术能够很宽的浓度范围内检测CEA 。与检测的0.86蛋白原/毫升( LOD)的非常低的限制,在Au @二氧化硅纳米探针使癌症的早期诊断。
    最后的方法是开发基于电偶置换反应和共还原相应的离子的第一次的中空或多孔的银/金/铂三金属纳米粒子的简单和有效的合成。该纳米粒子的特点是UV-Vis光谱,透射电子显微镜(TEM) ,高分辨透射电子显微镜和X射线衍射。它也表明,银/金/铂三金属纳米粒子进行了非常SERS活性的灵敏度和稳定性的增强因子为单分子检测不够高。我们的结果可知,若丹明3B染料分子可以在很宽的浓度范围从10-15到10-8M被检测,具有检测被10-15 M的下限
    在这项研究中,在Au纳米颗粒的和Au纳米棒的表面上,并且替换方法为银/金/铂三金属纳米粒子的合成分别极薄且均匀的二氧化硅外壳层的涂布技术提供了一种可行的方法,涂层和其它纳米材料architecturing可可以扩展到其他类似的技术应用


    Recently scientists show great interest in the development of a disease diagnosis protocol with extremely low limit of detection (LOD), high sensitivity and selectivity. The goal of this research is to develop a surface-enhanced Raman scattering (SERS) diagnosis protocol with low LOD, high sensitivity, and selectivity by using Au-based core/shell and trimetallic nanostructures.
    First of all, the use of Au@SiO2 core/shell nanoparticle assemblage with highly sensitive SERS was investigated for the determination of glucose and uric acid in this study. Rhodamine 6G (R6G) dye molecules were used to evaluate the SERS enhancement factor for the synthesized Au@SiO2 core/shell nanoparticles with various silica shell thicknesses. The enhancement of SERS signal from R6G was found to increase with a decrease in the shell thickness. The core/shell assemblage with silica layer of 1-2 nm (by the ablation of a thicker silica layer 2-3 nm using NaOH (0.1 M) solution) over a Au nanoparticle of ~36 nm showed the highest SERS signal. Our results show that the SERS technique is able to detect glucose and uric acid within wide concentration ranges, i.e. 20 ng/dL to 20 mg/dL (10-12 – 10-3 M) and 16.8 ng/dL to 2.9 mg/dL (10-11 – 1.72 × 10-4 M) respectively, with associated lower detection limits (LOD) of ~14.6 ng/dL (~0.73 × 10-12 M) and ~12.3 ng/dL (~0.73 × 10-11 M).
    The second approach is to develop a highly sensitive self-focusing surface-enhanced Raman scattering (SERS) methodology by using Au@SiO2 core/shell nanorods for carcinoembryonic antigen (CEA) detection. The SERS enhancement factor was evaluated for anisotropic Au@SiO2 nanorods with silica shells of various thicknesses, upon which Rhodamine 6G (R6G) dye was applied as a reporter molecule for the quantitative determination of CEA. The highest R6G signal was attained with a silica layer of 1-2 nm thickness [by the ablation of a thicker silica layer (6-8 nm) using HF (30%) solution]. The self-focusing character originates from the antibody-antigen interaction which facilitates SERS probes assemble and significantly increases the detection sensitivity of CEA. Our results show that the SERS technique is able to detect CEA within a wide concentration range. With the extremely low limit of detection (LOD) of 0.86 fg/mL, the Au@SiO2 nanoprobes enable an early diagnosis of cancer.
    The final approach is to develop a simple and effective synthesis of hollow or porous Ag/Au/Pt trimetallic nanocubes based on the galvanic replacement reaction and co-reduction of the corresponding ions for the first time. The nanocubes have been characterized by UV–vis spectroscopy, transmission electron microscopy (TEM), high-resolution TEM, and X-ray diffraction. It was also demonstrated that the Ag/Au/Pt trimetallic nanocubes were be extremely SERS-active sensitivity and stability with an enhancement factor high enough for single molecule detection. Our results that the Rhodamine 3B dye molecules could be detected over a wide concentration range from 10-15 to 10-8 M, with a lower limit of detection being 10-15 M.
    In this study, the ultrathin and uniform a silica shell layer coating techniques on Au nanoparticle’s and Au nanorod’s surfaces, and replacement techniques for the synthesis of Ag/Au/Pt trimetallic nanocubes respectively provides a feasible method for coating and architecturing of other nanomaterials which can be extended to other similar technological applications.

    Abstract i Acknowledgement iii Contents iv List of figures viii List of schemes and equations xiv List of tables xv Acronyms xvi Chapter 1 Introduction 1 1.1 Information about Raman/SERS 1 1.2 SERS enhancement theories 5 1.2.1 Electromagnetic enhancement (EE) 8 1.2.2 Chemical enhancement (CE) 10 1.2.3 Enhancement factor 12 1.3 Applications of SERS to bioanalysis 13 1.4 SERS based bioassay methods 18 1.5 Nanotechnology for cancer therapeutics 21 1.6 Biocompatibility of nanoparticles 22 1.7 Information about lung cancer 23 1.8 Overview of issues relating to material application in SERS 24 1.9 Advantages of silica shell and trimetallic compositions in SERS 25 1.10 Motivation and objectives 25 Chapter 2 Materials and Methods 28 2.1 Materials 28 2.2 Methods 28 2.2.1 Analytical tools 28 2.2.1.1 X-ray diffraction (XRD) measurements 28 2.2.1.2 Scanning electron microscopy (SEM) measurements 29 2.2.1.3 Transmission electron microscopy (TEM) measurements 29 2.2.1.4 Determining of metal(s) loading 29 2.2.1.5 Raman measurements 29 2.2.2 Preparation of materials 30 2.2.2.1 Antibody conjugation with Au@SiO2 core/shell nanorod 30 2.2.2.2 Preparation of CEA antigen 30 2.2.2.3 Preparation of SERS substrates 31 Chapter 3 Au@SiO2 core/shell nanoparticle assemblage used for highly sensitive SERS based determination of glucose and uric acid 32 3.1 Introduction 32 3.2 Experimental section 35 3.2.1 Synthesis of Au nanoparticles 35 3.2.2 Preparation of Au@SiO2 nanoparticles 35 3.3 Results and discussion 36 3.3.1. Morphology and optical absorption properties of the Au and Au@SiO2 core/shell nanoparticles 36 3.3.2. Effect of Au nanoparticles’ sizes on the SERS signal 38 3.3.3. Effect of the Au@SiO2 core/shell nanoparticles’ silica shell thicknesses on the SERS signal… 40 3.3.4. Quantitative detection of glucose using Au@SiO2 core/shell nanoparticles 42 3.3.5. Temporal stability of glucose on Au@SiO2 core/shell nanoparticles 43 3.3.6. Quantitative study of uric acid using Au@SiO2 core/shell nanoparticles 44 3.4 Summary 46 Chapter 4 Self-focusing Au@SiO2 nanorods with rhodamine 6G as highly sensitive SERS substrate for carcinoembryonic antigen detection 47 4.1 Introduction 47 4.2 Experimental section 50 4.2.1 Synthesis of Au nanorods 50 4.2.2 Preparation of Au@SiO2 nanorods 50 4.3 Results and discussion 52 4.3.1 Morphology and optical absorption properties of Au and Au@SiO2 core/shell nanorod 52 4.3.2 Effect of the silica shell thicknesses on the SERS signal 55 4.3.3 SERS spectra of CEA antigen on the Au@SiO2 core/shell nanorods 57 4.4 Summary 64 Chapter 5 Novel Ag/Au/Pt trimetallic nanocubes and their application in surface-enhanced Raman scattering 65 5.1 Introduction 65 5.2 Experimental section 67 5.2.1 Preparation of silver nanocubes 67 5.2.2 Synthesis of Ag/Au/Pt trimetallic nanocubes 67 5.3 Results and discussion 68 5.3.1 Characterization of the Ag nanocubes and Ag/Au/Pt trimetallic nanocubes 68 5.3.2 The formation mechanism of the Ag/Au/Pt trimetallic porous nanocubes 72 5.3.3 Application of the Ag/Au/Pt trimetallic porous nanocubes in SERS measurements 73 5.4 Summary 79 Chapter 6 Conclusions 80 Chapter 7 Future Perspectives 82 References 84 Appendix 119 Curriculum vitae 120 List of publications 121 List of conference papers 122 List of conferences/workshops 123

    1. Ferraro, J. R.; Nakamoto, K., Introductory Raman Spectroscopy. Academic Press Ltd. London NW1 7DX 1994, 1-363.
    2. McCreery, R. L., Raman Spectroscopy for Chemical Analysis. Eds. Winefordner, J. D., Wiley-Interscience 2000, DOI: 10.1002/0471721646.
    3. Raman, C. V.; F.R.S., A new radiation. Indian J. Phys. 1928, (2), 387-398.
    4. Kneipp, K.; Haka, A. S.; Kneipp, H.; Badizadegan, K.; Yoshizawa, N.; Boone, C.; Shafer-Peltier, K. E.; Motz, J. T.; Dasari, R. R.; Feld, M. S., Surface-Enhanced Raman Spectroscopy in Single Living Cells Using Gold Nanoparticles. Appl. Spectrosc. 2002, 56, (2), 150-154.
    5. Vo-Dinh, T.; Yan, F.; Wabuyele, M., Surface-Enhanced Raman Scattering for Biomedical Diagnostics and Molecular Imaging. In Surface-Enhanced Raman Scattering, Kneipp, K.; Moskovits, M.; Kneipp, H., Eds. Springer Berlin Heidelberg: 2006, Vol. 103, pp 409-426.
    6. Vo-Dinh, T.; Yan, F.; Wabuyele, M. B., Surface-enhanced Raman scattering for medical diagnostics and biological imaging. J. Raman Spectrosc. 2005, 36, (6-7), 640-647.
    7. Kneipp, K.; Kneipp, H.; Itzkan, I.; Dasari, R. R.; Feld, M. S., Surface-enhanced Raman scattering and biophysics. J. Phys. Condens. Matter 2002, 14, (18), R597.
    8. Schomacker, K. T.; Bangcharoenpaurpong, O.; Champion, P. M., Investigations of the Stokes and anti-Stokes resonance Raman scattering of cytochrome c. J. Chem. Phys. 1984, 80, (10), 4701-4717.
    9. Laserna, J. J., Modern Techniques in Raman Spectroscopy. Wiley, New York 1996.
    10. Notingher, I.; Hench, L. L., Raman microspectroscopy: A noninvasive tool for studies of individual living cells in vitro. Expert Rev. Med. Devic. 2006, 3, (2), 215-234.

    11. Hanlon, E. B.; Manoharan, R.; Koo, T. W.; Shafer, K. E.; Motz, J. T.; Fitzmaurice, M.; Kramer, J. R.; Itzkan, I.; Dasari, R. R.; Feld, M. S., Prospects for in vivo Raman spectroscopy. Phys. Med. Biol. 2000, 45, (2), R1-59, doi:10.1088/0031-9155/45/2/201.
    12. Otto, A., Surface-enhanced Raman scattering: “Classical” and “Chemical” origins. In Light Scattering in Solids IV, Cardona, M.; Guntherodt, G., Eds. Springer Berlin Heidelberg: 1984, Vol. 54, pp 289-418.
    13. Fleischmann, M.; Hendra, P. J.; McQuillan, A. J., Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 1974, 26, (2), 163-166.
    14. Jeanmaire, D. L.; Van Duyne, R. P., Surface raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J. Electroanal. Chem. Interfacial Elechochem. 1977, 84, (1), 1-20.
    15. Albrecht, M. G.; Creighton, J. A., Anomalously intense Raman spectra of pyridine at a silver electrode. J. Am. Chem. Soc. 1977, 99, (15), 5215-5217.
    16. Campion, A.; Kambhampati, P., Surface-enhanced Raman scattering. Chem. Soc. Rev. 1998, 27, (4), 241-250.
    17. Tuschel, D. D.; Pemberton, J. E.; Cook, J. E., SERS and SEM of roughened silver electrode surfaces formed by controlled oxidation-reduction in aqueous chloride media. Langmuir 1986, 2, (4), 380-388.
    18. Feofanov, A.; Ianoul, A.; Kryukov, E.; Maskevich, S.; Vasiliuk, G.; Kivach, L.; Nabiev, I., Nondisturbing and Stable SERS-Active Substrates with Increased Contribution of Long-Range Component of Raman Enhancement Created by High-Temperature Annealing of Thick Metal Films. Anal. Chem. 1997, 69, (18), 3731-3740.
    19. Hui, W.; Jing, L.; Yuling, W.; Erkang, W., Silver nanoparticles coated with adenine: preparation, self-assembly and application in surface-enhanced Raman scattering. Nanotechnology 2007, 18, (17), 175610 (5pp).
    20. Hunyadi, S. E.; Murphy, C. J., Bimetallic silver-gold nanowires: fabrication and use in surface-enhanced Raman scattering. J. Mater. Chem. 2006, 16, (40), 3929-3935.
    21. Moskovits, M., Surface-enhanced spectroscopy. Rev. Mod. Phys. 1985, 57, (3), 783-826.
    22. Kerker, M., Electromagnetic model for surface-enhanced Raman scattering (SERS) on metal colloids. Acc. Chem. Res. 1984, 17, (8), 271-277.
    23. Otto, A.; Mrozek, I.; Grabhorn, H.; Akemann, W., Surface-enhanced Raman scattering. J. Phys.: Condens. Matter 1992, 4, (5), 1143-1212.
    24. Gersten, J.; Nitzan, A., Electromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surfaces. J. Chem. Phys. 1980, 73, (7), 3023-3037.
    25. Fan, M.; Lai, F.-J.; Chou, H.-L.; Lu, W.-T.; Hwang, B.-J.; Brolo, A. G., Surface-enhanced Raman scattering (SERS) from Au:Ag bimetallic nanoparticles: the effect of the molecular probe. Chem. Sci. 2013, 4, (1), 509-515.
    26. Lee, P. C.; Meisel, D., Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J. Phys. Chem. 1982, 86, (17), 3391-3395.
    27. Murphy, C. J.; Sau, T. K.; Gole, A. M.; Orendorff, C. J.; Gao, J.; Gou, L.; Hunyadi, S. E.; Li, T., Anisotropic Metal Nanoparticles: Synthesis, Assembly, and Optical Applications. J. Phys. Chem. B 2005, 109, (29), 13857-13870.
    28. Haynes, C. L.; Van Duyne, R. P., Nanosphere Lithography: A Versatile Nanofabrication Tool for Studies of Size-Dependent Nanoparticle Optics. J. Phys. Chem. B 2001, 105, (24), 5599-5611.
    29. Addison, C. J.; Brolo, A. G., Nanoparticle-Containing Structures as a Substrate for Surface-Enhanced Raman Scattering. Langmuir 2006, 22, (21), 8696-8702.
    30. Haes, A. J.; Haynes, C. L.; McFarland, A. D.; Schatz, G. C.; Van Duyne, R. P.; Zou, S., Plasmonic Materials for Surface-Enhanced Sensing and Spectroscopy. MRS Bull. 2005, 30, (05), 368-375.
    31. Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C., The Optical Properties of Metal Nanoparticles:  The Influence of Size, Shape, and Dielectric Environment. J. Phys. Chem. B 2002, 107, (3), 668-677.
    32. Shalaev, V. M.; Sarychev, A. K., Nonlinear optics of random metal-dielectric films. Phys. Rev. B 1998, 57, (20), 13265-13288.
    33. Moskovits, M.; Jeong, D. H., Engineering nanostructures for giant optical fields. Chem. Phys. Lett. 2004, 397, (1-3), 91-95.
    34. Farcau, C.; Astilean, S., Mapping the SERS Efficiency and Hot-Spots Localization on Gold Film over Nanospheres Substrates. J. Phys. Chem. C 2010, 114, (27), 11717-11722.
    35. Kneipp, K.; Wang, Y.; Kneipp, H.; Itzkan, I.; Dasari, R. R.; Feld, M. S., Population Pumping of Excited Vibrational States by Spontaneous Surface-Enhanced Raman Scattering. Phys. Rev. Lett. 1996, 76, (14), 2444-2447.
    36. Nie, S.; Emory, S. R., Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering. Science 1997, 275, (5303), 1102-1106.
    37. Kneipp, K.; Wang, Y.; Kneipp, H.; Perelman, L. T.; Itzkan, I.; Dasari, R. R.; Feld, M. S., Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS). Phys. Rev. Lett. 1997, 78, (9), 1667-1670.
    38. Kneipp, K.; Kneipp, H.; Corio, P.; Brown, S. D. M.; Shafer, K.; Motz, J.; Perelman, L. T.; Hanlon, E. B.; Marucci, A.; Dresselhaus, G.; Dresselhaus, M. S., Surface-Enhanced and Normal Stokes and Anti-Stokes Raman Spectroscopy of Single-Walled Carbon Nanotubes. Phys. Rev. Lett. 2000, 84, (15), 3470-3473.
    39. Safonov, V. P.; Shalaev, V. M.; Markel, V. A.; Danilova, Y. E.; Lepeshkin, N. N.; Kim, W.; Rautian, S. G.; Armstrong, R. L., Spectral Dependence of Selective Photomodification in Fractal Aggregates of Colloidal Particles. Phys. Rev. Lett. 1998, 80, (5), 1102-1105.
    40. Kneipp, K.; Kneipp, H.; Bohr, H., Single-Molecule SERS Spectroscopy. In Surface-Enhanced Raman Scattering, Kneipp, K.; Moskovits, M.; Kneipp, H., Eds. Springer Berlin Heidelberg: 2006, Vol. 103, pp 261-277.
    41. Moskovits, M., Surface-Enhanced Raman Spectroscopy: a Brief Perspective Surface-Enhanced Raman Scattering. In Kneipp, K.; Moskovits, M.; Kneipp, H., Eds. Springer Berlin / Heidelberg: 2006, Vol. 103, pp 1-17.
    42. Zeman, E. J.; Schatz, G. C., An accurate electromagnetic theory study of surface enhancement factors for silver, gold, copper, lithium, sodium, aluminum, gallium, indium, zinc, and cadmium. J. Phys. Chem. 1987, 91, (3), 634-643.
    43. Kambhampati, P.; Child, C. M.; Foster, M. C.; Campion, A., On the chemical mechanism of surface enhanced Raman scattering: Experiment and theory. J. Chem. Phys. 1998, 108, (12), 5013-5026.
    44. Van Duyne, R. P.; Hulteen, J. C.; Treichel, D. A., Atomic force microscopy and surface-enhanced Raman spectroscopy. I. Ag island films and Ag film over polymer nanosphere surfaces supported on glass. J. Chem. Phys. 1993, 99, (3), 2101-2115.
    45. Haynes, C. L.; Van Duyne, R. P., Plasmon-Sampled Surface-Enhanced Raman Excitation Spectroscopy†. J. Phys. Chem. B 2003, 107, (30), 7426-7433.
    46. McFarland, A. D.; Young, M. A.; Dieringer, J. A.; Van Duyne, R. P., Wavelength-Scanned Surface-Enhanced Raman Excitation Spectroscopy. J. Phys. Chem. B 2005, 109, (22), 11279-11285.
    47. Kneipp, K.; Kneipp, H.; Kartha, V. B.; Manoharan, R.; Deinum, G.; Itzkan, I.; Dasari, R. R.; Feld, M. S., Detection and identification of a single DNA base molecule using surface-enhanced Raman scattering (SERS). Phys. Rev. E 1998, 57, (6), R6281-R6284.
    48. Le Ru, E. C.; Blackie, E.; Meyer, M.; Etchegoin, P. G., Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study. J. Phys. Chem. C 2007, 111, (37), 13794-13803.
    49. Yonzon, C. R.; Haynes, C. L.; Zhang, X.; Walsh, J. T.; Van Duyne, R. P., A Glucose Biosensor Based on Surface-Enhanced Raman Scattering:  Improved Partition Layer, Temporal Stability, Reversibility, and Resistance to Serum Protein Interference. Anal. Chem. 2003, 76, (1), 78-85.
    50. Shafer-Peltier, K. E.; Haynes, C. L.; Glucksberg, M. R.; Van Duyne, R. P., Toward a Glucose Biosensor Based on Surface-Enhanced Raman Scattering. J. Am. Chem. Soc. 2002, 125, (2), 588-593.
    51. Haynes, C. L.; Yonzon, C. R.; Zhang, X.; Van Duyne, R. P., Surface-enhanced Raman sensors: early history and the development of sensors for quantitative biowarfare agent and glucose detection. J. Raman Spectrosc. 2005, 36, (6-7), 471-484.
    52. Brolo, A. G.; Germain, P.; Hager, G., Investigation of the Adsorption of l-Cysteine on a Polycrystalline Silver Electrode by Surface-Enhanced Raman Scattering (SERS) and Surface-Enhanced Second Harmonic Generation (SESHG). J. Phys. Chem. B 2002, 106, (23), 5982-5987.
    53. El Amri, S.; Grajcar, L.; Fermandjian, S.; Ghomi, M.; Baron, M. H.; Maurel, M. C. In Studies of RNA and DNA hairpin interactions with mineral surface: implications for molecules in meteorites and Martian samples. Ehrenfreund, P.; Angerer, O.; Battrick, B., Eds. Exo-/Astro-Biology, Italy 2001, pp 337-340.
    54. Mrozek, M. F.; Weaver, M. J., Detection and Identification of Aqueous Saccharides by Using Surface-Enhanced Raman Spectroscopy. Anal. Chem. 2002, 74, (16), 4069-4075.
    55. Chen, S.-P.; Hosten, C. M.; Vivoni, A.; Birke, R. L.; Lombardi, J. R., SERS Investigation of NAD+ Adsorbed on a Silver Electrode. Langmuir 2002, 18, (25), 9888-9900.
    56. Giese, B.; McNaughton, D., Surface-Enhanced Raman Spectroscopic Study of Uracil. The Influence of the Surface Substrate, Surface Potential, and pH. J. Phys. Chem. B 2002, 106, (6), 1461-1470.
    57. Feng, Z.; Liang, C.; Li, M.; Chen, J.; Li, C., Surface-enhanced Raman scattering of xanthopterin adsorbed on colloidal silver. J. Raman Spectrosc. 2001, 32, (12), 1004-1007.
    58. Premasiri, W. R.; Clarke, R. H.; Womble, M. E., Urine analysis by laser Raman spectroscopy. Laser. Surg. Med. 2001, 28, (4), 330-334.
    59. Narayanan, V. A.; Bello, J. M.; Stokes, D. L.; Vo-Dinh, T., Surface-enhanced Raman analysis of vitamin B complex: Quantitative detection of p-aminobenzoic acid. J. Raman Spectrosc. 1991, 22, (6), 327-331.
    60. Habuchi, S.; Cotlet, M.; Gronheid, R.; Dirix, G.; Michiels, J.; Vanderleyden, J.; De Schryver, F. C.; Hofkens, J., Single-Molecule Surface Enhanced Resonance Raman Spectroscopy of the Enhanced Green Fluorescent Protein. J. Am. Chem. Soc. 2003, 125, (28), 8446-8447.
    61. Rohr, T. E.; Cotton, T.; Fan, N.; Tarcha, P. J., Immunoassay employing surface-enhanced Raman spectroscopy. Anal. Biochem. 1989, 182, (2), 388-398.
    62. Grubisha, D. S.; Lipert, R. J.; Park, H.-Y.; Driskell, J.; Porter, M. D., Femtomolar Detection of Prostate-Specific Antigen: An Immunoassay Based on Surface-Enhanced Raman Scattering and Immunogold Labels. Anal. Chem. 2003, 75, (21), 5936-5943.
    63. Kim, I.; Junejo, I. U. R.; Lee, M.; Lee, S.; Lee, E. K.; Chang, S. I.; Choo, J., SERS-based multiple biomarker detection using a gold-patterned microarray chip. J. Mol. Struct. 2012, 1023, 197-203.
    64. Jun, B.-H.; Kim, J.-H.; Park, H.; Kim, J.-S.; Yu, K.-N.; Lee, S.-M.; Choi, H.; Kwak, S.-Y.; Kim, Y.-K.; Jeong, D. H.; Cho, M.-H.; Lee, Y.-S., Surface-Enhanced Raman Spectroscopic-Encoded Beads for Multiplex Immunoassay. J. Comb. Chem. 2007, 9, (2), 237-244.
    65. Bjerneld, E. J.; Zeno Foldes-Papp, Z.; Kall, M.; Rigler, R., Single-Molecule Surface-Enhanced Raman and Fluorescence Correlation Spectroscopy of Horseradish Peroxidase. J. Phys. Chem. B 2002, 106, (6), 1213-1218.
    66. Xu, H.; Bjerneld, E. J.; Kall, M.; Borjesson, L., Spectroscopy of Single Hemoglobin Molecules by Surface Enhanced Raman Scattering. Phys. Rev. Lett. 1999, 83, (21), 4357-4360.
    67. Xu, S.; Ji, X.; Xu, W.; Zhao, B.; Dou, X.; Bai, Y.; Ozaki, Y., Surface-enhanced Raman scattering studies on immunoassay. J. Biomed. Opt. 2005, 10, (3), 031112-031112.
    68. Morjani, H.; Sockalingum, G. D.; Beljebbar, A.; Manfait, M., Optical spectroscopic approach as a rapid tool to characterize the interactions of retinoids with human nuclear receptors. Mantsch, H. H.; Jackson, M., Eds. Proc. SPIE, USA: 1998, 3257, (36), 284-287.
    69. Vo-Dinh, T.; Houck, K.; Stokes, D. L., Surface-Enhanced Raman Gene Probes. Anal. Chem. 1994, 66, (20), 3379-3383.
    70. Culha, M.; Stokes, D.; Allain, L. R.; Vo-Dinh, T., Surface-Enhanced Raman Scattering Substrate Based on a Self-Assembled Monolayer for Use in Gene Diagnostics. Anal. Chem. 2003, 75, (22), 6196-6201.
    71. Vo-Dinh, T.; Allain, L. R.; Stokes, D. L., Cancer gene detection using surface-enhanced Raman scattering (SERS). J. Raman Spectrosc. 2002, 33, (7), 511-516.
    72. Isola, N. R.; Stokes, D. L.; Vo-Dinh, T., Surface-Enhanced Raman Gene Probe for HIV Detection. Anal. Chem. 1998, 70, (7), 1352-1356.
    73. Wabuyele, M. B.; Vo-Dinh, T., Detection of Human Immunodeficiency Virus Type 1 DNA Sequence Using Plasmonics Nanoprobes. Anal. Chem. 2005, 77, (23), 7810-7815.
    74. Rosu, F.; De Pauw, E.; Guittat, L.; Alberti, P.; Lacroix, L.; Mailliet, P.; Riou, J.; Mergny, J., Selective interaction of ethidium derivatives with quadruplexes: an equilibrium dialysis and electrospray ionization mass spectrometry analysis. Biochemistry 2003, 42, (35), 10361-10371.
    75. Grajcar, L.; Huteau, V.; Huynh-Dinh, T.; Baron, M.-H., A SERS probe for adenyl residues available for intermolecular interactions. Part II—Reactive adenyl sites in highly diluted DNA. J. Raman Spectrosc. 2001, 32, (12), 1037-1045
    76. Zhang, R.-Y.; Pang, D.-W.; Zhang, Z.-L.; Yan, J.-W.; Yao, J.-L.; Tian, Z.-Q.; Mao, B.-W.; Sun, S.-G., Investigation of Ordered ds-DNA Monolayers on Gold Electrodes. J. Phys. Chem. B 2002, 106, (43), 11233-11239.
    77. Vo-Dinh, T.; Stokes, D. L.; Griffin, G. D.; Volkan, M.; Kim, U. J.; Simon, M. I., Surface-enhanced Raman Scattering (SERS) method and instrumentation for genomics and biomedical analysis. J. Raman Spectrosc. 1999, 30, (9), 785-793.
    78. Dou, X.; Takama, T.; Yamaguchi, Y.; Hirai, K.; Yamamoto, H.; Doi, S.; Ozaki, Y., Quantitative Analysis of Double-Stranded DNA Amplified by a Polymerase Chain Reaction Employing Surface-Enhanced Raman Spectroscopy. Appl. Opt. 1998, 37, (4), 759-763.
    79. Efrima, S.; Bronk, B. V., Silver Colloids Impregnating or Coating Bacteria. J. Phys. Chem. B 1998, 102, (31), 5947-5950.
    80. Zeiri, L.; Bronk, B. V.; Shabtai, Y.; Czege, J.; Efrima, S., Silver metal induced surface enhanced Raman of bacteria. Colloids Surf. A 2002, 208, (1), 357-362.
    81. Grow, A. E.; Wood, L. L.; Claycomb, J. L.; Thompson, P. A., New biochip technology for label-free detection of pathogens and their toxins. J. Microbiol. Methods 2003, 53, (2), 221-233.
    82. Jarvis, R. M.; Goodacre, R., Discrimination of Bacteria Using Surface-Enhanced Raman Spectroscopy. Anal. Chem. 2003, 76, (1), 40-47.
    83. Sengupta, A.; Laucks, M. L.; Davis, E. J., Surface-Enhanced Raman Spectroscopy of Bacteria and Pollen. Appl. Spectrosc. 2005, 59, (8), 1016-1023.
    84. Bao, P.-D.; Huang, T.-Q.; Liu, X.-M.; Wu, T.-Q., Surface-enhanced Raman spectroscopy of insect nuclear polyhedrosis virus. J. Raman Spectrosc. 2001, 32, (4), 227-230.
    85. Alexander, T. A.; Pellegrino, P. M.; Gillespie, J. B., Near-Infrared Surface-Enhanced-Raman-Scattering-Mediated Detection of Single Optically Trapped Bacterial Spores. Appl. Spectrosc. 2003, 57, (11), 1340-1345.
    86. Kumble, K. D., Protein microarrays: new tools for pharmaceutical development. Anal. Bioanal. Chem. 2003, 377, (5), 812-819.
    87. Doering, W. E.; Nie, S., Spectroscopic Tags Using Dye-Embedded Nanoparticles and Surface-Enhanced Raman Scattering. Anal. Chem. 2003, 75, (22), 6171-6176.
    88. Mulvaney, S. P.; Musick, M. D.; Keating, C. D.; Natan, M. J., Glass-Coated, Analyte-Tagged Nanoparticles: A New Tagging System Based on Detection with Surface-Enhanced Raman Scattering. Langmuir 2003, 19, (11), 4784-4790.
    89. Penn, S. G.; He, L.; Natan, M. J., Nanoparticles for bioanalysis. Curr. Opin. Chem. Biol. 2003, 7, (5), 609-615.
    90. Seydack, M., Nanoparticle labels in immunosensing using optical detection methods. Biosens. Bioelectron. 2005, 20, (12), 2454-2469.
    81. Grow, A. E.; Wood, L. L.; Claycomb, J. L.; Thompson, P. A., New biochip technology for label-free detection of pathogens and their toxins. J. Microbiol. Methods 2003, 53, (2), 221-233.
    82. Jarvis, R. M.; Goodacre, R., Discrimination of Bacteria Using Surface-Enhanced Raman Spectroscopy. Anal. Chem. 2003, 76, (1), 40-47.
    83. Sengupta, A.; Laucks, M. L.; Davis, E. J., Surface-Enhanced Raman Spectroscopy of Bacteria and Pollen. Appl. Spectrosc. 2005, 59, (8), 1016-1023.
    84. Bao, P.-D.; Huang, T.-Q.; Liu, X.-M.; Wu, T.-Q., Surface-enhanced Raman spectroscopy of insect nuclear polyhedrosis virus. J. Raman Spectrosc. 2001, 32, (4), 227-230.
    85. Alexander, T. A.; Pellegrino, P. M.; Gillespie, J. B., Near-Infrared Surface-Enhanced-Raman-Scattering-Mediated Detection of Single Optically Trapped Bacterial Spores. Appl. Spectrosc. 2003, 57, (11), 1340-1345.
    86. Kumble, K. D., Protein microarrays: new tools for pharmaceutical development. Anal. Bioanal. Chem. 2003, 377, (5), 812-819.
    87. Doering, W. E.; Nie, S., Spectroscopic Tags Using Dye-Embedded Nanoparticles and Surface-Enhanced Raman Scattering. Anal. Chem. 2003, 75, (22), 6171-6176.
    88. Mulvaney, S. P.; Musick, M. D.; Keating, C. D.; Natan, M. J., Glass-Coated, Analyte-Tagged Nanoparticles: A New Tagging System Based on Detection with Surface-Enhanced Raman Scattering. Langmuir 2003, 19, (11), 4784-4790.
    89. Penn, S. G.; He, L.; Natan, M. J., Nanoparticles for bioanalysis. Curr. Opin. Chem. Biol. 2003, 7, (5), 609-615.
    90. Seydack, M., Nanoparticle labels in immunosensing using optical detection methods. Biosens. Bioelectron. 2005, 20, (12), 2454-2469.
    91. Katrin, K.; Harald, K.; Irving, I.; Ramachandra, R. D.; Michael, S. F., Surface-enhanced Raman scattering and biophysics. J. Phys.: Condens. Matter 2002, 14, (18), R597.
    92. Cao, R.; Wang, L.; Wang, H.; Xia, L.; Erdjument-Bromage, H.; Tempst, P.; Jones, R. S.; Zhang, Y., Role of Histone H3 Lysine 27 Methylation in Polycomb-Group Silencing. Science 2002, 298, (5595), 1039-1043.
    93. Ostblom, M.; Liedberg, B.; Demers, L. M.; Mirkin, C. A., On the Structure and Desorption Dynamics of DNA Bases Adsorbed on Gold: A Temperature-Programmed Study. J. Phys. Chem. B 2005, 109, (31), 15150-15160.
    94. Nam, J.-M.; Thaxton, C. S.; Mirkin, C. A., Nanoparticle-Based Bio-Bar Codes for the Ultrasensitive Detection of Proteins. Science 2003, 301, (5641), 1884-1886.
    95. Xu, S.; Ji, X.; Xu, W.; Li, X.; Wang, L.; Bai, Y.; Zhao, B.; Ozaki, Y., Immunoassay using probe-labelling immunogold nanoparticles with silver staining enhancement via surface-enhanced Raman scattering. Analyst 2004, 129, (1), 63-68.
    96. Kneipp, K.; Kneipp, H.; Itzkan, I.; Dasari, R. R.; Feld, M. S., Ultrasensitive Chemical Analysis by Raman Spectroscopy. Chem. Rev. 1999, 99, (10), 2957-2976.
    97. Kneipp, J.; Kneipp, H.; Rice, W. L.; Kneipp, K., Optical Probes for Biological Applications Based on Surface-Enhanced Raman Scattering from Indocyanine Green on Gold Nanoparticles. Anal. Chem. 2005, 77, (8), 2381-2385.
    98. Laucks, M. L.; Sengupta, A.; Junge, K.; Davis, E. J.; Swanson, B. D., Comparison of psychro-active arctic marine bacteria and common mesophillic bacteria using surface-enhanced Raman spectroscopy. Appl. Spectrosc. 2005, 59, (10), 1222-1228.
    99. Yonzon, C. R.; Stuart, D. A.; Zhang, X.; McFarland, A. D.; Haynes, C. L.; Van Duyne, R. P., Towards advanced chemical and biological nanosensors-An overview. Talanta 2005, 67, (3), 438-448.
    100. Grauw, C. J. D.; Otto, C.; Greve, J., Line-Scan Raman Microspectrometry for Biological Applications. Appl. Spectrosc. 1997, 51, (11), 1607-1612.
    101. Grabar, K. C.; Smith, P. C.; Musick, M. D.; Davis, J. A.; Walter, D. G.; Jackson, M. A.; Guthrie, A. P.; Natan, M. J., Kinetic Control of Interparticle Spacing in Au Colloid-Based Surfaces: Rational Nanometer-Scale Architecture. J. Am. Chem. Soc. 1996, 118, (5), 1148-1153.
    102. Kim, N. H.; Lee, S. J.; Kim, K., Isocyanide and biotin-derivatized Ag nanoparticles: an efficient molecular sensing mediator via surface-enhanced Raman spectroscopy. Chem. Commun. 2003, 0, (6), 724-725.
    103. Cao, Y. C.; Jin, R.; Nam, J.-M.; Thaxton, C. S.; Mirkin, C. A., Raman Dye-Labeled Nanoparticle Probes for Proteins. J. Am. Chem. Soc. 2003, 125, (48), 14676-14677.
    104. Ulman, A., Formation and Structure of Self-Assembled Monolayers. Chem. Rev. 1996, 96, (4), 1533-1554.
    105. Hergt, R.; Hiergeist, R.; Hilger, I.; Kaiser, W. A.; Lapatnikov, Y.; Margel, S.; Richter, U., Maghemite nanoparticles with very high AC-losses for application in RF-magnetic hyperthermia. J. Magn. Magn. Mater. 2004, 270, (3), 345-357.
    106. Kalambur, V. S.; Longmire, E. K.; Bischof, J. C., Cellular Level Loading and Heating of Superparamagnetic Iron Oxide Nanoparticles. Langmuir 2007, 23, (24), 12329-12336.
    107. Hirsch, L. R.; Stafford, R. J.; Bankson, J. A.; Sershen, S. R.; Rivera, B.; Price, R. E.; Hazle, J. D.; Halas, N. J.; West, J. L., Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, (23), 13549-13554.
    108. Gobin, A. M.; Lee, M. H.; Halas, N. J.; James, W. D.; Drezek, R. A.; West, J. L., Near-Infrared Resonant Nanoshells for Combined Optical Imaging and Photothermal Cancer Therapy. Nano Lett. 2007, 7, (7), 1929-1934.
    109. Curley, S. A. C., P.; Briggs, K.; Patra, C. R.; Upton, M.; Dolson, E.; Mukherjee, P., Noninvasive radiofrequency field-induced hyperthermic cytotoxicity in human cancer cells using cetuximab-targeted gold nanoparticles. J. Exp. Ther. Oncol. 2008, 7, (313).
    110. Gannon, C.; Patra, C.; Bhattacharya, R.; Mukherjee, P.; Curley, S., Intracellular gold nanoparticles enhance non-invasive radiofrequency thermal destruction of human gastrointestinal cancer cells. J. Nanobiotechnol. C7 - 2 2008, 6, (1), 1-9.
    111. Gannon, C. J.; Cherukuri, P.; Yakobson, B. I.; Cognet, L.; Kanzius, J. S.; Kittrell, C.; Weisman, R. B.; Pasquali, M.; Schmidt, H. K.; Smalley, R. E.; Curley, S. A., Carbon nanotube-enhanced thermal destruction of cancer cells in a noninvasive radiofrequency field. Cancer 2007, 110, (12), 2654-2665.
    112. Hartman, K. B.; Laus, S.; Bolskar, R. D.; Muthupillai, R.; Helm, L.; Toth, E.; Merbach, A. E.; Wilson, L. J., Gadonanotubes as Ultrasensitive pH-Smart Probes for Magnetic Resonance Imaging. Nano Lett. 2008, 8, (2), 415-419.
    113. Berciaud, S. p.; Cognet, L.; Tamarat, P.; Lounis, B., Observation of Intrinsic Size Effects in the Optical Response of Individual Gold Nanoparticles. Nano Lett. 2005, 5, (3), 515-518.
    114. Lee, S.; Chon, H.; Yoon, S.-Y.; Lee, E. K.; Chang, S.-I.; Lim, D. W.; Choo, J., Fabrication of SERS-fluorescence dual modal nanoprobes and application to multiplex cancer cell imaging. Nanoscale 2012, 4, (1), 124-129.
    115. Etchegoin, P.; Cohen, L. F.; Hartigan, H.; Brown, R. J. C.; Milton, M. J. T.; Gallop, J. C., Electromagnetic contribution to surface enhanced Raman scattering revisited. J. Chem. Phys. 2003, 119, (10), 5281-5289.
    116. Stockman, M. I.; Shalaev, V. M.; Moskovits, M.; Botet, R.; George, T. F., Enhanced Raman scattering by fractal clusters: Scale-invariant theory. Phys. Rev. B 1992, 46, (5), 2821-2830.
    117. Kattumuri, V.; Chandrasekhar, M.; Guha, S.; Raghuraman, K.; Katti, K. V.; Ghosh, K.; Patel, R. J., Agarose-stabilized gold nanoparticles for surface-enhanced Raman spectroscopic detection of DNA nucleosides. Appl. Phys. Lett. 2006, 88, (15), 153114-3.
    118. de la Fuente, J. s. M.; Penades, S., Glyconanoparticles: Types, synthesis and applications in glycoscience, biomedicine and material science. Biochimica et Biophysica Acta (BBA) - General Subjects 2006, 1760, (4), 636-651.
    119. Reynolds, A. J.; Haines, A. H.; Russell, D. A., Gold Glyconanoparticles for Mimics and Measurement of Metal Ion-Mediated Carbohydrateaˆ’Carbohydrate Interactions. Langmuir 2006, 22, (3), 1156-1163.
    120. Maher, R. C.; Cohen, L. F.; Etchegoin, P.; Hartigan, H. J. N.; Brown, R. J. C.; Milton, M. J. T., Stokes/anti-Stokes anomalies under surface enhanced Raman scattering conditions. J. Chem. Phys. 2004, 120, (24), 11746-11753.
    121. Huang, H.; Yuan, Q.; Yang, X., Preparation and characterization of metal-chitosan nanocomposites. Coll. Surface B: Biointerfaces 2004, 39, (1-2), 31-37.
    122. Rojo, J.; Diaz, V.; De La Fuente, J. M.; Segura, I.; Barrientos, A. G.; Riese, H. H.; Bernad, A.; Penades, S., Gold glyconanoparticles as new tools in antiadhesive therapy. Chembiochem. 2004, 5, (3), 291-7.
    123. Raveendran, P.; Fu, J.; Wallen, S. L., A simple and "green" method for the synthesis of Au, Ag, and Au-Ag alloy nanoparticles. Green Chem. 2006, 8, (1), 34-38.
    124. Mucalo, M. R.; Bullen, C. R.; Manley-Harris, M.; McIntire, T., Arabinogalactan from the Western larch tree: A new, purified and highly water-soluble polysaccharide-based protecting agent for maintaining precious metal nanoparticles in colloidal suspension. J. Mater. Sci. 2002, 37, (3), 493-504.
    125. Chockalingam, A.; Babu, H.; Chittor, R.; Tiwari, J., Gum arabic modified Fe3O4 nanoparticles cross linked with collagen for isolation of bacteria. J. Nanobiotechnol. 2010, 8, (1), 30.
    126. Gamal el-din, A. M.; Mostafa, A. M.; Al-Shabanah, O. A.; Al-Bekairi, A. M.; Nagi, M. N., Protective effect of arabic gum against acetaminophen-induced hepatotoxicity in mice. Pharmacol. Res. 2003, 48, (6), 631-635.
    127. Gralow, J., Evolving Role of Bisphosphonates in Women Undergoing Treatment for Localized and Advanced Breast Cancer. Clin. breast cancer 2005, 5, S54-S62.
    128. Wang, G.; Sun, W., Optical Limiting of Gold Nanoparticle Aggregates Induced by Electrolytes. J. Phys. Chem. B 2006, 110, (42), 20901-20905.
    129. Hoffman, T. J.; Quinn, T. P.; Volkert, W. A., Radiometallated receptor-avid peptide conjugates for specific in vivo targeting of cancer cells. Nuclear Med. Biol. 2001, 28, (5), 527-539.
    130. Connor, E. E.; Mwamuka, J.; Gole, A.; Murphy, C. J.; Wyatt, M. D., Gold Nanoparticles Are Taken Up by Human Cells but Do Not Cause Acute Cytotoxicity. Small 2005, 1, (3), 325-327.
    131. Liu, X.; Zhang, F.; Huang, R.; Pan, C.; Zhu, J., Capping Modes in PVP-Directed Silver Nanocrystal Growth: Multi-Twinned Nanorods versus Single-Crystalline Nano-Hexapods. Cryst. Growth Des. 2008, 8, (6), 1916-1923.
    132. Group, U. S. C. S. W., United States Cancer Statistics: 1999–2008 Incidence and Mortality Web-based Report. Atlanta (GA): Department of Health and Human Services, Centers for Disease Control and Prevention, and National Cancer Institute 2012, Available at: http://www.cdc.gov/uscs.
    133. Lung Cancer - The Leading Killer of Taiwanese Women. http://www.sino.gov.tw 2004, 110.
    134. Alberg, A. J.; Ford, J. G.; Samet, J. M., Epidemiology of Lung Cancer*ACCP Evidence-Based Clinical Practice Guidelines (2nd Edition). CHEST Journal 2007, 132, (3_suppl), 29S-55S.
    135. Johnson, D. H.; Blot, W. J.; Carbone, D. P.; et al, Cancer of the lung: non-small cell lung cancer and small cell lung cancer. In: Abeloff, M. D.; Armitage, J. O.; Niederhuber, J. E.; Kastan, M. B.; McKena, W. G. Clin. Oncology. 4th. ed. Philadelphia, Pa: Churchill Livingstone Elsevier 2008, chap 76.
    136. Grunnet, M.; Sorensen, J. B., Carcinoembryonic antigen (CEA) as tumor marker in lung cancer. Lung Cancer 2012, 76, (2), 138-143.
    137. Hansen, H. J.; Snyder, J. J.; Miller, E.; Vandevoorde, J. P.; Miller, O. N.; Hines, L. R.; Burns, J. J., Carcinoembryonic antigen (CEA) assay. A laboratory adjunct in the diagnosis and management of cancer. Human pathology 1974, 5, (2), 139-147.
    138. Chon, H.; Lee, S.; Son, S. W.; Oh, C. H.; Choo, J., Highly Sensitive Immunoassay of Lung Cancer Marker Carcinoembryonic Antigen Using Surface-Enhanced Raman Scattering of Hollow Gold Nanospheres. Anal. Chem. 2009, 81, (8), 3029-3034.
    139. Yuan, Z.; Kardynal, B. E.; Stevenson, R. M.; Shields, A. J.; Lobo, C. J.; Cooper, K.; Beattie, N. S.; Ritchie, D. A.; Pepper, M., Electrically Driven Single-Photon Source. Science 2002, 295, (5552), 102-105.
    140. Bruchez, M.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P., Semiconductor Nanocrystals as Fluorescent Biological Labels. Science 1998, 281, (5385), 2013-2016.
    141. Loo, C.; Lin, A.; Hirsch, L.; Lee, M. H.; Barton, J.; Halas, N.; West, J.; Drezek, R., Nanoshell-enabled photonics-based imaging and therapy of cancer. Technol. Cancer Res. T. 2004, 3, (1), 33-40.
    143. Wiese, R., Analysis of several fluorescent detector molecules for protein microarray use. J. Lumin. 2003, 18, (1), 25-30.
    143. Golightly, R. S.; Doering, W. E.; Natan, M. J., Surface-Enhanced Raman Spectroscopy and Homeland Security: A Perfect Match? ACS Nano 2009, 3, (10), 2859-2869.
    144. Mosier-Boss, P. A.; Lieberman, S. H., Surface-Enhanced Raman Spectroscopy (SERS) and Molecular Modeling of the Chromate Interaction with 4-(2-Mercaptoethyl)Pyridinium. Langmuir 2003, 19, (17), 6826-6836.
    145. Bell, S. E. J.; Sirimuthu, N. M. S., Quantitative surface-enhanced Raman spectroscopy. Chem. Soc. Rev. 2008, 37, (5), 1012-1024.
    146. Li, D.; Li, D.-W.; Li, Y.; Fossey, J. S.; Long, Y.-T., Cyclic electroplating and stripping of silver on Au@SiO2 core/shell nanoparticles for sensitive and recyclable substrate of surface-enhanced Raman scattering. J. Mater. Chem. 2010, 20, (18), 3688-3693.
    147. Fang, P.-P.; Duan, S.; Lin, X.-D.; Anema, J. R.; Li, J.-F.; Buriez, O.; Ding, Y.; Fan, F.-R.; Wu, D.-Y.; Ren, B.; Wang, Z. L.; Amatore, C.; Tian, Z.-Q., Tailoring Au-core Pd-shell Pt-cluster nanoparticles for enhanced electrocatalytic activity. Chem. Sci. 2011, 2, (3), 531-539.
    148. Hering, K.; Cialla, D.; Ackermann, K.; Dorfer, T.; Moller, R.; Schneidewind, H.; Mattheis, R.; Fritzsche, W.; Rosch, P.; Popp, J., SERS: a versatile tool in chemical and biochemical diagnostics. Anal. Bioanal. Chem. 2008, 390, (1), 113-124.
    149. Harpster, M. H.; Zhang, H.; Sankara-Warrier, A. K.; Ray, B. H.; Ward, T. R.; Kollmar, J. P.; Carron, K. T.; Mecham, J. O.; Corcoran, R. C.; Wilson, W. C.; Johnson, P. A., SERS detection of indirect viral DNA capture using colloidal gold and methylene blue as a Raman label. Biosens. Bioelectron. 2009, 25, (4), 674-681.
    150. Porter, M. D.; Lipert, R. J.; Siperko, L. M.; Wang, G.; Narayanan, R., SERS as a bioassay platform: fundamentals, design, and applications. Chem. Soc. Rev. 2008, 37, (5), 1001-1011.
    151. Han, X.; Zhao, B.; Ozaki, Y., Surface-enhanced Raman scattering for protein detection. Anal. Bioanal. Chem. 2009, 394, (7), 1719-1727.
    152. Shafer-Peltier, K. E.; Haynes, C. L.; Glucksberg, M. R.; Van Duyne, R. P., Toward a Glucose Biosensor Based on Surface-Enhanced Raman Scattering. J. Am. Chem. Soc. 2002, 125, (2), 588-593.
    153. Wu, Z.-S.; Zhou, G.-Z.; Jiang, J.-H.; Shen, G.-L.; Yu, R.-Q., Gold colloid-bienzyme conjugates for glucose detection utilizing surface-enhanced Raman scattering. Talanta 2006, 70, (3), 533-539.
    154. Qian, X. M.; Nie, S. M., Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications. Chem. Soc. Rev. 2008, 37, (5), 912-920.
    155. Patterson, M. L.; Weaver, M. J., Surface-enhanced Raman spectroscopy as a probe of adsorbate-surface bonding: simple alkenes and alkynes adsorbed at gold electrodes. J. Phys. Chem. 1985, 89, (23), 5046-5051.
    156. Newman, J. D.; Turner, A. P. F., Home blood glucose biosensors: a commercial perspective. Biosens. Bioelectron. 2005, 20, (12), 2435-2453.
    157. Walford, S.; Gale, E. A.; Allison, S. P.; Tattersall, R. B., Self-monitoring of blood-glucose. Improvement of diabetic control. Lancet 1978, 1, (8067), 732-735.
    158. Narayan, K. M. V.; Zhang, P.; Kanaya, A. M.; Williams, D. E.; Engelgau, M. M.; Imperatore, G.; Ramachandran, A., in Disease Control Priorities in Developing Countries (Eds.: Jamison, D.T.; Breman, J. G.; Measham, A. R.; Alleyne, G.; Claeson, M.; Evans, D. B.; Jha, P.; Mills, A.; Musgrove, P.,), 2nd edition, World Bank, Washington (DC), 2006, pp. 591–603.
    159. Laxminarayan, R.; Mills, A. J.; Breman, J. G.; Measham, A. R.; Alleyne, G.; Claeson, M.; Jha, P.; Musgrove, P.; Chow, J.; Shahid-Salles, S.; Jamison, D. T., Advancement of global health: key messages from the Disease Control Priorities Project. Lancet 2006, 367, (9517), 1193-1208.
    160. Koenig, R. J.; Peterson, C. M.; Jones, R. L.; Saudek, C.; Lehrman, M.; Cerami, A., Correlation of Glucose Regulation and Hemoglobin AIc in Diabetes Mellitus. New Engl. J. Med. 1976, 295, (8), 417-420.
    161. Yan, S. L.; Lin, P. Z.; Hsiao, M. W., Separation of urea, uric acid, creatine, and creatinine by micellar electrokinetic capillary chromatography with sodium cholate. J. Chromatogr. Sci. 1999, 37, (2), 45-50.
    162. Nakaminami, T.; Ito, S.-i.; Kuwabata, S.; Yoneyama, H., Uricase-Catalyzed Oxidation of Uric Acid Using an Artificial Electron Acceptor and Fabrication of Amperometric Uric Acid Sensors with Use of a Redox Ladder Polymer. Anal. Chem. 1999, 71, (10), 1928-1934.
    163. Chen, K.-J.; Lee, C.-F.; Rick, J.; Wang, S.-H.; Liu, C.-C.; Hwang, B.-J., Fabrication and application of amperometric glucose biosensor based on a novel PtPd bimetallic nanoparticle decorated multi-walled carbon nanotube catalyst. Biosens. Bioelectron. 2012, 33, (1), 75-81.
    164. Shamsipur, M.; Najafi, M.; Hosseini, M.-R. M., Highly improved electrooxidation of glucose at a nickel(II) oxide/multi-walled carbon nanotube modified glassy carbon electrode. Bioelectrochem. 2010, 77, (2), 120-124.
    165. Shi, W.; Ma, Z., Amperometric glucose biosensor based on a triangular silver nanoprisms/chitosan composite film as immobilization matrix. Biosens. Bioelectron. 2010, 26, (3), 1098-1103.
    166. Dung, N. Q.; Patil, D.; Duong, T. T.; Jung, H.; Kim, D.; Yoon, S.-G., An amperometric glucose biosensor based on a GOx-entrapped TiO2-SWCNT composite. Sensor. Actuat. B-Chem. 2012, 166-167, (0), 103-109.
    167. Ward, W. K.; Engle, J. M.; Branigan, D.; El Youssef, J.; Massoud, R. G.; Castle, J. R., The effect of rising vs. falling glucose level on amperometric glucose sensor lag and accuracy in Type 1 diabetes. Diabetic Med. 2012, 29, (8), 1067-1073.
    168. Monošik, R.; Streďansky, M.; Lušpai, K.; Magdolen, P.; Šturdik, E., Amperometric glucose biosensor utilizing FAD-dependent glucose dehydrogenase immobilized on nanocomposite electrode. Enzyme Microb. Tech. 2012, 50, (4-5), 227-232.
    169. Dai, M.; Maxwell, S.; Vogt, B. D.; La Belle, J. T., Mesoporous carbon amperometric glucose sensors using inexpensive, commercial methacrylate-based binders. Anal. Chim. Acta 2012, 738, (0), 27-34.
    170. Xian, Y.; Hu, Y.; Liu, F.; Xian, Y.; Wang, H.; Jin, L., Glucose biosensor based on Au nanoparticles-conductive polyaniline nanocomposite. Biosens. Bioelectron. 2006, 21, (10), 1996-2000.
    171. Lu, Y.; Yin, Y.; Li, Z.-Y.; Xia, Y., Synthesis and Self-Assembly of Au@SiO2 Core−Shell Colloids. Nano Lett. 2002, 2, (7), 785-788.
    172. Liu, N.; Prall, B. S.; Klimov, V. I., Hybrid Gold/Silica/Nanocrystal-Quantum-Dot Superstructures:  Synthesis and Analysis of Semiconductor−Metal Interactions. J. Am. Chem. Soc. 2006, 128, (48), 15362-15363.
    173. Tovmachenko, O. G.; Graf, C.; van den Heuvel, D. J.; van Blaaderen, A.; Gerritsen, H. C., Fluorescence Enhancement by Metal-Core/Silica-Shell Nanoparticles. Adv. Mater. 2006, 18, (1), 91-95.
    174. Sendroiu, I. E.; Warner, M. E.; Corn, R. M., Fabrication of Silica-Coated Gold Nanorods Functionalized with DNA for Enhanced Surface Plasmon Resonance Imaging Biosensing Applications. Langmuir 2009, 25, (19), 11282-11284.
    175. Polavarapu, L.; Xu, Q. H., Water-soluble conjugated polymer-induced self-assembly of gold nanoparticles and its application to SERS. Langmuir 2008, 24, (19), 10608-10611.
    176. Lin, S.; Li, M.; Dujardin, E.; Girard, C.; Mann, S., One-Dimensional Plasmon Coupling by Facile Self-Assembly of Gold Nanoparticles into Branched Chain Networks. Adv. Mater. 2005, 17, (21), 2553-2559.
    177. Schwartzberg, A. M.; Grant, C. D.; Wolcott, A.; Talley, C. E.; Huser, T. R.; Bogomolni, R.; Zhang, J. Z., Unique Gold Nanoparticle Aggregates as a Highly Active Surface-Enhanced Raman Scattering Substrate. J. Phys. Chem. B 2004, 108, (50), 19191-19197.
    178. Tian, Z.-Q.; Ren, B.; Wu, D.-Y., Surface-Enhanced Raman Scattering:  From Noble to Transition Metals and from Rough Surfaces to Ordered Nanostructures. J. Phys.Chem. B 2002, 106, (37), 9463-9483.
    179. Liz-Marzan, L. M.; Giersig, M.; Mulvaney, P., Synthesis of Nanosized Gold−Silica Core−Shell Particles. Langmuir 1996, 12, (18), 4329-4335.
    180. Underwood, S.; Mulvaney, P., Effect of the Solution Refractive Index on the Color of Gold Colloids. Langmuir 1994, 10, (10), 3427-3430.
    181. Link, S.; El-Sayed, M. A., Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods. J. Phys. Chem. B 1999, 103, (40), 8410-8426.
    182. Link, S.; El-Sayed, M. A., Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. Int. Rev. Phys. Chem. 2000, 19, (3), 409-453.
    183. Jain, P. K.; Lee, K. S.; El-Sayed, I. H.; El-Sayed, M. A., Calculated Absorption and Scattering Properties of Gold Nanoparticles of Different Size, Shape, and Composition:  Applications in Biological Imaging and Biomedicine. J. Phys. Chem. B 2006, 110, (14), 7238-7248.
    184. Lee, K.-S.; El-Sayed, M. A., Dependence of the Enhanced Optical Scattering Efficiency Relative to That of Absorption for Gold Metal Nanorods on Aspect Ratio, Size, End-Cap Shape, and Medium Refractive Index. J. Phys. Chem. B 2005, 109, (43), 20331-20338.
    185. Wokaun, A.; Gordon, J. P.; Liao, P. F., Radiation Damping in Surface-Enhanced Raman Scattering. Phys. Rev. Lett. 1982, 48, (22), 1574-1574.
    186. Liu, Y.-C.; Yu, C.-C.; Hsu, T.-C., Improved performances on surface-enhanced Raman scattering based on electrochemically roughened gold substrates modified with SiO2 nanoparticles. J. Raman Spectrosc. 2009, 40, (11), 1682-1686.
    187. Li, J. F.; Huang, Y. F.; Ding, Y.; Yang, Z. L.; Li, S. B.; Zhou, X. S.; Fan, F. R.; Zhang, W.; Zhou, Z. Y.; WuDe, Y.; Ren, B.; Wang, Z. L.; Tian, Z. Q., Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 2010, 464, (7287), 392-395.
    188. Soderholm, S.; Roos, Y. H.; Meinander, N.; Hotokka, M., Raman spectra of fructose and glucose in the amorphous and crystalline states. J. Raman Spectrosc. 1999, 30, (11), 1009-1018.
    189. Janz, G. J.; Downey, J. R.; Roduner, E.; Wasilczyk, G. J.; Coutts, J. W.; Eluard, A., Raman studies of sulfur-containing anions in inorganic polysulfides. Sodium polysulfides. Inorg. Chem. 1976, 15, (8), 1759-1763.
    190. Biebuyck, H. A.; Bain, C. D.; Whitesides, G. M., Comparison of Organic Monolayers on Polycrystalline Gold Spontaneously Assembled from Solutions Containing Dialkyl Disulfides or Alkanethiols. Langmuir 1994, 10, (6), 1825-1831.
    191. Bing Li, N.; Mei Niu, L.; Qun Luo, H., Electrochemical Behavior of Uric Acid and Epinephrine at a Meso-2,3-Dimercaptosuccinic Acid Self-Assembled Gold Electrode. Microchim. Acta 2006, 153, (1), 37-44.
    192. Wu, X.; Jiang, H.; Zheng, J.; Wang, X.; Gu, Z.; Chen, C., Highly sensitive recognition of cancer cells by electrochemical biosensor based on the interface of gold nanoparticles/polylactide nanocomposites. J. Electroanal. Chem. 2011, 656, (1–2), 174-178.
    193. http://globocan.iarc.fr/factsheets/cancers/lung.asp.
    194. Jemal, A.; Bray, F.; Center, M. M.; Ferlay, J.; Ward, E.; Forman, D., Global cancer statistics. CA-Cancer J. Clin. 2011, 61, (2), 69-90.
    195. Moro, D.; Villemain, D.; Vuillez, J. P.; Agnius Delord, C.; Brambilla, C., CEA, CYFRA21-1 and SCC in non-small cell lung cancer. Lung Cancer-J. IASLC 1995, 13, (2), 169-176.
    196. Tono, T.; Hasuike, Y.; Ohzato, H.; Takatsuka, Y.; Kikkawa, N., Limited but definite efficacy of prophylactic hepatic arterial infusion chemotherapy after curative resection of colorectal liver metastases. Cancer 2000, 88, (7), 1549-1556.
    197. Nisman, B.; Lafair, J.; Peretz, T.; Roisman, I.; Barak, V., 1259 CYFRA 21-1 and TPS—new markers in lung cancer. Eur. J. Cancer 1995, 31, Supplement 6, (0), S263.
    198. Eppler, E.; Horig, H.; Kaufman, H. L.; Groscurth, P.; Filgueira, L., Carcinoembryonic antigen (CEA) presentation and specific T cell-priming by human dendritic cells transfected with CEA-mRNA. Eur. J. Cancer 2002, 38, (1), 184-193.
    199. Cameiro, C.; Costa, L.; Melo, M., Serum tumor markers in metastatic breast cancer comparative study between CEA, CA 15-3 and MCA. Eur. J. Cancer 1998, 34.
    200. Bremer, K.; Micus, S.; Bremer, G., 1255 CEA, CA 15-3 and MCA: Comparative clinical relevance in breast cancer. Eur. J. Cancer 1995, 31, Supplement 6, (0), S262.
    201. Kau, S.-Y.; Shyr, Y.-M.; Su, C.-H.; Wu, C.-W.; Lui, W.-Y., Diagnostic and prognostic values of CA 19-9 and CEA in periampullary cancers. J. Am. Coll. Surgeons 1999, 188, (4), 415-420.
    202. Lechner, P.; Lind, P.; Goldenberg, D. M., Can postoperative surveillance with serial CEA immunoscintigraphy detect resectable rectal cancer recurrence and potentially improve tumor-free survival? J. Am. Coll. Surgeons 2000, 191, (5), 511-518.
    203. He, X.; Yuan, R.; Chai, Y.; Shi, Y., A sensitive amperometric immunosensor for carcinoembryonic antigen detection with porous nanogold film and nano-Au/chitosan composite as immobilization matrix. J. Biochem. Bioph. Methods 2008, 70, (6), 823-829.
    204. Pinzani, P.; Salvianti, F.; Cascella, R.; Massi, D.; De Giorgi, V.; Pazzagli, M.; Orlando, C., Allele specific Taqman-based real-time PCR assay to quantify circulating BRAFV600E mutated DNA in plasma of melanoma patients. Clin. Chim. Acta 2010, 411, (17–18), 1319-1324.
    205. Disney, M. D.; Seeberger, P. H., The Use of Carbohydrate Microarrays to Study Carbohydrate-Cell Interactions and to Detect Pathogens. Chem. Biol. 2004, 11, (12), 1701-1707.
    206. El-Sayed, I. H.; Huang, X.; El-Sayed, M. A., Surface Plasmon Resonance Scattering and Absorption of anti-EGFR Antibody Conjugated Gold Nanoparticles in Cancer Diagnostics:  Applications in Oral Cancer. Nano Lett. 2005, 5, (5), 829-834.
    207. Chaumet, P. C.; Rahmani, A.; Nieto-Vesperinas, M., Optical Trapping and Manipulation of Nano-objects with an Apertureless Probe. Phys. Rev. Lett. 2002, 88, (12), 123601.
    208. Xu, H.; Kall, M., Surface-Plasmon-Enhanced Optical Forces in Silver Nanoaggregates. Phys. Rev. Lett. 2002, 89, (24), 246802.
    209. Gao, X.; Cui, Y.; Levenson, R. M.; Chung, L. W. K.; Nie, S., In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol. 2004, 22, (8), 969-976.
    210. Rosi, N. L.; Mirkin, C. A., Nanostructures in Biodiagnostics. Chem. Rev. 2005, 36, (28), no-no.
    211. Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.; Sundaresan, G.; Wu, A. M.; Gambhir, S. S.; Weiss, S., Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics. Science 2005, 307, (5709), 538-544.
    212. Smith, A. M.; Duan, H.; Mohs, A. M.; Nie, S., Bioconjugated quantum dots for in vivo molecular and cellular imaging. Adv. Drug Delivery Rev. 2008, 60, (11), 1226-1240.
    213. Courty, S.; Luccardini, C.; Bellaiche, Y.; Cappello, G.; Dahan, M., Tracking Individual Kinesin Motors in Living Cells Using Single Quantum-Dot Imaging. Nano Lett. 2006, 6, (7), 1491-1495.
    214. Ruan, G.; Agrawal, A.; Marcus, A. I.; Nie, S., Imaging and Tracking of Tat Peptide-Conjugated Quantum Dots in Living Cells: New Insights into Nanoparticle Uptake, Intracellular Transport, and Vesicle Shedding. J. Am. Chem. Soc. 2007, 129, (47), 14759-14766.
    215. Derfus, A. M.; Chan, W. C. W.; Bhatia, S. N., Probing the Cytotoxicity of Semiconductor Quantum Dots. Nano Lett. 2003, 4, (1), 11-18.
    216. Wang, L.; Wang, K.; Santra, S.; Zhao, X.; Hilliard, L. R.; Smith, J. E.; Wu, Y.; Tan, W., Watching Silica Nanoparticles Glow in the Biological World. Anal. Chem. 2006, 78, (3), 646-654.
    217. Nakamura, M.; Shono, M.; Ishimura, K., Synthesis, Characterization, and Biological Applications of Multifluorescent Silica Nanoparticles. Anal. Chem. 2007, 79, (17), 6507-6514.
    218. Aslan, K.; Wu, M.; Lakowicz, J. R.; Geddes, C. D., Fluorescent Core−Shell Ag@SiO2 Nanocomposites for Metal-Enhanced Fluorescence and Single Nanoparticle Sensing Platforms. J. Am. Chem. Soc. 2007, 129, (6), 1524-1525.
    219. Voura, E. B.; Jaiswal, J. K.; Mattoussi, H.; Simon, S. M., Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy. Nat. Med. 2004, 10, (9), 993-998.
    220. Huang, X.; El-Sayed, I. H.; Qian, W.; El-Sayed, M. A., Cancer Cells Assemble and Align Gold Nanorods Conjugated to Antibodies to Produce Highly Enhanced, Sharp, and Polarized Surface Raman Spectra: A Potential Cancer Diagnostic Marker. Nano Lett. 2007, 7, (6), 1591-1597.
    221. Durr, N. J.; Larson, T.; Smith, D. K.; Korgel, B. A.; Sokolov, K.; Ben-Yakar, A., Two-Photon Luminescence Imaging of Cancer Cells Using Molecularly Targeted Gold Nanorods. Nano Lett. 2007, 7, (4), 941-945.
    222. Wang, H.; Huff, T. B.; Zweifel, D. A.; He, W.; Low, P. S.; Wei, A.; Cheng, J.-X., In vitro and in vivo two-photon luminescence imaging of single gold nanorods. Proc. Natl. Acad. Sci. USA 2005, 102, (44), 15752-15756.
    223. Wang, Z. L.; Gao, R. P.; Nikoobakht, B.; El-Sayed, M. A., Surface Reconstruction of the Unstable {110} Surface in Gold Nanorods. J. Phys. Chem. B 2000, 104, (23), 5417-5420.
    224. Chan, S.; Kwon, S.; Koo, T. W.; Lee, L. P.; Berlin, A. A., Surface-Enhanced Raman Scattering of Small Molecules from Silver-Coated Silicon Nanopores. Adv. Mater. 2003, 15, (19), 1595-1598.
    225. Pallaoro, A.; Braun, G. B.; Reich, N. O.; Moskovits, M., Mapping Local pH in Live Cells Using Encapsulated Fluorescent SERS Nanotags. Small 2010, 6, (5), 618-622.
    226. Xiao, M.; Nyagilo, J.; Arora, V.; Kulkarni, P.; Xu, D.; Sun, X.; Dave, D. P., Gold nanotags for combined multi-colored Raman spectroscopy and x-ray computed tomography. Nanotechnology 2010, 21, (3), 035101.
    227. Matschulat, A.; Drescher, D.; Kneipp, J., Surface-Enhanced Raman Scattering Hybrid Nanoprobe Multiplexing and Imaging in Biological Systems. ACS Nano 2010, 4, (6), 3259-3269.
    228. Lee, K.; Drachev, V. P.; Irudayaraj, J., DNA−Gold Nanoparticle Reversible Networks Grown on Cell Surface Marker Sites: Application in Diagnostics. ACS Nano 2011, 5, (3), 2109-2117.
    229. Lee, M.; Lee, S.; Lee, J.-h.; Lim, H.-w.; Seong, G. H.; Lee, E. K.; Chang, S.-I.; Oh, C. H.; Choo, J., Highly reproducible immunoassay of cancer markers on a gold-patterned microarray chip using surface-enhanced Raman scattering imaging. Biosens. Bioelectron. 2011, 26, (5), 2135-2141.
    230. Yoon, K.-J.; Seo, H.-K.; Hwang, H.; Pyo, D.-J.; Eom, I.-Y.; Hahn, J.-H.; Jung, Y.-M., Bioanalytical Application of SERS Immunoassay for Detection of Prostate-Specific Antigen. Bull. Korean Chem. Soc. 2010, 31, (5), 1215-1218.
    231. Lee, A.; Coombs, N. A.; Gourevich, I.; Kumacheva, E.; Scholes, G. D., Lamellar Envelopes of Semiconductor Nanocrystals. J. Am. Chem. Soc. 2009, 131, (29), 10182-10188.
    232. Tang, Z.; Zhang, Z.; Wang, Y.; Glotzer, S. C.; Kotov, N. A., Self-Assembly of CdTe Nanocrystals into Free-Floating Sheets. Science 2006, 314, (5797), 274-278.
    233. Mirkin, C. A.; Letsinger, R. L.; Mucic, R. C.; Storhoff, J. J., A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 1996, 382, (6592), 607-9.
    234. Iskandar, F.; Gradon, L.; Okuyama, K., Control of the morphology of nanostructured particles prepared by the spray drying of a nanoparticle sol. J. Colloid Interface Sci. 2003, 265, (2), 296-303.
    235. Hussain, I.; Wang, Z.; Cooper, A. I.; Brust, M., Formation of Spherical Nanostructures by the Controlled Aggregation of Gold Colloids. Langmuir 2006, 22, (7), 2938-2941.
    236. Xu, H.; Cui, L.; Tong, N.; Gu, H., Development of High Magnetization Fe3O4/Polystyrene/Silica Nanospheres via Combined Miniemulsion/Emulsion Polymerization. J. Am. Chem. Soc. 2006, 128, (49), 15582-15583.
    237. Zhang, S.; Kou, X.; Yang, Z.; Shi, Q.; Stucky, G. D.; Sun, L.; Wang, J.; Yan, C., Nanonecklaces assembled from gold rods, spheres, and bipyramids. Chem. Commun. 2007, 0, (18), 1816-1818.
    238. Zhuang, J.; Wu, H.; Yang, Y.; Cao, Y. C., Supercrystalline Colloidal Particles from Artificial Atoms. J. Am. Chem. Soc. 2007, 129, (46), 14166-14167.
    239. Matthew, R. J.; Robert, J. M.; Byeongdu, L.; Jian, Z.; Kaylie, L. Y.; Andrew, J. S.; Chad, A. M., DNA-nanoparticle superlattices formed from anisotropic building blocks. Nat. Mater. 2010, 9, (11), 913-917.
    240. Hu, X.; Cheng, W.; Wang, T.; Wang, Y.; Wang, E.; Dong, S., Fabrication, Characterization, and Application in SERS of Self-Assembled Polyelectrolyte-Gold Nanorod Multilayered Films. J. Phys. Chem. B 2005, 109, (41), 19385-19389.
    241. Nikoobakht, B.; El-Sayed, M. A., Surface-Enhanced Raman Scattering Studies on Aggregated Gold Nanorods. J. Phys. Chem. A 2003, 107, (18), 3372-3378.
    242. Chen, G.; Wang, Y.; Tan, L. H.; Yang, M.; Tan, L. S.; Chen, Y.; Chen, H., High-Purity Separation of Gold Nanoparticle Dimers and Trimers. J. Am. Chem. Soc. 2009, 131, (12), 4218-4219.
    243. Quyen, T. T. B.; Su, W.-N.; Chen, K.-J.; Pan, C.-J.; Rick, J.; Chang, C.-C.; Hwang, B.-J., Au@SiO2 core/shell nanoparticle assemblage used for highly sensitive SERS-based determination of glucose and uric acid. J. Raman Spectrosc. 2013, DOI 10.1002/jrs.4400.
    244. Sau, T. K.; Murphy, C. J., Seeded High Yield Synthesis of Short Au Nanorods in Aqueous Solution. Langmuir 2004, 20, (15), 6414-6420.
    245. Perez-Juste, J.; Correa-Duarte, M. A.; Liz-Marzan, L. M., Silica gels with tailored, gold nanorod-driven optical functionalities. Appl. Surf. Sci. 2004, 226, (1–3), 137-143.
    246. Wang, D.; Li, Y., Bimetallic Nanocrystals: Liquid-Phase Synthesis and Catalytic Applications. Adv. Mater. 2011, 23, (9), 1044-1060.
    247. Zhong, C. J.; Luo, J.; Fang, B.; Wanjala, B. N.; Njoki, P. N.; Loukrakpam, R.; Yin, J., Nanostructured catalysts in fuel cells. Nanotechnology 2010, 21, (6), 062001.
    248. Liu, L.; Pippel, E., Low-Platinum-Content Quaternary PtCuCoNi Nanotubes with Markedly Enhanced Oxygen Reduction Activity. Angew. Chem. Int. Ed. 2011, 50, (12), 2729-2733.
    249. Stamenkovic, V. R.; Fowler, B.; Mun, B. S.; Wang, G.; Ross, P. N.; Lucas, C. A.; MarkoviA, N. M., Improved Oxygen Reduction Activity on Pt3Ni(111) via Increased Surface Site Availability. Science 2007, 315, (5811), 493-497.
    250. Zhu, C.; Guo, S.; Dong, S., PdM (M = Pt, Au) Bimetallic Alloy Nanowires with Enhanced Electrocatalytic Activity for Electro-oxidation of Small Molecules. Adv. Mater. 2012, 24, (17), 2326-2331.
    251. Zhang, L.; Zhang, J.; Jiang, Z.; Xie, S.; Jin, M.; Han, X.; Kuang, Q.; Xie, Z.; Zheng, L., Facile syntheses and electrocatalytic properties of porous Pd and its alloy nanospheres. J. Mater. Chem. 2011, 21, (26), 9620-9625.
    252. Meng, F.; Ding, Y., Sub-Micrometer-Thick All-Solid-State Supercapacitors with High Power and Energy Densities. Adv. Mater. 2011, 23, (35), 4098-4102.
    253. Bonnemann, H.; Richards, Ryan M., Nanoscopic Metal Particles − Synthetic Methods and Potential Applications. Eur. J. Inorg. Chem. 2001, 2001, (10), 2455-2480.
    254. Venkatesan, P.; Santhanalakshmi, J., Synthesis, characterization and catalytic activity of trimetallic nanoparticles in the Suzuki C-C coupling reaction. J. Mol. Catal. A-Chem. 2010, 326, (1-2), 99-106.
    255. Taufany, F.; Pan, C.-J.; Chou, H.-L.; Rick, J.; Chen, Y.-S.; Liu, D.-G.; Lee, J.-F.; Tang, M.-T.; Hwang , B.-J., Relating Structural Aspects of Bimetallic Pt3Cr1/C Nanoparticles to Their Electrocatalytic Activity, Stability, and Selectivity in the Oxygen Reduction Reaction. Chem. Eur. J. 2011, 17, (38), 10724-10735.
    256. Taufany, F.; Pan, C. J.; Rick, J.; Chou, H. L.; Tsai, M. C.; Hwang, B. J.; Liu, D. G.; Lee, J. F.; Tang, M. T.; Lee, Y. C.; Chen, C. I., Kinetically controlled autocatalytic chemical process for bulk production of bimetallic core-shell structured nanoparticles. ACS Nano 2011, 5, (12), 9370-9381.
    257. Kobayashi, S.; Miyama, T.; Nishida, N.; Sakai, Y.; Shiraki, H.; Shiraishi, Y.; Toshima, N., Dielectric spectroscopy of metal nanoparticle doped liquid crystal displays exhibiting frequency modulation response. J. Disp. Technol. 2006, 2, (2), 121-129.
    258. Watanabe, N.; Toshima, N., Preparation and Characterization of Nanomaterials of Tellurium, Bismuth, and Bismuth Telluride. Bull. Chem. Soc. Jpn. 2007, 80, (1), 208-214.
    259. Nguyen, V. L.; Ohtaki, M.; Matsubara, T.; Cao, M. T.; Nogami, M., New Experimental Evidences of Pt-Pd Bimetallic Nanoparticles with Core-Shell Configuration and Highly Fine-Ordered Nanostructures by High-Resolution Electron Transmission Microscopy. J. Phys. Chem. C 2012, 116, (22), 12265-12274.
    260. Amiens, C.; de Caro, D.; Chaudret, B.; Bradley, J. S.; Mazel, R.; Roucau, C., Selective synthesis, characterization, and spectroscopic studies on a novel class of reduced platinum and palladium particles stabilized by carbonyl and phosphine ligands. J. Am. Chem. Soc. 1993, 115, (24), 11638-11639.
    261. Tsunoyama, H.; Sakurai, H.; Negishi, Y.; Tsukuda, T., Size-Specific Catalytic Activity of Polymer-Stabilized Gold Nanoclusters for Aerobic Alcohol Oxidation in Water. J. Am. Chem. Soc. 2005, 127, (26), 9374-9375.
    262. Toshima, N.; Shiraishi, Y.; Teranishi, T.; Miyake, M.; Tominaga, T.; Watanabe, H.; Brijoux, W.; Bonnemann, H.; Schmid, G., Various ligand-stabilized metal nanoclusters as homogeneous and heterogeneous catalysts in the liquid phase. Appl. Organomet. Chem. 2001, 15, (3), 178-196.
    263. Chen, M.; Kim, J.; Liu, J. P.; Fan, H.; Sun, S., Synthesis of FePt Nanocubes and Their Oriented Self-Assembly. J. Am. Chem. Soc. 2006, 128, (22), 7132-7133.
    264. Du, X.; Inokuchi, M.; Toshima, N., Silver-induced Enhancement of Magnetic Properties of CoPt3 Nanoparticles. Chem. Lett. 2006, 35, (11), 1254-1255.
    265. Nakaya, M.; Kanehara, M.; Teranishi, T., One-Pot Synthesis of Large FePt Nanoparticles from Metal Salts and Their Thermal Stability. Langmuir 2006, 22, (8), 3485-3487.
    266. Polarz, S., Shape Matters: Anisotropy of the Morphology of Inorganic Colloidal Particles – Synthesis and Function. Adv. Funct. Mater. 2011, 21, (17), 3214-3230.
    267. Wu, D.; Liu, X., Optimization of the bimetallic gold and silver alloy nanoshell for biomedical applications in vivo. Appl. Phys. Lett. 2010, 97, (6), 061904-3.
    268. Liu, S.; Chen, G.; Prasad, P. N.; Swihart, M. T., Synthesis of Monodisperse Au, Ag, and Au-Ag Alloy Nanoparticles with Tunable Size and Surface Plasmon Resonance Frequency. Chem. Mater. 2011, 23, (18), 4098-4101.
    269. Zhu, J., Composition-Dependent Plasmon Shift in Auaˆ’Ag Alloy Nanotubes: Effect of Local Field Distribution. J. Phys.Chem. C 2009, 113, (8), 3164-3167.
    270. Kim, K.; Kim, K. L.; Shin, K. S., Coreduced Pt/Ag Alloy Nanoparticles: Surface-Enhanced Raman Scattering and Electrocatalytic Activity. J. Phys. Chem. C 2011, 115, (47), 23374-23380.
    271. Gu, X.; Xu, L.; Tian, F.; Ding, Y., Au-Ag alloy nanoporous nanotubes. Nano Res. 2009, 2, (5), 386-393.
    272. Jiang, Z.; Zhang, Q.; Zong, C.; Liu, B.-J.; Ren, B.; Xie, Z.; Zheng, L., Cu-Au alloy nanotubes with five-fold twinned structure and their application in surface-enhanced Raman scattering. J. Mater. Chem. 2012, 22, (35), 18192-18197.
    273. Huang, X.; El-Sayed, I. H.; Qian, W.; El-Sayed, M. A., Cancer Cells Assemble and Align Gold Nanorods Conjugated to Antibodies to Produce Highly Enhanced, Sharp, and Polarized Surface Raman Spectra: A Potential Cancer Diagnostic Marker. Nano Lett. 2007, 7, (6), 1591-1597.
    274. Rycenga, M.; Kim, M. H.; Camargo, P. H. C.; Cobley, C.; Li, Z.-Y.; Xia, Y., Surface-Enhanced Raman Scattering: Comparison of Three Different Molecules on Single-Crystal Nanocubes and Nanospheres of Silver. J. Phys. Chem. A 2009, 113, (16), 3932-3939.
    275. Matsushita, T.; Shiraishi, Y.; Horiuchi, S.; Toshima, N., Synthesis and Catalysis of Polymer-Protected Pd/Ag/Rh Trimetallic Nanoparticles with a Core-Shell Structure. Bull. Chem. Soc. Jpn. 2007, 80, (6), 1217-1225.
    276. Ji, Y.; Yang, S.; Guo, S.; Song, X.; Ding, B.; Yang, Z., Bimetallic Ag/Au nanoparticles: A low temperature ripening strategy in aqueous solution. Colloids Surf., A 2010, 372, (1-3), 204-209.
    277. Karthikeyan, B.; Loganathan, B., Strategic green synthesis and characterization of Au/Pt/Ag trimetallic nanocomposites. Mater. Lett. 2012, 85, (0), 53-56.
    278. Alissawi, N.; Zaporojtchenko, V.; Strunskus, T.; Kocabas, I.; Chakravadhanula, V. S. K.; Kienle, L.; Garbe-Schonberg, D.; Faupel, F., Effect of gold alloying on stability of silver nanoparticles and control of silver ion release from vapor-deposited Ag-Au/polytetrafluoroethylene nanocomposites. Gold Bull. 2013, 46, (1), 3-11.
    279. Im, S. H.; Lee, Y. T.; Wiley, B.; Xia, Y., Large-Scale Synthesis of Silver Nanocubes: The Role of HCl in Promoting Cube Perfection and Monodispersity. Angew. Chem. Int. Ed. 2005, 44, (14), 2154-2157.
    280. Sun, Y.; Xia, Y., Mechanistic Study on the Replacement Reaction between Silver Nanostructures and Chloroauric Acid in Aqueous Medium. J. Am. Chem. Soc. 2004, 126, (12), 3892-3901.
    281. Wang, C.; Peng, B.; Xie, H.-N.; Zhang, H.-X.; Shi, F.-F.; Cai, W.-B., Facile Fabrication of Pt, Pd and Pt-Pd Alloy Films on Si with Tunable Infrared Internal Reflection Absorption and Synergetic Electrocatalysis. J. Phys. Chem. C 2009, 113, (31), 13841-13846.
    282. Qian, L. H.; Yan, X. Q.; Fujita, T.; Inoue, A.; Chen, M. W., Surface enhanced Raman scattering of nanoporous gold: Smaller pore sizes stronger enhancements. Appl. Phys. Lett. 2007, 90, 153120.
    283. Wang, C.; van der Vliet, D.; Chang, K.-C.; You, H.; Strmcnik, D.; Schlueter, J. A.; Markovic, N. M.; Stamenkovic, V. R., Monodisperse Pt3Co Nanoparticles as a Catalyst for the Oxygen Reduction Reaction: Size-Dependent Activity. J. Phys. Chem. C 2009, 113, (45), 19365-19368.
    284. Kang, S. W.; Lee, Y. W.; Park, Y.; Choi, B.-S.; Hong, J. W.; Park, K.-H.; Han, S. W., One-Pot Synthesis of Trimetallic Au@PdPt Core–Shell Nanoparticles with High Catalytic Performance. ACS Nano 2013, 7, (9), 7945-7955.
    285. Pande, S.; Ghosh, S. K.; Praharaj, S.; Panigrahi, S.; Basu, S.; Jana, S.; Pal, A.; Tsukuda, T.; Pal, T., Synthesis of Normal and Inverted Gold−Silver Core−Shell Architectures in β-Cyclodextrin and Their Applications in SERS. J. Phys. Chem. C 2007, 111, (29), 10806-10813.
    286. Liu, T.; Li, D.; Zou, Y.; Yang, D.; Li, H.; Wu, Y.; Jiang, M., Preparation of metal@silica core-shell particle films by interfacial self-assembly. J. Colloid Interface Sci. 2010, 350, (1), 58-62.
    287. Chen, L.; Chabu, J. M.; Liu, Y., Bimetallic AgM (M = Pt, Pd, Au) nanostructures: synthesis and applications for surface-enhanced Raman scattering. RSC Adv. 2013, 3, (13), 4391-4399.
    288. Kudelski, A.; Janik-Czachor, M.; Varga, M.; Dolata, M.; Bukowska, J.; Molnar, A.; Szummer, A., Effect of electrochemical pretreatment on SERS and catalytic activity of Cu-Zr amorphous alloys. Appl. Catal., A 1999, 181, (1), 123-130.
    289. Liu, Y.-C.; Yang, K.-H.; Hsu, T.-C., Improved Surface-Enhanced Raman Scattering Performances on Silver−Silica Nanocomposites. J. Phys. Chem. C 2009, 113, (19), 8162-8168.
    290. Tran, Q. T. B.; Chang, C.-C.; Su, W.-n.; Uen, Y.-H.; Pan, C.-J.; Liu, J.-Y.; Rick, J. F.; Lin, K.-Y.; Hwang, B. J., Self-focusing Au@SiO2 nanorods with rhodamine 6G as highly sensitive SERS substrate for carcinoembryonic antigen detection. J. Mater. Chem. B 2013, DOI: 10.1039/C3TB21278E.

    QR CODE