簡易檢索 / 詳目顯示

研究生: Aditya Sukma Nugraha
Aditya Sukma Nugraha
論文名稱: 聚偏二氟乙烯(PVDF)與鈦酸鋇(BaTiO3)奈米棒複合材料的微觀結構和性質
Microstructures and properties of composite membranes with PVDF and BaTiO3 nanorod
指導教授: 周振嘉
Chen-Chia Chou
口試委員: 吳昌謀
黃振煌
陳正劭
林昆霖
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 英文
論文頁數: 125
中文關鍵詞: PVDF-BaTiO3納米棒相轉換靜電紡絲結晶結構納米纖維結晶相
外文關鍵詞: PVDF-BaTiO3 nanorods, Phase inversion, Electrospinning, Crystalline structure, Nanofiber, Crystalline phases
相關次數: 點閱:63下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 這篇博士論文提供了關於使用靜電紡絲和相轉換技術在製造聚偏二氟乙烯(PVDF)和鈦酸鋇(BaTiO3)納米桿及薄膜複合材料的效果。在靜電紡絲過程中施加電場會對PVDF納米纖維的形態及相行為產生顯著變化,導致纖維的均勻性提高和直徑減小,以及電活性相的比例改善。根據穿透式電子顯微鏡(TEM)的研究分析調查,α相分子在纖維軸上以0.46納米的間距排列。此外,發現β相對於纖維軸的排列是垂直的,且沿a軸的原子距離為0.86納米。另一方面,較高的電壓可以改善纖維中β相的排列,這表明電場強度、分子鏈的方向及納米纖維相行為之間存在直接關係。
    研究結果顯示,添加具有鈣鈦礦結構的BaTiO3納米桿可以改善PVDF纖維複合材料的特性。由於表面電荷較高的BT納米桿促進了PVDF中的β相形成,這吸引了極性相並影響其結構和功能性質。這種交互作用涉及將β相PVDF分子鏈沿著c軸排列,與BT桿平行,碳與碳之間的原子間距約為0.26納米。表面電荷有助於將PVDF鏈與BT桿對齊,使氫或氟原子更靠近,並影響β相的取向。圍繞BT納米桿的PVDF β相在界面處產生了層狀結構,增進了極性β相與納米桿之間的接觸。與納米桿相比,非極性α相由於與表面電荷的接觸較少,所以位置更遠。
    此外,研究表明,使用相轉換製造的PVDF/BT桿複合材料在機械和介電特性上都有顯著改善。拉伸試驗顯示,隨著BT桿濃度的增加,單層複合材料的拉伸強度增加,而應變降低,表明剛度增加。在純PVDF中,拉伸強度從9.8 MPa增加到含有40 wt% BT的複合材料的24.8 MPa,表明層狀結構增加了強度和柔韌性。這些複合材料的介電和電性質表明現,BT桿顯著增加了多個頻率下的介電常數,並在30 wt% BT達到高峰。在三層結構中的數據支持這些發現,展示了隨著BaTiO3濃度增加,介電常數上升並在40 wt% BT之前顯著下降,表明示BT的影響達到飽和。最後,增加單層和三層PVDF/BaTiO3複合材料中的BT桿含量,提高了電壓輸出,這反映了它們在介電電氣應用方面的潛力。


    This Dissertation thesis provides the effects of electrospinning and phase inversion techniques on the manufacturing of Polyvinylidene Fluoride (PVDF) and Barium Titanate (BaTiO3) nanorods and film composites. The application of an electric field during electrospinning produces significant changes in the morphology and also phase behavior of PVDF nanofibers, leading to enhanced uniformity and reduced diameter of the fibers, as well as improved electroactive phase fraction. According to TEM investigation, the -phase molecules align along the fiber axis at a spacing of 0.46 nm. Additionally, the finding of the -phase has a perpendicular orientation to the fiber axis and an a-axis atomic distance of 0.86 nm. On the other hand, a higher voltage improves beta-phase alignment in the fiber, suggesting a direct relationship between electric field strength, molecular chain orientation, and nanofiber phase behavior.
    The results of adding BaTiO3 nanorods with a perovskite structure can improve the characteristics of PVDF fiber composites. BT nanorods encourage the β-phase in PVDF due to their high surface charge, which attracts the polar phase and impacts its structural and functional properties. The interaction involves aligning β-phase PVDF molecular chains along the c-axis, parallel to BT rods, with a carbon-to-carbon atomic spacing of about 0.26 nm. The surface charge helps align PVDF chains with BT rods, bringing hydrogen or fluorine atoms closer and affecting β-phase orientation. Surrounding BT nanorods, the PVDF β-phase generates a layered structure at the interface, improving contact between the polar β-phase and the nanorods. Compared to the nanorods, the non-polar α-phase is located further away due to lower contact with surface charges.
    Moreover, the study shows that PVDF/BT rod composites, fabricated using phase inversion, display substantial improvements in both mechanical and dielectric properties. Tensile studies demonstrate that single-layer composites with increasing BT rod concentrations had greater tensile strength and lower strain, indicating increased stiffness. Tensile stress increases from 9.8 MPa in pure PVDF to 24.8 MPa in the composite with 40 wt% BT, whereas strain drops from 33% to 13.1%. Tri-layer composites have lower tensile strengths and higher stresses, suggesting that the layered structure increases strength and flexibility. The dielectric and electrical properties of these composites show that BT rods considerably increase the dielectric constant across multiple frequencies, peaking at 30 wt% BT. Supports these findings in a tri-layer setting, exhibiting a dielectric constant that increases with BaTiO3 concentration and peaks before significantly declining at 40 wt% BT, indicating saturation. Lastly, adding BT rods to single-layer and tri-layer PVDF/BaTiO3 composites boosts voltage output, indicating its electrical potential in dielectrical applications.

    DOCTORAL THESIS RECOMMENDATION FORM ii QUALIFICATION FORM iii ACKNOWLEDGMENTS iv ABSTRACT v TABLE OF CONTENTS ix LIST OF FIGURE xii LIST OF TABLE xv CHAPTER 1 INTRODUCTION 1 1.1 Background 1 1.2. Literature Review 2 1.2.1. Crystalline structure of PVDF 2 1.2.2. The Effect of Fabrication procedures 4 1.2.3. Dielectric and ferroelectric properties of PVDF 11 1.2.4. Identification phases formation of PVDF composites using HR-TEM technique 14 1.3. Research Objective 16 1.4. Novelties 17 1.5. Structure of Thesis 18 CHAPTER 2 MATERIALS AND EXPERIMENTAL METHODOLOGY 20 2.1 Justification for the choice of materials. 20 2.2 Experimental procedure 21 2.2.1 Preparation of PVDF fibers 21 2.2.2 Synthesis of BT Nanorods 23 2.2.3 Preparation of PVDF/BT Membranes using electrospinning technique 24 2.2.4 Fabrication of PVDF/BT membranes using the phase inversion technique 25 2.3 Characterization procedure 27 2.2.1 Fourier transform infrared spectroscopy (FTIR) and X-Ray Diffraction (XRD) 27 2.3.2 Differential Scanning Calorimetry (DSC) 30 2.3.4 Thermogravimetric Analysis of PVDF Composites 32 2.3.5 Dielectric and Output Voltage properties 33 2.4 Instrumentation and Equipment 37 CHAPTER 3 STRUCTURAL ANALYSIS OF CRYSTALLINE PHASES ON PVDF FIBER 39 3.1 Introduction 39 3.2 Results and Discussion 40 3.2.1 Morphology PVD nanofibers 42 3.2.2 Crystalline phase of PVDF fibers 45 3.2.3 Molecular chain insights from TEM and HRTEM Analysis 48 3.3 Summary 51 CHAPTER 4 BaTiO3 Nano rods: Synthesis, Structure, and Properties 53 4.1 Introduction 53 4.2 Results and discussion 54 4.2.1 Morphological characterization of BaTiO3 nanorods 54 4.3 Summary 61 CHAPTER 5 Influence of BT rods on the crystalline phases and properties of electrospun PVDF 64 5.1 Introduction 64 5.2 Results and Discussion 65 5.2.1 Morphology of PVDF/BT electrospun fiber membranes 65 5.2.2 Crystalline phases in membranes composite 66 5.2.3 Electric properties in membranes composite 69 5.2.4 Thermal Behavior and Stability Analysis of PVDF/BT Composites 70 5.2.5Analyzing the Microstructural of PVDF Phases through HRTEM 76 5.3 Conclusion 80 CHAPTER 6 Advancing Piezoelectric Nanogenerators: Developing PVDF-BT Rod Films through Phase-Inversion Technique 83 6.1 Introduction 83 6.2 Results and Discussion 85 6.2.1 The Morphology of PVDF/BT rods films 85 6.2.2 Crystalline Structure of Single-Layer PVDF-BT Rods 87 6.2.3 Tensile test of single layer membranes 91 6.2.4 Dielectric and Electrical characterization measurements of single layer membranes 93 6.3 Resume 98 CHAPTER 7 Conclusion 100 CHAPTER 8 Future works 102 REFERENCE 103

    1. Saxena, P. & Shukla, P. A comprehensive review on fundamental properties and applications of poly(vinylidene fluoride) (PVDF). Adv. Compos. Hybrid Mater. 4, 8–26 (2021).
    2. Guarino, V., Ausanio, G., Iannotti, V., Ambrosio, L. & Lanotte, L. Electrospun nanofiber tubes with elastomagnetic properties for biomedical use. Express Polym. Lett. 12, 318–329 (2018).
    3. Molnár, K. et al. Biocompatibility study of poly(Vinyl alcohol)-based electrospun scaffold for hernia repair. Express Polym. Lett. 12, 676–687 (2018).
    4. Kar, E., Bose, N., Das, S., Mukherjee, N. & Mukherjee, S. Enhancement of electroactive β phase crystallization and dielectric constant of PVDF by incorporating GeO2 and SiO2 nanoparticles. Phys. Chem. Chem. Phys. 17, 22784–22798 (2015).
    5. Rajesh, P. S. M., Bodkhe, S., Kamle, S. & Verma, V. Enhancing beta-phase in PVDF through physicochemical modification of cellulose. Electron. Mater. Lett. 10, 315–319 (2014).
    6. Tiwari, V. K. et al. Electron beam-induced piezoelectric phase in poly(vinylidene fluoride) nanohybrid: EFFECT at the molecular level. Polym. Int. 64, 212–221 (2015).
    7. Nuamcharoen, P., Kobayashi, T., Potiyaraj, P. & Shiozaki, M. Pre-thermal treatment in binary solvent systems promoting β crystalline phase of electrospun poly(vinylidene fluoride) nanofibers. Polym. Int. 69, 719–727 (2020).
    8. Guo, S., Duan, X., Xie, M., Aw, K. C. & Xue, Q. Composites, fabrication and application of polyvinylidene fluoride for flexible electromechanical devices: A review. Micromachines 11, 1–29 (2020).
    9. Kawai, H. Jjap.8.975. Piezoelectricity Poly (vinylidene Fluoride) 8, 975 (1969).
    10. Rubinstein, M. Polymer physics: Applications to molecular association and thermoreversible gelation. Polymer Physics, 1–387 (2011).
    11. Khalilian, M. H., Khosravi, H. & Mirzaei, S. Una nueva representación de la notación de Newman para visualizar las propiedades conformacionales. Educ. Quim. 27, 269–277 (2016).
    12. Fraser, G. T., Xu, L. H., Suenram, R. D. & Lugez, C. L. Rotational spectra of four of the five conformers of 1-pentene. J. Chem. Phys. 112, 6209–6217 (2000).
    13. Cui, Z., Hassankiadeh, N. T., Zhuang, Y., Drioli, E. & Lee, Y. M. Crystalline polymorphism in poly(vinylidenefluoride) membranes. Prog. Polym. Sci. 51, 94–126 (2015).
    14. Shepelin, N. A. et al. New developments in composites, copolymer technologies and processing techniques for flexible fluoropolymer piezoelectric generators for efficient energy harvesting. Energy Environ. Sci. 12, 1143–1176 (2019).
    15. Mahanty, B. et al. All-fiber pyro- And piezo-electric nanogenerator for IoT based self-powered health-care monitoring. Mater. Adv. 2, 4370–4379 (2021).

    16. Zhang, W. et al. The Preparation, Structural Design, and Application of Electroactive Poly(vinylidene fluoride)-Based Materials for Wearable Sensors and Human Energy Harvesters. Polymers (Basel). 15, (2023).
    17. Yin, Z., Tian, B., Zhu, Q. & Duan, C. Characterization and application of PVDF and its copolymer films prepared by spin-coating and langmuir-blodgett method. Polymers (Basel). 11, (2019).
    18. Kerker, E. et al. Spectroscopic investigation of highly-scattering nanofiber mats during drying and film formation. Optik (Stuttg). 208, (2020).
    19. Zhang, W. et al. Protein-mimetic peptide nanofibers: Motif design, self-assembly synthesis, and sequence-specific biomedical applications. Prog. Polym. Sci. 80, 94–124 (2018).
    20. Zhu, P. et al. In Situ Polymerization of Nanostructured Conductive Polymer on 3D Sulfur/Carbon Nanofiber Composite Network as Cathode for High-Performance Lithium–Sulfur Batteries. Adv. Mater. Interfaces 5, 1–10 (2018).
    21. Jia, H. et al. Reduced Graphene Oxide-Incorporated SnSb@CNF Composites as Anodes for High-Performance Sodium-Ion Batteries. ACS Appl. Mater. Interfaces 10, 9696–9703 (2018).
    22. Yanilmaz, M., Lu, Y., Zhu, J. & Zhang, X. Silica/polyacrylonitrile hybrid nanofiber membrane separators via sol-gel and electrospinning techniques for lithium-ion batteries. J. Power Sources 313, 205–212 (2016).
    23. Kumar, B. et al. Renewable and metal-free carbon nanofibre catalysts for carbon dioxide reduction. Nat. Commun. 4, 1–8 (2013).
    24. Lee, J. K. Y. et al. Polymer-based composites by electrospinning: Preparation & functionalization with nanocarbons. Prog. Polym. Sci. 86, 40–84 (2018).
    25. Liao, Y., Loh, C. H., Tian, M., Wang, R. & Fane, A. G. Progress in electrospun polymeric nanofibrous membranes for water treatment: Fabrication, modification and applications. Prog. Polym. Sci. 77, 69–94 (2018).
    26. Viana, V. R., Ferreira, W. H., Azero, E. G., Dias, M. L. & Andrade, C. T. Optimization of the Electrospinning Conditions by Box-Behnken Design to Prepare Poly(Vinyl Alcohol)/Chitosan Crosslinked Nanofibers. J. Mater. Sci. Chem. Eng. 08, 13–31 (2020).
    27. Park, J. Y., Lee, I. H. & Bea, G. N. Optimization of the electrospinning conditions for preparation of nanofibers from polyvinylacetate (PVAc) in ethanol solvent. J. Ind. Eng. Chem. 14, 707–713 (2008).
    28. Rasouli, M., Pirsalami, S. & Zebarjad, S. M. Optimizing the electrospinning conditions of polysulfone membranes for water microfiltration applications. Polym. Int. 68, 1610–1617 (2019).
    29. Amiri, N., Moradi, A., Tabasi, S. A. S. & Movaffagh, J. Modeling and process optimization of electrospinning of chitosan-collagen nanofiber by response surface methodology. Mater. Res. Express 5, (2018).
    30. Burlaga, N., Bartolewska, M., Buzgo, M. & Simaite, A. Optimization of the Emulsion Electrospinning for Increased Activity of Biopharmaceuticals. 39 (2021).
    31. Rezaei, B. et al. Multifactorial modeling and optimization of solution and electrospinning parameters to generate superfine polystyrene nanofibers. Adv. Polym. Technol. 37, 2743–2755 (2018).
    32. Shenoy, S. L., Bates, W. D., Frisch, H. L. & Wnek, G. E. Role of chain entanglements on fiber formation during electrospinning of polymer solutions: Good solvent, non-specific polymer-polymer interaction limit. Polymer (Guildf). 46, 3372–3384 (2005).
    33. Jarusuwannapoom, T. et al. Effect of solvents on electro-spinnability of polystyrene solutions and morphological appearance of resulting electrospun polystyrene fibers. Eur. Polym. J. 41, 409–421 (2005).
    34. Cengiz, F. & Jirsak, O. The effect of salt on the roller electrospinning of polyurethane nanofibers. Fibers Polym. 10, 177–184 (2009).
    35. Son, W. K., Ho Youk, J., Seung Lee, T. & Park, W. H. Effect of pH on electrospinning of poly(vinyl alcohol). Mater. Lett. 59, 1571–1575 (2005).
    36. Kim, G. T. et al. The morphology of electrospun polystyrene fibers. Korean J. Chem. Eng. 22, 147–153 (2005).
    37. Wang, C. et al. Electrospinning of polyacrylonitrile solutions at elevated temperatures. Macromolecules 40, 7973–7983 (2007).
    38. Kilic, A., Oruc, F. & Demir, A. Effects of Polarity on Electrospinning Process. Text. Res. J. 78, 532–539 (2008).
    39. Mo, X. M., Xu, C. Y., Kotaki, M. & Ramakrishna, S. Electrospun P(LLA-CL) nanofiber: A biomimetic extracellular matrix for smooth muscle cell and endothelial cell proliferation. Biomaterials 25, 1883–1890 (2004).
    40. Gade, H., Nikam, S., Chase, G. G. & Reneker, D. H. Effect of electrospinning conditions on β-phase and surface charge potential of PVDF fibers. Polymer (Guildf). 228, 123902 (2021).
    41. Li, C. et al. Fabrication of Anatase TiO2/PVDF Composite Membrane for Oil-in-Water Emulsion Separation and Dye Photocatalytic Degradation. Membranes (Basel). 13, (2023).
    42. Tao, M. mi, Liu, F., Ma, B. rong & Xue, L. xin. Effect of solvent power on PVDF membrane polymorphism during phase inversion. Desalination 316, 137–145 (2013).
    43. Teixeira, J. et al. Effect of polymer dissolution temperature and conditioning time on the morphological and physicochemical characteristics of poly(Vinylidene fluoride) membranes prepared by non-solvent induced phase separation. Polymers (Basel). 13, (2021).
    44. Zheng, L., Wang, J., Yu, D., Zhang, Y. & Wei, Y. Preparation of PVDF-CTFE hydrophobic membrane by non-solvent induced phase inversion: Relation between polymorphism and phase inversion. J. Memb. Sci. 550, 480–491 (2018).
    45. Albiladi, A., Gzara, L., Organji, H., Alkayal, N. S. & Figoli, A. Electrospun Poly (Vinylidene Fluoride-Co-Hexafluoropropylene) Nanofiber Membranes for Brine Treatment via Membrane Distillation. Polymers (Basel). 15, (2023).

    46. Fang, P. et al. Phase-Field Simulation of the Effect of Coagulation Bath Temperature on the Structure and Properties of Polyvinylidene Fluoride Microporous Membranes Prepared by a Nonsolvent-Induced Phase Separation. ACS Omega (2022).
    47. Thomas, P., Varughese, K. T., Dwarakanath, K. & Varma, K. B. R. Dielectric properties of Poly(vinylidene fluoride)/CaCu3Ti4O12 composites. Compos. Sci. Technol. 70, 539–545 (2010).
    48. Rawat, M. & Yadav, K. L. Dielectric, enhanced magnetic and magnetodielectric properties of hot pressed (BNBT-BFO)/PVDF composite films. J. Polym. Res. 22, 1–7 (2015).
    49. Riquelme, S. A., Ramam, K. & Jaramillo, A. F. Ceramics fillers enhancing effects on the dielectric properties of poly(vinylidene fluoride) matrix composites prepared by the torque rheometer method. Results Phys. 15, (2019).
    50. Sukumaran, S. et al. Recent advances in flexible PVDF based piezoelectric polymer devices for energy harvesting applications. J. Intell. Mater. Syst. Struct. 32, 746–780 (2021).
    51. Liu, Y. et al. Relaxor Ferroelectric Polymers: Insight into High Electrical Energy Storage Properties from a Molecular Perspective. Small Sci. 1, 2000061 (2021).
    52. Li, T. et al. High-Performance Poly(vinylidene difluoride)/Dopamine Core/Shell Piezoelectric Nanofiber and Its Application for Biomedical Sensors. Adv. Mater. 33, 1–11 (2021).
    53. Abomostafa, H. M., Abouhaswa, A. S., El-Komy, G. M., Mansour, D. E. A. & Turky, G. M. Structure and dielectric properties of Dy-BST/PVDF nanocomposites. J. Mater. Sci. Mater. Electron. 34, 1–12 (2023).
    54. Yang, C., Chen, F., Sun, J. & Chen, N. Boosted Mechanical Piezoelectric Energy Harvesting of Polyvinylidene Fluoride/Barium Titanate Composite Porous Foam Based on Three-Dimensional Printing and Foaming Technology. ACS Omega 6, 30769–30778 (2021).
    55. Taleb, S., Badillo, M., Flores-Ruiz, F. J. & Acuautla, M. From synthesis to application: High-quality flexible piezoelectric sensors fabricated from tetragonal BaTiO3/ P(VDF-TrFE) composites. Sensors Actuators A Phys. 361, 114585 (2023).
    56. Cai, X., Lei, T., Sun, D. & Lin, L. A critical analysis of the α, β and γ phases in poly(vinylidene fluoride) using FTIR. RSC Adv. 7, 15382–15389 (2017).
    57. Frederick, W. J. & Mentzer, C. C. Determination of heats of volatilization for polymers by differential scanning calorimetry. J. Appl. Polym. Sci. 19, 1799–1804 (1975).
    58. Tarani, E. et al. Calculation of the degree of crystallinity of HDPE/GNPs nanocomposites by using various experimental techniques: a comparative study. J. Mater. Sci. 58, 1621–1639 (2023).
    59. Costa, L. M. M., Bretas, R. E. S. & Gregorio, R. Effect of Solution Concentration on the Electrospray/Electrospinning Transition and on the Crystalline Phase of PVDF. Mater. Sci. Appl. 01, 247–252 (2010).
    60. Ruan, L. et al. Properties and applications of the β phase poly(vinylidene fluoride). Polymers (Basel). 10, 1–27 (2018).
    61. Singh, R. K., Lye, S. W. & Miao, J. Holistic investigation of the electrospinning parameters for high percentage of β-phase in PVDF nanofibers. Polymer (Guildf). 214, 123366 (2021).
    62. Akkoyun, S. & Öktem, N. Effect of viscoelasticity in polymer nanofiber electrospinning: Simulation using FENE-CR model. Eng. Sci. Technol. an Int. J. 24, 620–630 (2021).
    63. Gou, Z. & McHugh, A. J. A comparison of Newtonian and viscoelastic constitutive models for dry spinning of polymer fibers. J. Appl. Polym. Sci. 87, 2136–2145 (2003).
    64. Yee, W. A. et al. Stress-induced structural changes in electrospun polyvinylidene difluoride nanofibers collected using a modified rotating disk. Polymer (Guildf). 49, 4196–4203 (2008).
    65. Lei, T. et al. Electrospinning-induced preferred dipole orientation in PVDF fibers. J. Mater. Sci. 50, 4342–4347 (2015).
    66. Zhong, G. et al. Understanding polymorphism formation in electrospun fibers of immiscible Poly(vinylidene fluoride) blends. Polymer (Guildf). 52, 2228–2237 (2011).
    67. Liu, Z. et al. Electrospun Jets Number and Nanofiber Morphology Effected by Voltage Value: Numerical Simulation and Experimental Verification. Nanoscale Res. Lett. 14, (2019).
    68. Lei, T. et al. Spectroscopic evidence for a high fraction of ferroelectric phase induced in electrospun polyvinylidene fluoride fibers. RSC Adv. 3, 24952–24958 (2013).
    69. Liu, X., Xu, S., Kuang, X. & Wang, X. Ultra-long MWCNTs highly oriented in electrospun PVDF/MWCNT composite nanofibers with enhanced β phase. RSC Adv. 6, 106690–106696 (2016).
    70. Lolla, D. et al. Polyvinylidene fluoride molecules in nanofibers, imaged at atomic scale by aberration corrected electron microscopy. Nanoscale 8, 120–128 (2016).
    71. Lolla, D., Pan, L., Gade, H. & Chase, G. G. Functionalized Polyvinylidene Fluoride Electrospun Nanofibers and Applications. Electrospinning Method Used to Creat. Funct. Nanocomposites Film. (2018).
    72. Lolla, D. et al. Fabrication, polarization of electrospun polyvinylidene fluoride electret fibers and effect on capturing nanoscale solid aerosols. Materials (Basel). 9, (2016).
    73. Kim, Y. J. et al. Microstructural characterization and dielectric properties of barium titanate solid solutions with donor dopants. Bull. Korean Chem. Soc. 30, 1267–1273 (2009).
    74. Acosta, M. et al. BaTiO3-based piezoelectrics: Fundamentals, current status, and perspectives. Appl. Phys. Rev. 4, (2017).
    75. Ertuğ, B. The Overview of The Electrical Properties of Barium Titanate. Am. J. Eng. Res. 2, 1–7 (2013).
    76. Loganathan, A., Manoharan, D. & Nesamony, V. J. Cubic phase stabilization of Barium titanate nanorods by rapid quenching technique. Mater. Lett. 186, 305–307 (2017).
    77. Silveira, L. G. D. et al. Dielectric investigations in nanostructured tetragonal BaTiO3 ceramics. Mater. Res. Bull. 48, 1772–1777 (2013).
    78. Schlag, S. & Eicke, H. F. Size driven phase transition in nanocrystalline BaTiO3. Solid State Commun. 91, 883–887 (1994).
    79. Hao, Y. et al. Ferroelectric state and polarization switching behaviour of ultrafine BaTiO3nanoparticles with large-scale size uniformity. J. Mater. Chem. C 9, 5267–5276 (2021).
    80. Guo, H., Baker, J. S., Wu, W. & Choy, K. L. High Dielectric Constants in BaTiO 3 Due to Phonon Mode Softening Induced by Lattice Strains : First Principles Calculations. 2300001, 1–6 (2023).
    81. Krishnamoorthy, T. et al. Direct deposition of micron-thick aligned ceramic TiO 2 nanofibrous film on FTOs by double-needle electrospinning using air-turbulence shielded disc collector. J. Nanomater. 2011, (2011).
    82. Rinaldi, M., Ruggieri, F., Lozzi, L. & Santucci, S. Well-aligned TiO2 nanofibers grown by near-field-electrospinning. J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. Process. Meas. Phenom. 27, 1829–1833 (2009).
    83. Ye, H. et al. Electron structure in modified BaTiO3/ poly(vinylidene fluoride) nanocomposite with high dielectric property and energy density. IET Nanodielectrics 2, 70–77 (2019).
    84. Jiang, B. et al. Barium titanate at the nanoscale: Controlled synthesis and dielectric and ferroelectric properties. Chem. Soc. Rev. 48, 1194–1228 (2019).
    85. Borzì, A. et al. Microstructure analysis of epitaxial BaTiO3 thin films on SrTiO3-buffered Si: Strain and dislocation density quantification using HRXRD methods. Materialia 14, (2020).
    86. Lukacs, V. A. et al. Phase coexistence and grain size effects on the functional properties of BaTiO3 ceramics. J. Eur. Ceram. Soc. 42, 2230–2247 (2022).
    87. Panomsuwan, G. & Manuspiya, H. Correlation between size and phase structure of crystalline BaTiO3 particles synthesized by sol-gel method. Mater. Res. Express 6, (2019).
    88. Testino, A. et al. Kinetics and Mechanism of Aqueous Chemical Synthesis of BaTiO3 Particles. Chem. Mater. 16, 1536–1543 (2004).
    89. Zheng, Y. et al. Nanostructure Mediated Piezoelectric Effect of Tetragonal BaTiO3 Coatings on Bone Mesenchymal Stem Cell Shape and Osteogenic Differentiation. Int. J. Mol. Sci. 24, (2023).
    90. Hayward, S. A. & Salje, E. K. H. The pressure-temperature phase diagram of BaTiO3: A macroscopic description of the low-temperature behaviour. J. Phys. Condens. Matter 14, (2002).
    91. Kovalenko, O. et al. Formation of single-crystalline BaTiO3 nanorods from glycolate by tuning the supersaturation conditions. Ceram. Int. 48, 11988–11997 (2022).
    92. Li, J. et al. Highly sensitive, flexible and wearable piezoelectric motion sensor based on PT promoted β-phase PVDF. Sensors Actuators A Phys. 337, 113415 (2022).

    93. Jia, N. et al. Enhanced electroactive and mechanical properties of poly(vinylidene fluoride) by controlling crystallization and interfacial interactions with low loading polydopamine coated BaTiO3. J. Colloid Interface Sci. 453, 169–176 (2015).
    94. Arai, F. et al. Crystallization behavior and higher-order structure in miscible crystalline/crystalline polymer blends. Polym. J. 45, 921–928 (2013).
    95. Yee, W. A., Kotaki, M., Liu, Y. & Lu, X. Morphology, polymorphism behavior and molecular orientation of electrospun poly(vinylidene fluoride) fibers. Polymer (Guildf). 48, 512–521 (2007).
    96. de Jesus Silva, A. J., Contreras, M. M., Nascimento, C. R. & da Costa, M. F. Kinetics of thermal degradation and lifetime study of poly(vinylidene fluoride) (PVDF) subjected to bioethanol fuel accelerated aging. Heliyon 6, (2020).
    97. Wang, W., Lemaire, R., Bensakhria, A. & Luart, D. Thermogravimetric Analysis and Kinetic Modeling of the AAEM-Catalyzed Pyrolysis of Woody Biomass. Molecules 27, (2022).
    98. Blanco, D. et al. Isoconversional kinetic analysis applied to five phosphonium cation-based ionic liquids. Thermochim. Acta 648, 62–74 (2017).
    99. Park, J. S. Electrospinning and its applications. Adv. Nat. Sci. Nanosci. Nanotechnol. 1, (2010).
    100. Arlt, K. & Wegener, M. Piezoelectric PZT / PVDF-copolymer 0-3 composites: Aspects on film preparation and electrical poling. IEEE Trans. Dielectr. Electr. Insul. 17, 1178–1184 (2010).
    101. Dallaev, R. et al. Brief Review of PVDF Properties and Applications Potential. Polymers (Basel). 14, 1–29 (2022).
    102. Dutta, B., Kar, E., Bose, N. & Mukherjee, S. Significant enhancement of the electroactive β-phase of PVDF by incorporating hydrothermally synthesized copper oxide nanoparticles. RSC Adv. 5, 105422–405434 (2015).
    103. Sharafkhani, S. & Kokabi, M. High performance flexible actuator: PVDF nanofibers incorporated with axially aligned carbon nanotubes. Compos. Part B Eng. 222, 109060 (2021).
    104. Tripathy, A., Maria Joseph Raj, N. P., Saravanakumar, B., Kim, S. J. & Ramadoss, A. Tuning of highly piezoelectric bismuth ferrite/PVDF-copolymer flexible films for efficient energy harvesting performance. J. Alloys Compd. 932, 167569 (2023).
    105. Hussein, A. D., Sabry, R. S., Abdul Azeez Dakhil, O. & Bagherzadeh, R. Effect of Adding BaTiO3 to PVDF as Nano Generator. J. Phys. Conf. Ser. 1294, (2019).
    106. Mokhtari, F., Shamshirsaz, M., Latifi, M. & Foroughi, J. Nanofibers-based piezoelectric energy harvester for self-powered wearable technologies. Polymers (Basel). 12, 1–15 (2020).
    107. Abolhasani, M. M., Shirvanimoghaddam, K. & Naebe, M. PVDF/graphene composite nanofibers with enhanced piezoelectric performance for development of robust nanogenerators. Compos. Sci. Technol. 138, 49–56 (2017).

    108. Sabry, R. S. & Hussein, A. D. PVDF: ZnO/BaTiO3 as high out-put piezoelectric nanogenerator. Polym. Test. 79, (2019).
    109. Shi, K., Sun, B., Huang, X. & Jiang, P. Synergistic effect of graphene nanosheet and BaTiO3 nanoparticles on performance enhancement of electrospun PVDF nanofiber mat for flexible piezoelectric nanogenerators. Nano Energy 52, 153–162 (2018).
    110. Cho, Y. et al. BaTiO3@PVDF-TrFE nanocomposites with efficient orientation prepared via phase separation nano-coating method for piezoelectric performance improvement and application to 3D-PENG. Chem. Eng. J. 427, 131030 (2022).
    111. Güçlü, H., Kasım, H. & Yazici, M. Investigation of the optimum vibration energy harvesting performance of electrospun PVDF/BaTiO3 nanogenerator. J. Compos. Mater. 57, 409–424 (2023).
    112. Salimi, A. & Yousefi, A. A. FTIR studies of β-phase crystal formation in stretched PVDF films. Polym. Test. 22, 699–704 (2003).
    113. Boccaccio, T., Bottino, A., Capannelli, G. & Piaggio, P. Characterization of PVDF membranes by vibrational spectroscopy. J. Memb. Sci. 210, 315–329 (2002).

    無法下載圖示
    全文公開日期 2029/01/22 (校外網路)

    QR CODE