簡易檢索 / 詳目顯示

研究生: 蔡家成
Jia-Cheng Tsai
論文名稱: 應用表面增強拉曼光譜技術於分子定量分析與偵測之調配參數最佳化研究
The Optimization of the Surface Enhanced Raman Scattering for Quantitative Analysis and Detection of Molecules
指導教授: 郭中豐
chung-Feng Jeffrey Kuo
口試委員: 黃昌群
Chang-Chiun Huang
蘇德利
Te-Li Su
學位類別: 碩士
Master
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 100
中文關鍵詞: 表面增強拉曼訊號田口方法基因演算法倒傳遞類神經系統
外文關鍵詞: SERS, Taguchi Method, Genetic Algorithm, Back Propagation Neural Network
相關次數: 點閱:211下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在建立一套標準的調配方式作為快速取得表面強化拉曼散射效應 (surface enhanced Raman scattering, SERS) 的檢測基底。現今科學家對於人類基因的研究越來越重視,而去氧核糖核酸(Deoxyribonucleic acid, DNA)的研究更是科學家們研究的重點。拉曼光譜技術對於研究DNA的結構與其分子鍵結的資訊有很大的幫助。由於拉曼光譜有波峰窄、且不易受到水分子及螢光效應的影響,所以能夠清楚的知道分子的結構特徵與分子和分子間鍵結的強度等資訊,而且因為訊號的波峰狹窄,不易與其他波峰重疊,所以每個分子的拉曼訊號都是獨特的,如同分子的指紋,也因為如此,拉曼光譜對於DNA的判別有著很大的優勢。
    本研究主要以製作奈米膠體銀溶液,利用膠體銀溶液中的奈米銀粒子,吸附染料分子Rhodamine 6G,量測表面增強拉曼訊號,並測試奈米膠體銀溶液對於單分子偵測的能力。首先利用化學還原法 (chemical reduction) 製作膠體銀溶液,同時加入氯化鈉溶液使奈米銀粒子聚集以吸附染料分子,並配合田口方法作實驗的調配參數及水準值的組合規劃,量測表面增強拉曼訊號與Blinking訊號。為了達到多品質特性最佳化的目標,本研究以田口直交表作實驗規劃,並透過變異數分析找出針對SERS訊號與Blinking訊號單一品質的最佳調配參數組合,利用這兩組單一品質最佳的參數組合作為基因演算法中初代族群的親代基因,演化出高適應函數值的下一代族群。並搭配倒傳遞類神經系統作為基因演算法中的適應函數指標,直到演化出多品質最佳化的基因組合。
    最後由上述方法找尋出來的多品質最佳調配參數組合為氯化鈉含量600μl、混合攪拌時間90min、硼氫化鈉濃度 、染料分子濃度 ,並透過確認實驗,驗證其表面強化拉曼訊號的強度與單分子偵測的能力。


    Research of the human genome and DNA molecules have been advanced with the use of Raman spectrum to determine the structure of molecules and bond strengths. The advancement and beneficiary in DNA analysis can be due to certain crucial features of Raman spectroscopy, such as narrow peaks and less susceptibility to water and fluorescence.
    In this study, we produced a colloidal silver solution, used the nano-particle of silver to adsorb the molecules of the dye Rhodamine 6G, measured the surface enhanced Raman scattering signal, and tested the capability of detecting molecules. We specifically produced the colloidal silver solution by the chemical reduction method, and then added the sodium chloride solution for changing the nano-silver particles to the silver cluster. We then applied the silver cluster to adsorb the dye molecules. We chose the control factors and the quality characteristics by using the Taguchi Method. To achieve the optimal quality characteristics of multi-objectivity, we used the initial group obtained from the result of Taguchi Method and applied Genetic Algorithm to generate the progeny group. Next, we calculated the fitness function of the Genetic Algorithm with a Back Propagation Neural Network, and we used the Genetic Algorithm to evolve a gene combination including factors to optimize multiple characteristics. We lastly adopted the gene combination with optimal factors combination to verify the surface enhanced Raman scattering signal intensity and single-molecule detection capability.

    摘要 I ABSTRACT III 誌謝 V 目錄 VII 圖目錄 XI 表目錄 XIII 第1章 前言 1 1.1 研究動機與目的 1 1.2 研究背景 2 1.3 光學檢測法 4 1.3.1 光學檢測法之特色 4 1.3.2 各類光學檢測法與其特色 5 1.4 單分子檢測 7 1.5 文獻回顧 8 1.5.1 表面增強拉曼散射效應 8 1.5.2 單分子偵測 9 1.5.3 多重品質最佳化決策分析方法 10 第2章 拉曼散射理論 12 2.1 拉曼散射發展史 12 2.2 拉曼散射原理 13 2.3 拉曼散射光譜之單位換算與解析度計算 20 2.4 共振拉曼散射 21 2.5 表面增強拉曼散射 22 2.5.1 表面強化拉曼散射發展史 22 2.5.2 電磁場增強效應 24 2.5.3 化學增強效應 26 第3章 調配參數最佳化理論 30 3.1 田口方法 30 3.1.1 直交表 33 3.1.2 訊號雜訊比 34 3.1.3 主效果分析 35 3.1.4 變異數分析 36 3.1.5 確認實驗 39 3.1.6 田口實驗規劃步驟 40 3.1.7 田口方法之缺點 41 3.2 遺傳基因演算法 44 3.2.1 遺傳基因演算法演算機制 45 3.3 倒傳遞類神經網路 55 3.3.1 倒傳遞類神經網路架構 55 3.3.2 倒傳遞類神經網路之演算流程 56 第4章 實驗規劃與設備 63 4.1 實驗製備 63 4.1.1 拉曼光譜儀 63 4.1.2 實驗藥品及實驗器材 65 4.2 實驗規劃 66 第5章 結果與討論 70 5.1 奈米銀粒子之SERS訊號強度 70 5.2 BLINKING訊號強度 74 5.3 多品質最佳化 77 5.3.1 倒傳遞類神經適應函數系統 78 5.3.2 多品質基因演化 86 5.3.3 多品質最佳化分析 89 第6章 結論與未來展望 95 6.1 結論 95 6.2 未來與展望 95 參考文獻 97

    1. M. Fleischmann, P. J. Hendra and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode”, Chemical Physics Letters, Vol.26, 163-166 (1974)
    2. X. Dou, Y. Yamaguchi, H. Yammamoto, S. Doi and Y. Ozaki., “Quantitative analysis of metabolites in urine using a highly precise, compact near-infrared Raman spectrometer”, Vibrational spectroscopy, Vol. 13, 83-89 (1996)
    3. J. W. McMurdy III and A. J. Berger, “Raman spectroscopy-based creatinine measurement in urine samples from a multipatient population”, Applied Spectroscopy, Vol.57, No. 5, 522 - 525 (2003)
    4. J. R. Baena1 and B. Lendl, “Raman spectroscopy in chemical bioanalysis”, Current Opinion in Chemical Biology, Vol.8, 534–539 (2004)
    5. R. L. McCreery, “Raman spectroscopy for chemical analysis”, New york, Wiley Interscience, (2000)
    6. A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering”, Chemical Society Reviews, Vol.27, 241-250 (1998)
    7. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering”, Science, Vol.275, No. 5303 (1997)
    8. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari and Michael S. Feld, “single molecule detection using surface-enhanced Raman scattering (SERS)”, Physical Review Letters, Vol.78, No. 9 (1997)
    9. Y. Maruyama, M. ishikawa, and M. Futamata, “Single molecule detection with SERS” Analytical Science, Vol.17 Supplement (2001)
    10. W. Demtrder, Laser spectroscopy basic concepts and instrumentation, Heidelberg , Springer-Verlag, (1982)
    11. G. Trachta, B. Schwarze, B. Sgműller, G. Brehm and S. Schneider, “Combination of high-performance liquid chromatography and SERS detection applied to the analysis of drugs in human blood and urine”, Journal of Molecular Structure, Vol.693, 175–185(2004)
    12. R. M. Jarvis and R. Goodacre, “Ultra-violet resonance Raman spectroscopy for the rapid discrimination of urinary tract infection bacteria”, FEMS Microbiology Letters, Vol.232, 127-132 (2004)
    13. H. U. Gremlich, B. Yan, Infrared and Raman spectroscopy of biological materials, New York, Marcel Dekker (2001)
    14. T. W. Koo, “Measurement of blood biological tissue using near-infrared Raman spectroscopy”, Doctor thesis, MIT. (2001)
    15. H. M. Heise, G. Voigt, P. Lampen, L. Kpper, S. Rudloff and G. Werner, “Multivariate calibration for the determination of analytes in urine using mid-infrared attenuated total reflection spectroscopy”, Applied Spectroscopy, Volume 55, No.4, 434-443 (2001)
    16. M. Ishikawa, Y. Maruyama, J. Y. Ye and M. Futamata, “Single-molecule imaging and spectroscopy of adenine and an analog of adenine using surface-enhanced Raman scattering and fluorescence”, Journal of Luminescence, Vol.98, 81-89(2002)
    17. A. Otto, A. Bruckbauer, Y. X. Chen, “On the chloride activation in SERS and single molecule SERS”, Journal of Molecular Structure, Vol.661-662, 501-514 (2003)
    18. A. J. Meixner, T. Vosgrne and M. Sackrow, “Nanoscale surface-enhanced resonance Raman scattering spectroscopy of single molecules on isolated silver clusters”, Journal of Luminescence, Vol.94–95, 147-152 (2001)
    19. T. V. Dinh, Biomedical engineering biomedical photonics handbook, SPIE, 64-1~64-39 (2003)
    20. E. Froner, F. Baschera, F. Tessarolo, P. Bettotti, L. Pavesi, B. Rossi, M. Scarpa and A. Rigo, “Hybrid nanostructured supports for surface enhanced Raman scattering”, Applied Surface Science, Vol.255, No.17, 7652-7656 (2009).
    21. X. Y. Lang, L. Y. Chen, P. F. Guan, T. Fujita and M. W. Chen, “Geometric effect on surface enhanced Raman scattering of nanoporous gold: Improving Raman scattering by tailoring ligament and nanopore ratios”, Applied Physics Letters, Vol.94, No.21, art. no. 213109 (2009).
    22. S. H. Ciou, Y. W. Cao, H. C. Huang, D.Y. Su and C. L. Huang, “SERS enhancement factors studies of silver nanoprism and spherical nanoparticle colloids in the presence of bromide ions”, Journal of Physical Chemistry C, Vol.113, No.22, 9520-9525(2009)
    23. Y. D. Suh, G. K. Schenter, L. Zhu and H. P. Lu, “Probing nanoscale surface enhanced Raman-scattering fluctuation dynamics using correlated AFM and confocal ultramicroscopy”, Ultramicroscopy, Vol.97, 89-102 (2003)
    24. A. R. Bizzarri and S. Cannistraro, “Evidence of electron-transfer in the SERS spectra of a single iron-protoporphyrin IX molecule”, Chemical Physics Letters, Vol.395, 222–226 (2004)
    25. K.D. Kim, D.N. Han and H.T. Kim, “Optimization of experimental conditions based on the Taguchi robust design for the formation of nano-sized silver particles by chemical reduction method”, Chemical Engineering Journal, Vol.104, No.1-3, 55-61 (2004)
    26. K. W. Hench and A. M. Al-Ghanim, “Application of a neural network methodology to the analysis of a dyeing operation”, Intelligent Engineering Systems Through Artificial Neural Networks, Vol.5, 873-878 (1995)
    27. J.F.C. Khaw, B.S. Lim and L.E.N. Lim, “Optimal design of neural networks using the Taguchi method”, Neurocomputing, Vol.7, No.3, 225-245 (1995)
    28. W. T. Chien and C. F. Yao, “The Development of the Predictive Model for Metal Machining Parameters Based on Artificial Neural Network and Genetic Algorithm”, Proceedings of the 14th National Conference on Mechanical Engineering the Chinese Society of Mechanical Engineers, 468-475 (1997)
    29. Q.S. Li, D.K. Liu, A.Y.T. Leung, N. Zhang, C.M. Tam and L.F. Yang, “Modelling of structural response and optimization of structural control system using neural network and genetic algorithm” Structural Design of Tall Buildings, Vol.9, No.4, 279-293 (2000)
    30. R. Singh, “C. V. Raman and the discovery of the Raman effect”, Physics In Perspective, Vol.4, 399–420 (2002)
    31. J. Twardowski and P. Anzenbacher, Raman and IR spectroscopy in biology and biochemistry, New York, Ellis Horwood, 14-57 (1994)
    32. R. L. McCreery, Raman spectroscopy for chemical analysis, New York, Wiley Interscience, (2000)
    33. A. T. Tu, Raman Spectroscopy in Biology Principles and Applications, John Wiley & Sons, Inc.
    34. K. Kneipp, and H. Kneipp, I. Itzkan, R. R. Dasari and M. S. Feld, “Surface-enhanced Raman scattering and biophysics”, Journal of Physics :Condensed Matter, Vol.14, 597-624 (2002)
    35. A. Otto, I. Mrozek, H. Grabhorn and W. Akemann, “Surface-enhanced Raman scattering”, Journal of Physics :Condensed Matter, Vol.4, 1143-1212(1992)
    36. G. Taguchi, Introduction to Quality Engineering, Tokyo, Asian Productivity Organization(1986)
    37. P. J. Ross, Taguchi Techniques for Quality Engineering, New York, McGraw-Hill (1996)
    38. 蘇朝墩,品質工程, 中華民國品質學會 (2002)。
    39. J. H. Holland, “Adaption in Natural and Artificial System”, Ann Arbor, University of Michigan Press, (1975)
    40. N. Michael, “Artificial Intelligence – A Guide to Intelligent System”, Addison-Wesley (2005)
    41. 張斐章、張麗秋、黃浩倫,類神經網路 理論與實務,東華書局。
    42. S. Haykin, “Neural networks: a comprehensive foundation”, Upper Saddle River, N.J., Prentice-Hall, Inc. (1994)
    43. Jobin Yvon Co. Ltd., http://www.jobinyvon.com
    44. J. A. Creighton, C. G. Blatchford, M. G. Albrecht, “Plasma resonance enhancement of Raman scattering by pyridine adsorbed on silver or gold sol particles of size comparable to the excitation wavelength”, Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics, Vol.75, 790-798(1979)
    45. B. Teiten, A. Burneau, “Aggregation of silver hydrosols prepared in air”, Journal of Colloid and Interface Science, Vol. 206, No.1, 267-273 (1998)

    無法下載圖示 全文公開日期 2014/08/04 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE