簡易檢索 / 詳目顯示

研究生: 謝育淇
Yu-Chi Hsieh
論文名稱: 雙成分觸媒Pt/RuO2奈米桿之甲酸燃料陽極氧化反應動力學及RuO2奈米桿之層溫脫附研究
Anodic Oxidation Kinetics of Binary Catalyst Pt/RuO2 Nanorods in Formic Acid fuel and TPD Study on RuO2 Nanorods
指導教授: 蔡大翔
Dah-Shyang Tsai
口試委員: 江志強
Jyh-Chiang Jiang
黃炳照
Bing-Joe Hwang
胡啟章
Chi-Chang Hu
洪偉修
Wei-Hsiu Hung
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 117
中文關鍵詞: 層溫脫附陽極氧化反應動力RuO2奈米桿甲酸氧化Pt/RuO2奈米桿
外文關鍵詞: Anodic Oxidation Kinetics, oxidation formic acid, TPD, RuO2 nanorods, Pt/RuO2 nanorods
相關次數: 點閱:213下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究利用化學氣相沉積製備氧化釕奈米桿,與層溫脫附圖譜瞭解奈米桿對氧、甲醇、乙醇、甲酸的吸附特性。由於氧化釕奈米桿似乎是極佳的表面反應氧供應者,我們進一步研究Pt/RuO2NR的電化學觸媒特性。電化學觸媒活性的初步測試用循環伏安法在甲醇、乙醇、甲酸、乙二醇水溶液中進行,甲酸溶液內Pt/RuO2NR的活性最佳,因此我們進一步詳細研究甲酸的電化學氧化動力學。
    RuO2 奈米桿以一維垂直且緻密的成長在鈮酸鋰(100)單晶上。RuO2奈米桿單晶成長方向為[001],且奈米桿四周桿面結晶面為(110)面。在層溫脫附實驗中發現,RuO2奈米桿表現出對簡單碳氫化合物分子有強烈的脫氫能力。我們也發現一氧化碳在RuO2表面上有不同的反應路徑,亦產生不同的鍵結能量,並且發現RuO2奈米桿具有氧化一氧化碳成為二氧化碳的能力,層溫脫附的結果說明了RuO2表面氧原子提供協助催化的效果。由Pt/RuO2 奈米桿電極對甲酸電解液的極化曲線中,Tafel slope測量約為126 mVdec-1。實驗導向為變化不同甲酸濃度與不同硫酸濃度,求証出甲酸濃度對反應速率式影響階數為0.58,而氫離子濃度影響階數為-1。甲酸陽極氧化依溫度的影響變化,即符合Arrhenius 方程式,即可求出甲酸活化能19.5 kJ/mol。


    We have investigated the preparation of RuO2 nanorods (RuO2NR) via chemical vapor deposition and their adsorption characteristics on oxygen, methanol, ethanol, and formic acid using the temperature programmed desorption TPD spectroscopy. Since the RuO2NR appears to be an excellent oxygen reservoir for surface reaction, we further explore the electrocatalytic properties of Pt/RuO2NR. Preliminary test on catalytic activity is done on methanol, ethanol, formic acid, and ethylene glycol using cyclic voltammetry CV, and the Pt/RuO2NR demonstrates the highest activity in formic acid. Hence the electrochemical reaction kinetics of formic acid oxidation on Pt/RuO2NR is studied in details.
    One dimensional vertically aligned RuO2NR is grown epitaxially and densely on LiNbO3(100). The growth direction is [001] of RuO2 crystal, the crystal plane of nanorods side wall is (110). In the TPD experiments, RuO2NR exhibits strong capability in depriving hydrogen from the simple hydrocarbons. We also find that different reaction paths for the carbon monoxides that bind differently on surface, and also carbon monoxide converting to carbon dioxide. The TPD results indicate the surface oxygen assists in converting carbon monoxide to dioxide. The polarization curve of Pt/RuO2NR electrode is recorded in the aqueous solution of formic acid. The Tafel slope is measured around 126 mVdec-1. Experiments conducted in the solutions of various formic acid and sulfuric acid concentrations indicate that the order of formic acid concentration in the rate equation is 0.58, while that of hydrogen concentration is -1.0. The temperature dependence of formic acid anodic oxidation is correlated in an Arrhenius-type equation with activation energy 19.5 kJ/mol.

    目錄 中文摘要…………………………………………………………………I 英文摘要………………………………………………………………...II 誌謝..........................................................................................................III 目錄……………………………………………………………………..IV 圖目錄………………………………………….……………..………..VII 表目錄……………………………………………...…………………...XI 第一章 緒論………………………………………………..…………1 1-1氧化釕薄膜與單晶樣品…………………………………………......1 1-2 氧化釕晶體之結構………………………………….………………3 1-3氧化釕晶體之金屬電導特性……………………………………..…5 1-4 氧化釕電化學…………………………………...…………………..7 1.4-1 產生氯氣電化學反應(Chlorine evolution electrochemical reaction)………………………………………………………………..8 1.4-2 產生氧氣電化學反應(Oxygen evolution reaction OER)……..10 1.4-3 產生氫氣電化學反應(Hydrogen evolution reaction HER)…..11 1-5氧化釕晶體氣相反應特性………………………………………....13 第二章 實驗方法及步驟……………………………………………....16 2.1 實驗藥品及規格…………………………………………………...16 2.2 實驗設備………………………………………………………..….19 2.2-1. 氧化釕化學氣相沉積設備…………………………………...19 2.3 分析儀器設備……………………………………………………...21 2.3-1 電化學分析儀器…………………………………………..…21 2.3-2 X-ray繞射儀………………………………………………....21 2.3-3 場發射掃描式電子顯微鏡(FESEM)………………………..22 2.3-4 層溫脫附儀器 (Temperature programmed desorption)……..23 2.4 實驗步驟與條件…………………………………………..……….25 2.4-1 化學氣相沉積成長RuO2 奈米桿實驗步驟………………….26 2.4-2 Pt/RuO2 奈米桿陽極製備與封裝……………………………..28 2.4-3 電化學觸媒分析步驟…………………………………………31 2.4-4 層溫脫附研究實驗步驟……………………………………....34 第三章 RuO2 奈米桿之層溫脫附結果與討論…………………….…36 3.1 RuO2 奈米桿之層溫脫附研究…………………………………….36 3.2 RuO2 奈米桿特性………………………………………………….37 3.3 層溫脫附原理及計算公式……………………………………...…40 3.4 氧氣在RuO2 奈米桿的表面脫附…………………………………44 3.4-1 氧氣在RuO2 奈米桿上的物理吸附脫附行為…………….…46 3.4-2 氧氣在RuO2 奈米桿上的化學吸附脫附行為……………….49 3.5 甲醇在RuO2 奈米桿的表面脫附 …………………………….….52 3.6 乙醇在RuO2 奈米桿的表面脫附 ………………………………..58 3.7 甲酸在RuO2 奈米桿的表面脫附………………….………….…..62 第四章 Pt/RuO2 奈米桿電化學觸媒………………………………….66 4.1 Pt/RuO2 奈米桿製備…………………………………………….....66 4.2甲醇、乙醇、甲酸、乙二醇電化學測試………………………..…72 4.3 Pt/RuO2 奈米桿對甲酸之電極電化學動力學研究…………….…77 4.3-1 甲酸氧化………………………………………………………77 4.3-2 極化曲線(Polarization curve)…………………………………78 4.3-3 電化學反應受甲酸濃度影響…………………………………81 4.3-4 氫離子(H+)濃度影響………………………………………….84 4.3-5 溫度影響與甲酸氧化活化能計算……………………………87 4.3-6 Pt/RuO2 奈米桿對甲酸氧化反應機構………………………..90 第五章結論……………………………………………………………..93 參考文獻………………………………………………………………..96

    參考文獻
    1. J. P. Zheng and Y. Xin, Characterization of RuO2-xH2O with various water content, J. Power Sources, vol.110, pp.86-90(2002).
    2. S. Trasatti and W. E. OGrady, Properties and applications of RuO2-based electrodes, in Advances in Electrochemistry and Electrochemical Engineering, V.12, edited by H. Gerischer and C. W. Tobias, Wiley-Interscience (New York) 1981.
    3. D. A. McKeown, P. L. Hagans, L. P. L. Carette, A. E. Russell, K. E. Swider, and D. R. Rolison, Structure of hydrous ruthenium oxides, J. Phys. Chem. B, vol.103, pp.4825-4832 (1999).
    4. Y. Mo, M. R. Antonio, and D. A. Scherson, In situ Ru K-edge X-ray absorption fine structure studies of electroprecipitated ruthenium dioxide films with relevant to supercapacitor applications, J. Phys. Chem. B, vol.104, pp.9777-9779 (2000).
    5. J. W. Long, R. M. Stroud, K. E. Swider-Lyons, and D. R. Rolison, How to make electrocatalyst more active for direct menthanol oxidation – avoid PtRu bimetallic alloys, J. Phys. Chem. B, vol.104, pp. 9772-9776. (2000).
    6. M. Tomkiewicz, Y. S. Huang, F. H. Pollak, The potential of zero charge of oriented single-crystal RuO2 in aqueous electrolytes, J. Electrochem. Soc., vol.130, pp.1514-1518. (1983).
    7. T. Hepel, F. H. Pollak, and W. E. OGrady, Effect of crystallographic orientation of single-crystal RuO2 electrodes on the hydrogen adsorption reactions, J. Electrochem. Soc., vol.131, pp.2094-2100. (1984).
    8. T. E. Lister, Y. Chu, W. Cullen, H. You, R. M. Yonco, J. F. Mitchell, Z. Nagy, Electrochemical and X-ray scattering study of well defined RuO2 single crystal surfaces, J. Electroanaly. Chem., vol.524-525 201-208. (2002).
    9. Y. S. Chu, T. E. Lister, W. G. Cullen, H. You, and Z. Nagy, Commensurate water monolayer at the RuO2(110)/water interface, Phys. Rev. Lett., vol.86, pp.3364-3367 (2001).
    10. A. A. Bolzan, C. Fong, B. J. Kennedy, C. J. Howard, ”Structure Studies of Rutile-Type Metal Dioxides”, Acta Cryst., B53, pp.373 (1997).
    11. L. F. Mattheiss, ”Electronic structure of RuO2, OsO2, and IrO2”, Phys. Rev. B, vol.13, pp.2433 (1976).
    12. 余樹楨, 晶體之結構與性質, 國立編譯館, 台北, 第280頁,民國七十八年。
    13. W. D. Ryden and A. W. Lawson, ”Electronic transport properties of IrO2 and RuO2”, Phys. Rev. B, vol.1, pp.1494 (1970).
    14. R. C. Weast (Ed.) Handbook and Chemistry and Physics, F146 (1989).
    15. R. R. Daniels and G. Margaritiondo, “Electronic States of Rutile Dioxides”, Phys. Rev. B, vol.29, pp.1813. (1984).
    16. M. Takeuchi, K. Miwada and H. Nagasaka, “Electrical Properties of Sputtered RuO2 Films”, Appl. Surf. Sci., vol.11/12, pp.298. (1982).
    17. S. Y. Mar, J. S. Liang, C.Y. Sun, Y. S. Huang,"Grain boundary Scattering in Ruthenium dioxide thin film.", Thin Solid Films, vol.238, pp.158. (1994).
    18. S. Trasatti, Electrocatalysis: understanding the success of DSA, Electrochimica Acta, vol.45, pp.2377-2385. (2000).
    19. Y. Takasu and Y. Murakami, Electrochimica Acta, Design of oxide electrodes with large surface area, vol.45, pp.4135-4141. (2000).
    20. L. Nanni, S. Polizzi, A. Benedetti, and A.D. Battisti, Morphology, microstructure, and electrocatalytic properties of RuO2-SnO2 thin films, J. Electrochem. Soc., vol.146, pp.220-225. (1999).
    21. R. Bertoncello, S. Cattarin, I. Frateur, and M. Musiani, Preparation of anodes for oxygen evolution by electrodeposition of composite oxides of Pb and Ru on Ti, J. Electroanal. Chem., vol.492, pp.145-149. (2000).
    22. M. Musiani, F. Furlanetto, R. Bertoncello, Electrodeposited PbO2+RuO2: a composite anode for oxygen evolution from sulphuric acid solution, J. Electroanal. Chem., vol.465, pp.160-167. (1999).
    23. M. R. Gennero de Chialvo and A. C. Chialvo, Oxygen evolution reaction on thick hydrous nickel oxide electrodes, Electrochimica Acta, vol.33, pp.825-830. (1988).
    24. E. J. M. OSullivan and L. D. Burke, Kinetics of oxygen gas evolution on hydrous Rhodium oxide films, J. Electrochem. Soc., vol.137, pp.466-471. (1990).
    25. R. Kotz and S. Stucki, Stabilization of RuO2 by IrO2 for anodic oxygen evolution in acid media, Electrochimica Acta, vol.31, pp. 1311-1316. (1986).
    26. L. Chen, D. Guay, and A. Lasia, Kinetics of the hydrogen evolution reaction on RuO2 and IrO2 oxide electrodes in H2SO4 solution: An AC impedance study, J. Electrochem. Soc., vol.143, pp. 3576-3584. (1996).
    27. M. Blouin and D. Guay, Activation of ruthenium oxide, iridium oxide, and mixed RuxIrx oxide electrodes during cathodic polarization and hydrogen evolution, J. Electrochem. Soc., vol.144, pp.573-581. (1997).
    28. N. Krstajic and S. Trasatti, Cathodic behavior of RuO2-doped Ni/Co3O4 electrodes in alkaline solutions: hydrogen evolution, J. Appl. Electrochem., vol.28, pp.1291-1297. (1998).
    29. C. Iwakura, M. Tanaka, S. Nakamatsu, H. Inoue, M. Matsuoka and N. Furukawa, Electrochemicala properties of Ni/(Ni+RuO2) active cathodes for hydrogen evolution in chlor-alkali electrolysis, Electrochimica Acta, vol.40, pp.977-982. (1995).
    30. A. C. Travares and S. Trasatti, Ni+ RuO2 co-doped electrodes for hydrogen evolution, Electrochimica Acta, vol.45, pp.4195-4202. (2000).
    31. D. Rochefort, P. Dabo, D. Guay, P.M.A. Sherwood, XPS investigations of thermally prepared RuO2 electrodes in reductive conditions, Electrochimica Acta, vol.48 , pp.4245-4252 (2003).
    32. T. E. Lister, Y. V. Tolmachev, Y. Chen, W. G. Cullen, H. You, R. Yonco, Z. Nagy, Cathodic activation of RuO2 single crystal surfaces for hydrogen evolution reaction, J. Electroanaly. Chem., vol.554-555, pp.71-76 (2003).
    33. L. Chen, D. Guay, F. H. Pollak, F. Levy, AFM observation of surface activation of ruthenium oxide electrodes during hydrogen evolution, J. Electroanal. Chem., vol.429, pp.185-192 (1997).
    34. S. Wodiunig, V. Patsis, C. Comninellis, “ Electrochemical Promotion of RuO2-Catalysts for the Gas Phase Combustion of C2H4”, Solid State Ionics, vol.136-137, pp.813 (2000).
    35. S. Wodiunig, C. Comninellis, “Electrochemical promotion of RuO2 catalysts for the gas phase combustion of C2H4”, J. Eur. Ceram. Soc., vol.19, pp.931 (1999).
    36. S. Wodiunig, F. Bokeloh, J. Nicole, and C. Comninellis, “ Electrochemical Promotion of RuO2 Catalyst Dispersed on an Yttria-Stabilized Zirconia Monolith”, Electrochem. Solid-State Lett., vol.2, pp.281 (1999).
    37. H. Over, “Ruthenium Dioxide, a Fascinating Material for Atomic Scale Surface Chemistry”, Appl. Phys. A, vol.75, pp.37 (2002).
    38. C. Y. Fan, J. Wang, K. Jacobi, G. Ertl, “The Oxidation of CO on RuO2(110) at Room Temperature”, J. Chem. Phys., vol.114, pp.10058 (2001).
    39. S. Wendt, A. P. Seitsonen, H. Over, “Catalytic Activity of RuO2(1 1 0) in the Oxidation of CO”, Catalysis Today, vol.85, pp.167 (2003).
    40. S. Wendt, A. P. Seitsonen, Y. D. Kim, M. Knapp, H. Idriss, H. Over, ” Complex Redox Chemistry on the RuO2(1 1 0) surface: Experiment and theory”, Surf. Sci., vol.505, pp.137 (2002).
    41. H. Over, A. P. Seitsonen, E. Lundgren, M. Schmid, P. Varga, “Experimental and Simulated STM Images of Stoichiometric and Partially Reduced RuO2(1 1 0) Surfaces Including Adsorbates ”, Surf. Sci., vol.515, pp.143 (2002).
    42. A. P. Seitsonen, Y. D. Kim, M. Knapp, S. Wendt, and H. Over, “CO Adsorption on the Reduced RuO2(110) Surface: Energetics and Structure”, Phys. Rev. B, vol.65, pp.035413 (2001).
    43. M.Knapp, A.P.Seitsonen,Y D. Kim, and H. Over“Catalytic Activity of the RuO2(100) Surface in the Oxidation of CO”, J. Phys. Chem. B2004, vol.108, pp.14392-14397.
    44. J. T. Sommerfeld and G. Parravano“Oxygen Chemisotption on Ruthenium Dioxide ” The Journal of Physical Chemistry, vol.69,n1, pp.102-105.
    45. Y. D. Kim, A. P. Seitsonen, S. Wendt, J. Wang, C. Fan, K. Jacobi, H. Over, and G. Ertl. “Characterization of Various Oxygen Species on an Oxide Surface: RuO2(110)”,J. Phys. Chem. B , vol.105, pp.3752-3758 (2001).
    46. Anke Sensse a, Karin Gatermann b, Markus Eiswirth a“Analytic solution for the electrocatalytic oxidation of formic acid”, Journal of Electroanalytical Chemistry , vol.577, pp.35–46 (2005).
    47. H. Nonaka a,*, Y. Matsumura b“Electrochemical oxidation of carbon monoxide, methanol, formic acid, ethanol, and acetic acid on a platinum electrode under hot aqueous conditions”,Journal of Electroanalytical Chemistry , vol.520, pp.101–110 (2002).
    48. Fred S. Thomas, Richard I. Masel“Formic acid decomposition on palladium-coated Pt(110)” ,Surface Science, vol.573, pp.169–175 (2004).
    49. M.D. Macia´, E. Herrero *, J.M. Feliu“Formic acid oxidation on Bi_/Pt(1 1 1) electrode in perchloric acid media. A kinetic study”, Journal of Electroanalytical Chemistry, vol.554_/555, pp.25_/34 (2003).
    50. Juan Xiang, Bing-Liang Wu *, Sheng-Li Chen“ nvestigation of the mechanism of the electrochemical oxidation of formic acid at a gold electrode in sulfuric acid solution”, Journal of Electroanalytical Chemistry, vol.517, pp. 95–100 (2001).

    QR CODE