簡易檢索 / 詳目顯示

研究生: Tilahun Awoke Zegeye
Tilahun - Awoke Zegeye
論文名稱: Design, Characterization, and Fabrication of Sulfur Nanocomposite Cathode Material for High Performance Lithium-Sulfur Batteries
Design, Characterization, and Fabrication of Sulfur Nanocomposite Cathode Material for High Performance Lithium-Sulfur Batteries
指導教授: 郭中豐
Chung-Feng Kuo
黃炳照
Bing-Joe Hwang
口試委員: 蘇威年
Wei-Nien Su
黃昌群
Chang-Chiun Huang
鄭銘堯
Ming-Yao Cheng
陳景翔
Ching-Hsiang Chen
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 174
中文關鍵詞: 鋰硫電池微孔碳介孔C摻雜TiO2混合石墨烯高硫負載循環穩定性N-摻雜溶液滴多硫化物核殼
外文關鍵詞: Lithium-sulfur battery, microporous carbon, mesoporous C-doped TiO2, hybrid, graphene, high sulfur loading, cycle stability, N-doping, solution drop, polysulfides core-shell
相關次數: 點閱:312下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鋰-硫(Li-S)電池領域在過去幾十年中已進行大量研究,期望尋找能達成高容量、長循環壽命、安全性改進、高倍率性能和高硫負載等商業化目標之正極材料。雖然已有顯著的成就,但實際應用的問題尚未完全解決,本研究目標為開發可用於高性能Li-S電池之高效陰極材料設計。首先以摻雜二氧化鈦與硫之微孔、中孔碳的複合材料(MC-Meso C摻雜TiO2/S)作為Li-S電池的陰極材料。通過低成本的水熱法和退火程序製備混合MC-Meso C摻雜TiO2/S之主體材料。所得的導電材料具有多微孔與中孔特性,可增強了硫和多硫化物之有效結合。此複合材料成功將碳摻雜入TiO2奈米管結構中,並將硫以熔融態注入時,可均勻分佈在此複合材料中。混合陰極材料在電化學測量中也顯示具有高硫含量(61.04 wt%),可有效改善循環穩定性和性能。此外材料在0.1C速率下以初始電容量802 mAh g-1,於140次循環之後能保有578 mAh g-1 且庫侖效率大於97.1%。此原因乃是本複合材料之特殊的奈米混合結構,並可均勻將硫分散至多中空微孔之奈米管結構中。
    其次,本研究設計了一新型硫浸漬方法,將高重量比之硫(80 wt%)嵌入摻雜氮的三維石墨氧化物(3D N-RGO)中以組成新型奈米複合陰極材料。相較於原始石墨烯,氮摻雜可增加十倍表面積和七倍孔體積。這些結構特徵允許陰極容納更多的硫。此外陰極可吸附多硫化物並防止它們從主體材料脫離,可達成穩定的循環性能。溶液滴硫浸漬法可使奈米硫分佈均勻。此外陰極以1042 mAhg-1和916 mAh g-1的高初始電容量,在100次循環後分別在0.2C和0.5C下仍電容量仍保持優異94.8%和81.9%,而在500次循環下的每個循環中依然保持0.062%的低衰減率。由前述可知,結合溶液滴硫浸漬法和參雜氮的組合可作為解決容量衰減以及長循環問題之有效手段,並且提供可增加硫負載之新策略。
    ii
    第三,我們提出具有雙限制之硫陰極核-殼結構之新型設計,其中硫(72.5 wt%)嵌入石墨烯(G)殼中並包封在MC芯中。較大的可溶性多硫化物中間體(Li2Sx,4≤x≤8)被G殼捕獲,以防止可溶性多硫化物中間體溶解至有機電解質中,得以實現穩定的循環性能。此外,G殼體內保有中空間,可確保混合式陰極在循環時抵抗體積膨脹並保持完整性;另一方面MC在其小孔內限制較小的硫(S2-4)分子以抑制可溶性多硫化物的形成。前述所得到的電極可提供982 mAh g-1的高初始放電容量,在0.2C速率下100次循環後具有85.4%的增強容量保持率。更重要的是,陰極表現出886 mAh g-1的高放電容量,並且在0.5C下500次循環後仍能保持在601 mAh g-1,庫侖效率接近100%,此為循環穩定性中之最佳性能。


    In the field of lithium-sulfur (Li-S) battery, intense research has been made in the past decades to find high capacity, long cycle life, improved safety, high rate capability, and high sulfur loaded cathode material for Li-S batteries to be applicable for commercialization. Although significant achievements have been established, problems that hindered real applications of Li-S batteries have not been fully resolved. Therefore, this dissertation focused on the design of sulfur nanocomposite cathode material for high performance Li-S batteries and characterizing their property through various spectroscopic and microscopic techniques followed by measuring their performance to be suitable for real application after coin cell fabrication.
    In the first part of this study, hybrid nanostructured microporous carbon-mesoporous carbon doped titanium dioxide/sulfur composite (MC-Meso C-doped TiO2/S) was we designed as a cathode material for Li-S batteries. The hybrid MC-Meso C-doped TiO2 host material was produced by a low-cost hydrothermal and annealing process. It found that the resulting conductive material showed dual microporous and mesoporous behavior, which enhanced the effective trapping of sulfur and polysulfides. The hybrid MC-Meso C-doped TiO2/S composite material possessed rutile TiO2 nanotube structure with successful carbon doping, while sulfur was uniformly distributed in the hybrid MC-Meso C-doped TiO2 composite materials after the melt-infusion process. Electrochemical measurements of the hybrid cathode material also showed improved cycling stability and rate performance with high sulfur loading (61.04 wt %). Moreover, the material delivered an initial discharge capacity of 802 mAh g-1 and maintained at 578 mAh g-1 with the coulombic efficiency greater than 97.1% after 140 cycles at 0.1 C
    iv
    rates. This improvement was thought to be attributed to the unique hybrid nanostructure of the MC-Meso C-doped TiO2 host and the good dispersion of sulfur in the narrow pores of the spherical microporous carbon (MC) and the Meso C-doped TiO2 nanotube support.
    Secondly, the novel nanocomposite cathode materials consisting of sulfur (80 wt%) embedded within nitrogen doped three-dimensional reduced graphene oxide (N-3D-rGO) was designed by a controllable sulfur impregnation method. Nitrogen doping helped to increase the surface area by ten times and pore volume by seven times from pristine graphene. These structural features allowed the cathode to accommodate more sulfur. Moreover, the cathode adsorbed polysulfides and prevented their detachment from host materials, thereby achieving stable cycle performance. The solution drop sulfur impregnation method provided uniform distribution of nanosized sulfur in a controlled manner. Furthermore, the cathode delivered high initial discharge capacities of 1042 mAhg-1 and 916 mAh g-1 at 0.2 C and 0.5 C with excellent capacity retention of 94.8% and 81.9% after 100 cycles respectively, with a low decay rate of 0.062% per cycle after 500 cycles. Thus, the combination of solution drop sulfur impregnation and nitrogen doping opens a new chapter for resolving capacity fading, as well as long cycling problems, and creates a new strategy to increase sulfur loading in controlled mechanism.
    In the final part of this dissertation, a novel design of dual-confined sulfur cathode with core-shell architecture, where sulfur (72.5 wt%) was first encapsulated in MC cores and embedded by graphene (G) shells was reported. Larger, soluble polysulfide intermediates (Li2Sx, 4≤x≤8) were trapped by G shells, which prevented the dissolution of soluble polysulfide intermediates into the organic electrolyte, so that a stable cycling
    v
    performance could be achieved. Moreover, the G shell created the hollow space in-between, which helped ensure the integrity of the hybrid cathode against the volume expansion upon cycling. On the other hand, MC confined smaller sulfur (S2-4) molecules within its small pores and suppressed the formation of soluble polysulfides. The resulting electrode delivered a high initial discharge capacity of 982 mAh g-1 with enhanced capacity retention of 85.4% after 100 cycles at 0.2 C rates. More importantly, the cathode exhibited a high discharge capacity of 886 mAh g-1, and maintained at 601 mAh g-1 after 500 cycles at 0.5 C with the coulombic efficiency of nearly 100%, which is the best performance among reported cycle stabilities.

    摘要 ............................................................................................................................ i Abstract ....................................................................................................................iii Acknowledgments ................................................................................................... vi Table of contents .................................................................................................. viii List of Figures ...................................................................................................... xiii List of Tables ......................................................................................................... xxi List of schemes ..................................................................................................... xxii List of units and Abbreviations ........................................................................ xxiii Chapter 1: Background .......................................................................................... 1 1.1. Energy and Energy Sources .......................................................................... 1 1.2. Types of Battery ............................................................................................ 2 Chapter: Introduction ............................................................................................. 4 2.1. Lithium-Sulfur Battery .................................................................................. 4 2.2. Principles and Limitations of Lithium-Sulfur Batteries ............................... 6 2.2.1. Principles ................................................................................................................ 6 2.2.2. Limitation of lithium-sulfur batteries ..................................................................... 8 2.2.2.1. Poor electronic conductivity .............................................................................. 8 2.2.2.2. Dissolution of polysulfides and shuttle effect .................................................... 8 2.2.2.3. Large volume expansion .................................................................................... 9 2.2.2.4. Dendrite formation ........................................................................................... 10 ix 2.3. Components of Lithium-Sulfur Battery ...................................................... 11 2.3.1. Anode materials .................................................................................................... 11 2.3.2. Electrolytes ........................................................................................................... 12 2.3.3. Separators ............................................................................................................. 12 2.3.4. Cathode materials ................................................................................................. 13 2.3.4.1. Carbon-sulfur cathode ...................................................................................... 13 2.3.4.2. Metal oxide supported sulfur cathode composite ............................................ 17 2.3.4.3. Graphene-sulfur composite .............................................................................. 18 2.4. Motivation and Objectives of the study ...................................................... 22 2.4.1. Motivations ........................................................................................................... 22 2.4.2. Objectives ............................................................................................................. 23 Chapter 3: Experimental Section and Characterization ................................... 25 3.1. General Experimental Section .................................................................... 25 3.1.1. Chemicals and regents .......................................................................................... 25 3.1.2. Synthesis of Meso C-doped TiO2 nanotubes ........................................................ 26 3.1.3. Preparation of MC and hybrid nanostructured MC-Meso C-doped TiO2 ............ 27 3.1.4. Synthesis of hybrid nanostructured MC-Meso C-doped TiO2/S composite cathode .................................................................................................................. 27 3.1.5. Synthesis of graphene oxide (GO) ....................................................................... 28 3.1.6. Synthesis of 3D-rGO and N-3D-rGO host materials ........................................... 28 3.1.7. Synthesis of S@N-3D-rGO nanocomposites ....................................................... 29 3.1.8. Synthesis of S/MC composites ............................................................................. 30 3.1.9. Synthesis of core-shell G@S/MC nanocomposites .............................................. 30 3.2. Structure Characterization ........................................................................... 31 x 3.2.1. Physical characterization techniques (XRD, Raman,SEM, TEM, FT-IR, XPS, EDS, BET, TGA ................................................................................................... 31 3.3. Computational Details ................................................................................. 33 Chapter 4: Design of Hybrid Nanostructured Microporous Carbon-Mesoporous Carbon Doped TiO2/Sulfur Composite Cathode Materials for Rechargeable Lithium-Sulfur Batteries ............................................................................................. 35 4.1. Introduction ................................................................................................. 35 4.2. Results and Discussion................................................................................ 38 4.2.1. Material characterization ...................................................................................... 38 4.2.2. The electrochemical performance ........................................................................ 55 4.2.2.1. Cyclic voltammetry test ................................................................................... 55 4.2.2.2. Galvanostatic charge-discharge test ................................................................. 58 4.2.2.3. Cycle stability test ............................................................................................ 61 4.2.2.4. Rate capability test ........................................................................................... 65 4.2.2.5. Electrochemical impedance spectroscopy (EIS) test ....................................... 68 4.3. Summary ..................................................................................................... 71 Chapter 5: Controllable Embedding of Sulfur in High Surface Area Nitrogen Doped Three Dimensional Reduced Graphene Oxide host by Solution Drop Impregnation Method for High Performance Lithium-Sulfur Batteries ................................. 72 5.1. Introduction ................................................................................................. 72 xi 5.2. Results and Discussion................................................................................ 74 5.2.1. Material characterization ...................................................................................... 74 5.2.2. Electrochemical performance ............................................................................... 90 5.2.2.1. Cyclic voltammetry and galvanostatic charge-discharge test .......................... 90 5.2.2.2. Cycle stability and rate capability test ............................................................. 93 5.2.2.3. Electrochemical impedance spectroscopy (EIS) test ....................................... 98 5.2.2.4. Computational result ........................................................................................ 99 5.2.2.5. Post-mortem studies ....................................................................................... 102 5.3. Summary ................................................................................................... 105 Chapter 6: Dual-Confined Sulfur in Hybrid Nanostructured Materials for Enhancement of Lithium-Sulfur Battery Cathode Capacity Retention .......................................................... 106 6.1. Introduction ............................................................................................... 106 6.2. Results and Discussion.............................................................................. 108 6.2.1. Material characterization .................................................................................... 108 6.2.2. Electrochemical performance ............................................................................. 123 6.2.2.1. Cyclic voltammetry and galvanostatic charge-discharge test ........................ 123 6.2.2.2. Cycle stability and rate capability test ........................................................... 126 6.2.2.3. Electrochemical impedance spectroscopy (EIS) test ..................................... 131 6.3. Summary ................................................................................................... 134 Chapter 7: Conclusions and Future outlooks ................................................... 135 7.1. Conclusions ............................................................................................... 135 xii 7.2. Future Outlooks ......................................................................................... 138 Appendices ............................................................................................................ 139 A. Supporting datas for Approach-I .............................................................. 139 B. Supporting datas for Approach-II ............................................................. 141 C. Supporting datas for Approach-III ............................................................ 145 References ............................................................................................................. 146 List of Research Papers ....................................................................................... 173 Conference/Workshop Presentations ................................................................ 174

    [1] A. Manthiram,Y. Fu, S. H. Chung,C. Zu, Y. S. Su, Rechargeable Lithium–Sulfur Batteries, Chemical Reviews, 114 (2014) 11751-11787.
    [2] H. Zhou, New energy storage devices for post lithium-ion batteries, Energy & Environmental Science, 6 (2013) 2256-2256.
    [3] M. M. Thackeray, C. Wolverton, E. D. Isaacs, Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries, Energy & Environmental Science, 5 (2012) 7854-7863.
    [4] B. Dunn, H. Kamath, J. M. Tarascon, Electrical energy storage for the grid: a battery of choices, Science, 334 (2011) 928-935.
    [5] B. Zhang, X. Qin, G. R. Li, X. P. Gao, Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres, Energy & Environmental Science, 3 (2010) 1531.
    [6] Z. Yang, J. Zhang, M. C. Kintner-Meyer, X. Lu, D. Choi, J. P. Lemmon, J. Liu, Electrochemical energy storage for green grid, Chemical reviews, 111 (2011) 3577-3613.
    [7] V. Arunachalam, E. Fleischer, The global energy landscape and materials innovation, MRS bulletin, 33 (2008) 264-288.
    [8] J. M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature, 414 (2001) 359-367.
    [9] N. S. Choi, Z. Chen, S. A. Freunberger, X. Ji, Y. K. Sun, K. Amine, G. Yushin, L. F. Nazar, J. Cho, P. G. Bruce, Challenges Facing Lithium Batteries and Electrical Double‐Layer Capacitors, Angewandte Chemie International Edition, 51 (2012) 9994-10024.
    147
    [10] V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, Challenges in the development of advanced Li-ion batteries: a review, Energy & Environmental Science, 4 (2011) 3243-3262.
    [11] P. G. Bruce, B. Scrosati, J. M. Tarascon, Nanomaterials for rechargeable lithium batteries, Angewandte Chemie International Edition, 47 (2008) 2930-2946.
    [12] D. Li, F. Han, S. Wang, F. Cheng, Q. Sun, W. C. Li, High sulfur loading cathodes fabricated using peapodlike, large pore volume mesoporous carbon for lithium–sulfur battery, ACS applied materials & interfaces, 5 (2013) 2208-2213.
    [13] J. M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature, 414 (2001) 359-367.
    [14] Z. Wang, Y. Dong, H. Li, Z. Zhao, H. Bin Wu, C. Hao, S. Liu, J. Qiu, X. W. Lou, Enhancing lithium–sulphur battery performance by strongly binding the discharge products on amino-functionalized reduced graphene oxide, Nat Commun, 5 (2014) 5002.
    [15] J. Sanfélix, M. Messagie, N. Omar, J. Van Mierlo, V. Hennige, Environmental performance of advanced hybrid energy storage systems for electric vehicle applications, Applied Energy, 137 (2015) 925-930.
    [16] X. Ji, L. F. Nazar, Advances in Li-S batteries, Journal of Materials Chemistry, 20 (2010) 9821-9826.
    [17] J. B. Goodenough, Y. Kim, Challenges for Rechargeable Li Batteries, Chemistry of Materials, 22 (2010) 587-603.
    [18] H. Danuta, U. Juliusz, Electric dry cells and storage batteries, US patent 304389A, 1962.
    148
    [19] N. Ding, L. Zhou, C. Zhou, D. Geng, J. Yang, S.W. Chien, Z. Liu, M. F. Ng, A. Yu, T. S. A. Hor, M. B. Sullivan, Y. Zong, Building better lithium-sulfur batteries: from LiNO3 to solid oxide catalyst, Scientific Reports, 6 (2016) 33154.
    [20] R. M. L. Bhaskara, Organic electrolyte cells, US Patent 3413154, 1968.
    [21] R. Rauh, K. Abraham, G. Pearson, J. Surprenant, S. Brummer, A lithium/dissolved sulfur battery with an organic electrolyte, Journal of the Electrochemical Society, 126 (1979) 523-527.
    [22] E. Peled, Y. Sternberg, A. Gorenshtein, Y. Lavi, Lithium‐sulfur battery: evaluation of dioxolane‐based electrolytes, Journal of the Electrochemical Society, 136 (1989) 1621-1625.
    [23] S. Chen, X.Huang, H. Liu, B. Sun, W. Yeoh, K. Li, J. Zhang, G. Wang, 3D Hyper branched Hollow Carbon Nanorod Architectures for High‐Performance Lithium‐Sulfur Batteries, Advanced Energy Materials, 4 (2014) 1301761.
    [24] G. Zheng, Y. Yang, J. J. Cha, S. S. Hong, Y. Cui, Hollow Carbon Nanofiber-Encapsulated Sulfur Cathodes for High Specific Capacity Rechargeable Lithium Batteries, Nano Letters, 11 (2011) 4462-4467.
    [25] G. Xu, B. Ding, J. Pan, P. Nie, L. Shen, X. Zhang, High performance lithium–sulfur batteries: Advances and challenges, Journal of Materials Chemistry A, 2 (2014) 12662-12676.
    [26] N. A. Canas, Fabrication and characterization of lithium-sulfur batteries, PhD dissertation, Universitat Stuttgart (2015) 1-189.
    149
    [27] C. Nan, Z. Lin, H. Liao, M. K. Song, Y. Li, E. J. Cairns, Durable carbon-coated Li2(S) core-shell spheres for high performance lithium/sulfur cells, J. Am. Chem. Soc, 136 (2014) 4659-4663.
    [28] L. Ma, K. E. Hendrickson, S. Wei, L. A. Archer, Nanomaterials: Science and applications in the lithium–sulfur battery, Nano Today, 10 (2015) 315-338.
    [29] Y. Yang, G. Zheng, Y. Cui, Nanostructured sulfur cathodes, Chemical Society Reviews, 42 (2013) 3018-3032.
    [30] D. W. Wang, Q. Zeng, G. Zhou, L. Yin, F. Li, H. M. Cheng, I. R. Gentle, G. Q. M. Lu, Carbon–sulfur composites for Li–S batteries: status and prospects, Journal of Materials Chemistry A, 1 (2013) 9382-9394.
    [31] P. G. Bruce, S. A. Freunberger, L. J. Hardwick, J. M. Tarascon, Li-O2 and Li-S batteries with high energy storage, Nature materials, 11 (2012) 19-29.
    [32] H. Yamin, E. Peled, Electrochemistry of a nonaqueous lithium/sulfur cell, Journal of Power Sources, 9 (1983) 281-287.
    [33] J. I. Yamaki, S. I. Tobishima, Y. Sakurai, K. I. Saito, K. Hayashi, Safety evaluation of rechargeable cells with lithium metal anodes and amorphous V2O5 cathodes, Journal of applied electrochemistry, 28 (1998) 135-140.
    [34] S. Liu, K. Xie, Z. Chen, Y. Li, X. Hong, J. Xu, L. Zhou, J. Yuan, C. Zheng, A 3D nanostructure of graphene interconnected with hollow carbon spheres for high performance lithium-sulfur batteries, Journal of Materials Chemistry A, 3 (2015) 11395-11402.
    [35] Y. V. Mikhaylik, J. R. Akridge, Polysulfide shuttle study in the Li/S battery system, Journal of the Electrochemical Society, 151 (2004) A1969-A1976.
    150
    [36] Y. Diao, K. Xie, S. Xiong, X. Hong, Shuttle phenomenon–The irreversible oxidation mechanism of sulfur active material in Li–S battery, Journal of Power Sources, 235 (2013) 181-186.
    [37] S. Xiong, K. Xie, Y. Diao, X. Hong, Characterization of the solid electrolyte interphase on lithium anode for preventing the shuttle mechanism in lithium–sulfur batteries, Journal of Power Sources, 246 (2014) 840-845.
    [38] J. T.Yeon, J. Y. Jang, J. G. Han, J. Cho, K. T. Lee, N. S. Choi, Raman spectroscopic and X-ray diffraction studies of sulfur composite electrodes during discharge and charge, Journal of The Electrochemical Society, 159 (2012) A1308-A1314.
    [39] Y. X. Yin, S. Xin, Y. G. Guo, L. J. Wan, Lithium–sulfur batteries: electrochemistry, materials, and prospects, Angewandte Chemie International Edition, 52 (2013) 13186-13200.
    [40] L. Ji, M. Rao, H. Zheng, L. Zhang, Y. Li, W. Duan, J. Guo, E. J. Cairns, Y. Zhang, Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells, Journal of the American Chemical Society, 133 (2011) 18522-18525.
    [41] H. Wang, Y.Yang, Y. Liang, J. T. Robinson, Y. Li, A. Jackson, Y. Cui, H. Dai, Graphene-wrapped sulfur particles as a rechargeable lithium–sulfur battery cathode material with high capacity and cycling stability, Nano letters, 11 (2011) 2644-2647.
    [42] Q. Zhao, X. Hu, K. Zhang, N. Zhang, Y. Hu, J. Chen, Sulfur nanodots electrodeposited on Ni foam as high-performance cathode for Li–S batteries, Nano letters, 15 (2015) 721-726.
    151
    [43] Z. Wei Seh, W. Li, J. J. Cha, G. Zheng, Y. Yang, M. T. McDowell, P. C. Hsu, Y. Cui, Sulphur–TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–sulphur batteries, Nat Commun, 4 (2013) 1331.
    [44] B. He, W. C. Li, C. Yang, S. Q. Wang, A. H. Lu, Incorporating Sulfur Inside the Pores of Carbons for Advanced Lithium–Sulfur Batteries: An Electrolysis Approach, ACS nano, 10 (2016) 1633-1639.
    [45] D. Wang, W. Zhang, W. Zheng, X. Cui, T. Rojo, Q. Zhang, Towards High-Safe Lithium Metal Anodes: Suppressing Lithium Dendrites via Tuning Surface Energy, Advanced Science, (2016) 1600168.
    [46] D. Aurbach, E. Pollak, R. Elazari, G. Salitra, C.S. Kelley, J. Affinito, On the surface chemical aspects of very high energy density, rechargeable Li–sulfur batteries, Journal of the Electrochemical Society, 156 (2009) A694-A702.
    [47] X. Liang, Z. Wen, Y. Liu, M. Wu, J. Jin, H. Zhang, X. Wu, Improved cycling performances of lithium sulfur batteries with LiNO3-modified electrolyte, Journal of Power Sources, 196 (2011) 9839-9843.
    [48] W. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin, Y. Zhang, J. G. Zhang, Lithium metal anodes for rechargeable batteries, Energy & Environmental Science, 7 (2014) 513-537.
    [49] S. Evers, L.F. Nazar, New approaches for high energy density lithium–sulfur battery cathodes, Accounts of chemical research, 46 (2012) 1135-1143.
    [50] A. Manthiram, Y. Fu, Y. S. Su, Challenges and prospects of lithium–sulfur batteries, Accounts of chemical research, 46 (2012) 1125-1134.
    152
    [51] D. Aurbach, E. Zinigrad, Y. Cohen, H. Teller, A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions, Solid state ionics, 148 (2002) 405-416.
    [52] L. Gireaud, S. Grugeon, S. Laruelle, B. Yrieix, J. M. Tarascon, Lithium metal stripping/plating mechanisms studies: A metallurgical approach, Electrochemistry communications, 8 (2006) 1639-1649.
    [53] H.Ota, K. Shima, M. Ue, J. i. Yamaki, Effect of vinylene carbonate as additive to electrolyte for lithium metal anode, Electrochimica Acta, 49 (2004) 565-572.
    [54] J. B. Goodenough, K. S. Park, The Li-ion rechargeable battery: a perspective, Journal of the American Chemical Society, 135 (2013) 1167-1176.
    [55] J. Gao, M. A. Lowe, Y. Kiya, H. C. D. bru a, Effects of liquid electrolytes on the charge–discharge performance of rechargeable lithium/sulfur batteries: electrochemical and in-situ X-ray absorption spectroscopic studies, The Journal of Physical Chemistry C, 115 (2011) 25132-25137.
    [56] C. Barchasz, J. C. Leprêtre, S. Patoux, F. Alloin, Electrochemical properties of ether-based electrolytes for lithium/sulfur rechargeable batteries, Electrochimica Acta, 89 (2013) 737-743.
    [57] X. Zhou, J. Xie, J. Yang, Y. Zou, J. Tang, S. Wang, L. Ma, Q. Liao, Improving the performance of lithium–sulfur batteries by graphene coating, Journal of Power Sources, 243 (2013) 993-1000.
    [58] R. Demir-Cakan, M. Morcrette, F. Nouar, C. Davoisne, T. Devic, D. Gonbeau, R. Dominko, C. Serre, G. Férey, J. M. Tarascon, Cathode composites for Li–S batteries via
    153
    the use of oxygenated porous architectures, Journal of the American Chemical Society, 133 (2011) 16154-16160.
    [59] J. Schuster, G. He, B. Mandlmeier, T. Yim, K. T. Lee, T. Bein, L. F. Nazar, Spherical Ordered Mesoporous Carbon Nanoparticles with High Porosity for Lithium–Sulfur Batteries, Angewandte Chemie International Edition, 51 (2012) 3591-3595.
    [60] N. Jayaprakash, J. Shen, S. S. Moganty, A. Corona, L. A. Archer, Porous Hollow Carbon @ Sulfur Composites for High-Power Lithium–Sulfur Batteries, Angewandte Chemie International Edition, 50 (2011) 5904-5908.
    [61] S. Zheng, F. Yi, Z. Li, Y. Zhu, Y. Xu, C. Luo, J. Yang, C. Wang, Copper‐Stabilized Sulfur‐Microporous Carbon Cathodes for Li–S Batteries, Advanced Functional Materials, 24 (2014) 4156-4163.
    [62] T. A. Zegeye, C. F.J. Kuo, A. S. Wotango, C. J. Pan, H. M. Chen, A.M. Haregewoin, J. H. Cheng, W. N. Su, B. J. Hwang, Hybrid nanostructured microporous carbon-mesoporous carbon doped titanium dioxide/sulfur composite positive electrode materials for rechargeable lithium-sulfur batteries, Journal of Power Sources, 324 (2016) 239-252.
    [63] J. Guo, J. Zhang, F.Jiang, S. Zhao, Q. Su, G. Du, Microporous carbon nanosheets derived from corncobs for lithium–sulfur batteries, Electrochimica Acta, 176 (2015) 853-860.
    [64] J.T. Lee, Y. Zhao, S. Thieme, H. Kim, M. Oschatz, L. Borchardt, A. Magasinski, W.I. Cho, S. Kaskel, G. Yushin, Sulfur‐Infiltrated Micro‐and Mesoporous Silicon Carbide‐Derived Carbon Cathode for High‐Performance Lithium Sulfur Batteries, Advanced Materials, 25 (2013) 4573-4579.
    154
    [65] X. Gao, J. Li, D. Guan, C. Yuan, A scalable graphene sulfur composite synthesis for rechargeable lithium batteries with good capacity and excellent columbic efficiency, ACS applied materials & interfaces, 6 (2014) 4154-4159.
    [66] J. Guo, Y. Xu, C. Wang, Sulfur-impregnated disordered carbon nanotubes cathode for lithium–sulfur batteries, Nano letters, 11 (2011) 4288-4294.
    [67] L. Yuan, H. Yuan, X. Qiu, L. Chen, W. Zhu, Improvement of cycle property of sulfur-coated multi-walled carbon nanotubes composite cathode for lithium/sulfur batteries, Journal of Power Sources, 189 (2009) 1141-1146.
    [68] J. H. Choi, C. L. Lee, K. S. Park, S. M. Jo, D. S. Lim, I. D. Kim, Sulfur-impregnated MWCNT microball cathode for Li–S batteries, RSC Advances, 4 (2014) 16062-16066.
    [69] L. Xiao, Y. Cao, J. Xiao, B. Schwenzer, M.H. Engelhard, L.V. Saraf, Z. Nie, G.J.Exarhos, J. Liu, A Soft Approach to Encapsulate Sulfur: Polyaniline Nanotubes for Lithium-Sulfur Batteries with Long Cycle Life, Advanced Materials, 24 (2012) 1176-1181.
    [70] F. Wu, J. Chen, R. Chen, S. Wu, L. Li, S. Chen, T. Zhao, Sulfur/Polythiophene with a Core/Shell Structure: Synthesis and Electrochemical Properties of the Cathode for Rechargeable Lithium Batteries, The Journal of Physical Chemistry C, 115 (2011) 6057-6063.
    [71] Z. Dong, J. Zhang, X. Zhao, J. Tu, Q. Su, G. Du, Sulfur@hollow polypyrrole sphere nanocomposites for rechargeable Li-S batteries, RSC Advances, 3 (2013) 24914-24917.
    [72] Y. Zhang, X. Wu, H. Feng, L. Wang, A. Zhang, T. Xia, H. Dong, Effect of nanosized Mg 0.8 Cu 0.2 O on electrochemical properties of Li/S rechargeable batteries, international journal of hydrogen energy, 34 (2009) 1556-1559.
    155
    [73] Y. Zhang, Z. Bakenov, Y.Zhao, A. Konarov, T.N.L. Doan, K. E. K. Sun, A. Yermukhambetova, P. Chen, Effect of nanosized Mg 0.6 Ni 0.4 O prepared by self-propagating high temperature synthesis on sulfur cathode performance in Li/S batteries, Powder Technology, 235 (2013) 248-255.
    [74] M. S. Song, S. C. Han, H. S. Kim, J. H. Kim, K. T. Kim,Y. M. Kang, H. J. Ahn, S. Dou, J. Y. Lee, Effects of nanosized adsorbing material on electrochemical properties of sulfur cathodes for Li/S secondary batteries, Journal of the Electrochemical Society, 151 (2004) A791-A795.
    [75] H. S. Kang, Y. K. Sun, Freestanding Bilayer Carbon–Sulfur Cathode with Function of Entrapping Polysulfide for High Performance Li–S battery, Advanced Functional Materials, (2015) 1225-1232.
    [76] S. Moon,Y. H. Jung, W. K. Jung, D. S. Jung, J. W. Choi, D. K. Kim, Encapsulated monoclinic sulfur for stable cycling of Li–S rechargeable batteries, Advanced Materials, 25 (2013) 6547-6553.
    [77] X. Li, Y. Cao, W. Qi, L. V. Saraf, J. Xiao, Z. Nie, J. Mietek, J. G. Zhang, B. Schwenzer, J. Liu, Optimization of mesoporous carbon structures for lithium–sulfur battery applications, Journal of Materials Chemistry, 21 (2011) 16603-16610.
    [78] Z. Li, Y. Jiang, L. Yuan, Z. Yi, C. Wu, Y. Liu, P. Strasser, Y. Huang, A Highly Ordered Meso@Microporous Carbon-Supported Sulfur@Smaller Sulfur Core–Shell Structured Cathode for Li–S Batteries, ACS Nano, 8 (2014) 9295-9303.
    [79] X. Z. Ma, B. Jin, H.Y. Wang, J. Z. Hou, X. B. Zhong, H. H. Wang, P. M. Xin, S–TiO2 composite cathode materials for lithium/sulfur batteries, Journal of Electroanalytical Chemistry, 736 (2015) 127-131.
    156
    [80] M. Pfanzelt, P. Kubiak, M. Fleischhammer, M. Wohlfahrt-Mehrens, TiO2 rutile-An alternative anode material for safe lithium-ion batteries, Journal of Power Sources, 196 (2011) 6815-6821.
    [81] B. Ding, L. Shen, G. Xu, P. Nie, X. Zhang, Encapsulating sulfur into mesoporous TiO2 host as a high performance cathode for lithium–sulfur battery, Electrochimica Acta, 107 (2013) 78-84.
    [82] M. Mancini, P. Kubiak, J. Geserick, R. Marassi, N. Hüsing, M. Wohlfahrt-Mehrens, Mesoporous anatase TiO2 composite electrodes: Electrochemical characterization and high rate performances, Journal of Power Sources, 189 (2009) 585-589.
    [83] J. Y. Hwang, H. M. Kim, S. K. Lee, J. H. Lee, A. Abouimrane, M. A. Khaleel, I. Belharouak, A. Manthiram, Y. K. Sun, High‐Energy, High‐Rate, Lithium–Sulfur Batteries: Synergetic Effect of Hollow TiO2‐Webbed Carbon Nanotubes and a Dual Functional Carbon‐Paper Interlayer, Advanced Energy Materials, 6 (2016) 1501480.
    [84] Z. Zhang, Q. Li, S. Jiang, K. Zhang,Y. Lai, J. Li, Sulfur Encapsulated in a TiO2-Anchored Hollow Carbon Nanofiber Hybrid Nanostructure for Lithium–Sulfur Batteries, Chemistry – A European Journal, 21 (2015) 1343-1349.
    [85] Z. Liang, G. Zheng, W. Li, Z.W. Seh, H. Yao, K. Yan, D. Kong, Y. Cui, Sulfur Cathodes with Hydrogen Reduced Titanium Dioxide Inverse Opal Structure, ACS Nano, 8 (2014) 5249-5256.
    [86] Z. Xiao, Z. Yang, L. Wang, H. Nie, M. E. Zhong, Q. Lai, X. Xu, L. Zhang, S. Huang, Lithium‐Sulfur Batteries: A Lightweight TiO2/Graphene Interlayer, Applied as a Highly Effective Polysulfide Absorbent for Fast, Long‐Life Lithium–Sulfur Batteries (Adv. Mater. 18/2015), Advanced Materials, 27 (2015) 2890-2890.
    157
    [87] H. Wang, S. Li, D. Li, Z. Chen, H.K. Liu, Z. Guo, TiO2 coated three-dimensional hierarchically ordered porous sulfur electrode for the lithium/sulfur rechargeable batteries, Energy, 75 (2014) 597-602.
    [88] S. Lu, Y. Chen, X. Wu, Z. Wang, Y. Li, Three-dimensional sulfur/graphene multifunctional hybrid sponges for lithium-sulfur batteries with large areal mass loading, Scientific reports, 4 (2014) 4629.
    [89] L. Fei, X. Li, W. Bi, Z. Zhuo, W. Wei, L. Sun, W. Lu, X. Wu, K. Xie, C. Wu, Graphene/Sulfur Hybrid Nanosheets from a Space‐Confined ―Sauna‖ Reaction for High‐Performance Lithium–Sulfur Batteries, Advanced Materials, 27 (2015) 5936-5942.
    [90] Z. K. Wei, J. J. Chen, L. L. Qin, A. W. Nemage, M. S. Zheng, Q. F. Dong, Two-step hydrothermal method for synthesis of sulfur-graphene hybrid and its application in lithium sulfur batteries, Journal of the Electrochemical Society, 159 (2012) A1236-A1239.
    [91] H. Sun, G. L. Xu, Y. F. Xu, S. G. Sun, X. Zhang, Y. Qiu, S. Yang, A composite material of uniformly dispersed sulfur on reduced graphene oxide: Aqueous one-pot synthesis, characterization and excellent performance as the cathode in rechargeable lithium-sulfur batteries, Nano research, 5 (2012) 726-738.
    [92] Y. Qiu, X. Zhang, S.Yang, High performance supercapacitors based on highly conductive nitrogen-doped graphene sheets, Physical Chemistry Chemical Physics, 13 (2011) 12554-12558.
    [93] R. Chen, T. Zhao, J. Lu, F. Wu, L. Li, J. Chen, G. Tan, Y.Ye, K. Amine, Graphene-Based Three-Dimensional Hierarchical Sandwich-type Architecture for High-Performance Li/S Batteries, Nano Letters, 13 (2013) 4642-4649.
    158
    [94] Y. Qiu, K. Yan, S. Yang, L. Jin, H. Deng, W. Li, Synthesis of Size-Tunable Anatase TiO2 Nanospindles and Their Assembly into Anatase@Titanium Oxynitride/Titanium Nitride−Graphene Nanocomposites for Rechargeable Lithium Ion Batteries with High Cycling Performance, ACS Nano, 4 (2010) 6515-6526.
    [95] J. Z. Wang, L. Lu, M.Choucair, J. A. Stride, X. Xu, H. K. Liu,Sulfur-graphene composite for rechargeable lithium batteries, Journal of Power Sources, 196 (2011) 7030-7034.
    [96] W. Ahn, M.H. Seo, Y.-S. Jun, D.U. Lee, F.M. Hassan, X. Wang, A. Yu, Z. Chen, Sulfur Nanogranular Film-Coated Three-Dimensional Graphene Sponge-Based High Power Lithium Sulfur Battery, ACS applied materials & interfaces, 8 (2016) 1984-1991.
    [97] Y. Qiu, W. Li, W. Zhao, G. Li, Y. Hou, M. Liu, L. Zhou, F. Ye, H. Li, Z. Wei, High-rate, ultralong cycle-life lithium/sulfur batteries enabled by nitrogen-doped graphene, Nano letters, 14 (2014) 4821-4827.
    [98] Y. Chen, S. Lu, X. Wu, J. Liu, Flexible Carbon Nanotube–Graphene/Sulfur Composite Film: Free-Standing Cathode for High-Performance Lithium/Sulfur Batteries, The Journal of Physical Chemistry C, 119 (2015) 10288-10294.
    [99] M.Yu, R. Li, Y.Tong, Y. Li, C. Li, J. D. Hong, G. Shi, A graphene wrapped hair-derived carbon/sulfur composite for lithium–sulfur batteries, Journal of Materials Chemistry A, 3 (2015) 9609-9615.
    [100] R. Chen, T. Zhao, T. Tian, S. Cao, P.R. Coxon, K. Xi, D. Fairen-Jimenez, R.V. Kumar, A. K. Cheetham, Graphene-wrapped sulfur/metal organic framework-derived microporous carbon composite for lithium sulfur batteries, APL materials, 2 (2014) 124109.
    159
    [101] J. He, Y. Chen, P. Li, F. Fu, Z. Wang, W. Zhang, Three-dimensional CNT/graphene–sulfur hybrid sponges with high sulfur loading as superior-capacity cathodes for lithium–sulfur batteries, Journal of Materials Chemistry A, 3 (2015) 18605-18610.
    [102] N. Li, M. Zheng, H. Lu, Z. Hu, C. Shen, X. Chang, G. Ji, J. Cao, Y. Shi, High-rate lithium–sulfur batteries promoted by reduced graphene oxide coating, Chemical Communications, 48 (2012) 4106-4108.
    [103] T. A. Zegeye, C.F.J. Kuo, H. M. Chen, A. M. Tripathi, M. H. Lin, J. H. Cheng, A.D. Duma, W. N. Su, B.J. Hwang, Dual-Confined Sulfur in Hybrid Nanostructured Materials for Enhancement of Lithium-Sulfur Battery Cathode Capacity Retention, ChemElectroChem, (2017) DOI: 10.1002/celc.201600696.
    [104] M. Hagen, S. Dörfler, P. Fanz, T. Berger, R. Speck, J. Tübke, H. Althues, M. Hoffmann, C. Scherr, S. Kaskel, Development and costs calculation of lithium–sulfur cells with high sulfur load and binder free electrodes, Journal of Power Sources, 224 (2013) 260-268.
    [105] Q. Li, Z. Zhang, K. Zhang, L. Xu, J. Fang, Y. Lai, J. Li, Synthesis and electrochemical performance of TiO2–sulfur composite cathode materials for lithium–sulfur batteries, Journal of Solid State Electrochemistry, 17 (2013) 2959-2965.
    [106] R.Weast, D. Lide, M. Astle, W. Beyer, CRC Handbook of chemistry and physics: A ready reference book of chemical and physical data. eds, (1990).
    [107] J. Zhao, S. Pei, W. Ren, L. Gao, H.-M. Cheng, Efficient preparation of large-area graphene oxide sheets for transparent conductive films, ACS Nano, 4 (2010) 5245-5252.
    [108] W. S. Hummers J, R.E.Offeman, Preparation of graphitic oxide, Journal of the American Chemical Society, 80 (1958) 1339-1339.
    160
    [109] J. L. Shi, W. C. Du, Y. X. Yin, Y. G. Guo, L. J. Wan, Hydrothermal reduction of three-dimensional graphene oxide for binder-free flexible supercapacitors, Journal of Materials Chemistry A, 2 (2014) 10830-10834.
    [110] J. H. Cheng, Y. H. Chen, Y. S. Yeh, S. Hy, L. Y. Kuo, B.-J. Hwang, Enhancement of Electrochemical Properties by Freeze-dried Graphene Oxide via Glucose-assisted Reduction, Electrochimica Acta, 197 (2016) 146-151.
    [111] W. Ahn, M. H. Seo, Y. S. Jun, D. U. Lee, F. M. Hassan, X. Wang, A. Yu, Z. Chen, Sulfur nano-granular film coated three-dimensional graphene sponge based high power lithium sulfur battery, ACS applied materials & interfaces, 8(2016) 1984-1991.
    [112] H. Sohn, M. L. Gordin, T. Xu, S. Chen, D. Lv, J. Song, A. Manivannan, D. Wang, Porous Spherical Carbon/Sulfur Nanocomposites by Aerosol-Assisted Synthesis: The Effect of Pore Structure and Morphology on Their Electrochemical Performance As Lithium/Sulfur Battery Cathodes, ACS applied materials & interfaces, 6 (2014) 7596-7606.
    [113] P. E. Blöchl, Projector augmented-wave method, Physical Review B, 50 (1994) 17953.
    [114] G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Computational Materials Science, 6 (1996) 15-50.
    [115] J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, C. Fiolhais, Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation, Phys Rev B Condens Matter, 46 (1992) 6671-6687.
    161
    [116] K. Gong, F. Du, Z. Xia, M. Durstock, L. Dai, Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction, science, 323 (2009) 760-764.
    [117] A. Ghosh, Y. H. Lee, Carbon‐based electrochemical capacitors, ChemSusChem, 5 (2012) 480-499.
    [118] M. Inagaki, H. Konno, O. Tanaike, Carbon materials for electrochemical capacitors, Journal of Power Sources, 195 (2010) 7880-7903.
    [119] Y. Zhai,Y. Dou, D. Zhao, P. F. Fulvio, R. T. Mayes, S. Dai, Carbon materials for chemical capacitive energy storage, Advanced materials, 23 (2011) 4828-4850.
    [120] S. Xin, L. Gu, N. H. Zhao, Y. X. Yin, L. J. Zhou, Y. G. Guo, L. J. Wan, Smaller sulfur molecules promise better lithium–sulfur batteries, Journal of the American Chemical Society, 134 (2012) 18510-18513.
    [121] S. R. Chen, Y. P. Zhai, G. L. Xu, Y. X. Jiang, D. Y. Zhao, J. T. Li, L. Huang, S. G. Sun, Ordered mesoporous carbon/sulfur nanocomposite of high performances as cathode for lithium–sulfur battery, Electrochimica Acta, 56 (2011) 9549-9555.
    [122] M. S. Park, B.O. Jeong, T. J. Kim, S. Kim, K. J. Kim, J. S. Yu, Y. Jung, Y. J. Kim, Disordered mesoporous carbon as polysulfide reservoir for improved cyclic performance of lithium–sulfur batteries, Carbon, 68 (2014) 265-272.
    [123] G. He, X. Ji, L. Nazar, High ―C‖ rate Li-S cathodes: sulfur imbibed bimodal porous carbons, Energy & Environmental Science, 4 (2011) 2878-2883.
    [124] F. Su, X.S. Zhao, Y. Wang, J. Zeng, Z. Zhou, J. Y. Lee, Synthesis of Graphitic Ordered Macroporous Carbon with a Three-Dimensional Interconnected Pore Structure for Electrochemical Applications, The Journal of Physical Chemistry B, 109 (2005) 20200-20206.
    162
    [125] S. Xin, Y. X. Yin, L. J. Wan, Y.G. Guo, Encapsulation of Sulfur in a Hollow Porous Carbon Substrate for Superior Li‐S Batteries with Long Lifespan, Particle & Particle Systems Characterization, 30 (2013) 321-325.
    [126] S. Evers, T. Yim, L. F. Nazar, Understanding the Nature of Absorption/Adsorption in Nanoporous Polysulfide Sorbents for the Li–S Battery, The Journal of Physical Chemistry C, 116 (2012) 19653-19658.
    [127] M. Pfanzelt, P. Kubiak, M. Wohlfahrt-Mehrens, Nanosized TiO2 rutile with high capacity and excellent rate capability, Electrochemical and Solid-State Letters, 13 (2010) A91-A94.
    [128] Y. Zhang, Y. Zhao, A. Yermukhambetova, Z. Bakenov, P. Chen, Ternary sulfur/polyacrylonitrile/Mg0.6Ni0.4O composite cathodes for high performance lithium/sulfur batteries, Journal of Materials Chemistry A, 1 (2013) 295-301.
    [129] M. Kruk, M. Jaroniec, Gas dsorption Characterization of Ordered Organic−Inorganic Nanocomposite Materials, Chemistry of Materials, 13 (2001) 3169-3183.
    [130] J. Rouquerol, D. Avnir, C. Fairbridge, D. Everett, J. Haynes, N. Pernicone, J. Ramsay, K. Sing, K. Unger, Recommendations for the characterization of porous solids (Technical Report), Pure and Applied Chemistry, 66 (1994) 1739-1758.
    [131] Z. Lei, Y. Zhang, H. Wang, Y. Ke, J. Li, F. Li, J. Xing, Fabrication of well-ordered macroporous active carbon with a microporous framework, Journal of Materials Chemistry, 11 (2001) 1975-1977.
    [132] Z. Li, L. Yin, Nitrogen-Doped MOF-Derived Micropores Carbon as Immobilizer for Small Sulfur Molecules as a Cathode for Lithium Sulfur Batteries with Excellent Electrochemical Performance, ACS applied materials & interfaces, 7 (2015) 4029-4038.
    163
    [133] Y. S. Su, A. Manthiram, Lithium–sulphur batteries with a microporous carbon paper as a bifunctional interlayer, Nat Commun, 3 (2012) 1166.
    [134] Y. Zhang, Y. Xu, Y. Lu, L. Zhao, L. Song, Phosphorylated silica nanotubes: preparation and characterization, Nanotechnology, 24 (2013) 315701.
    [135] Z. Zhang, Q. Li, Y. Lai, J. Li, Confine Sulfur in Polyaniline-Decorated Hollow Carbon Nanofiber Hybrid Nanostructure for Lithium–Sulfur Batteries, The Journal of Physical Chemistry C, 118 (2014) 13369-13376.
    [136] S. Zheng, P. Han, Z. Han, H. Zhang, Z. Tang, J. Yang, High performance C/S composite cathodes with conventional carbonate-based electrolytes in Li-S battery, Scientific reports, 4 (2014) 4842.
    [137] Y.Yang, G. Yu, J. J. Cha, H. Wu, M. Vosgueritchian, Y. Yao, Z. Bao, Y. Cui, Improving the performance of lithium–sulfur batteries by conductive polymer coating, Acs Nano, 5 (2011) 9187-9193.
    [138] E. M. Neville, M. J. Mattle, D. Loughrey, B. Rajesh, M. Rahman, J. D. MacElroy, J. A. Sullivan, K.R. Thampi, Carbon-doped TiO2 and carbon, tungsten-codoped TiO2 through sol–gel processes in the presence of melamine borate: reflections through photocatalysis, The Journal of Physical Chemistry C, 116 (2012) 16511-16521.
    [139] R. Elazari, G. Salitra, A. Garsuch, A. Panchenko, D. Aurbach, Sulfur‐Impregnated Activated Carbon Fiber Cloth as a Binder‐Free Cathode for Rechargeable Li‐S Batteries, Advanced materials, 23 (2011) 5641-5644.
    [140] C. Yuan, S. Zhu, H. Cao, L. Hou, J. Lin, Hierarchical sulfur-impregnated hydrogenated TiO2 mesoporous spheres comprising anatase nanosheets with highly exposed (001) facets for advanced Li-S batteries, Nanotechnology, 27 (2015) 045403.
    164
    [141] Y. Zhang, Z. Zhao, J. Chen, L. Cheng, J. Chang, W. Sheng, C. Hu, S. Cao, C-doped hollow TiO2 spheres: in situ synthesis, controlled shell thickness, and superior visible-light photocatalytic activity, Applied Catalysis B: Environmental, 165 (2015) 715-722.
    [142] Q. Xiao, J. Zhang, C. Xiao, Z. Si, X. Tan, Solar photocatalytic degradation of methylene blue in carbon-doped TiO2 nanoparticles suspension, Solar Energy, 82 (2008) 706-713.
    [143] G. Zhou, L. C. Yin, D. W. Wang, L. Li, S. Pei, I.R. Gentle, F. Li, H. M. Cheng, Fibrous hybrid of graphene and sulfur nanocrystals for high-performance lithium–sulfur batteries, Acs Nano, 7 (2013) 5367-5375.
    [144] K. Jin, X. Zhou, Z. Liu, Graphene/Sulfur/Carbon Nanocomposite for High Performance Lithium-Sulfur Batteries, Nanomaterials, 5 (2015) 1481-1492.
    [145] Z. Li, L. Yuan, Z. Yi, Y. Sun, Y. Liu, Y. Jiang, Y. Shen, Y. Xin, Z. Zhang, Y. Huang, Insight into the Electrode Mechanism in Lithium-Sulfur Batteries with Ordered Microporous Carbon Confined Sulfur as the Cathode, Advanced Energy Materials, 4 (2014) 1301473.
    [146] J. L. Wang, J. Yang, J. Y. Xie, N. X. Xu, Y. Li, Sulfur–carbon nano-composite as cathode for rechargeable lithium battery based on gel electrolyte, Electrochemistry Communications, 4 (2002) 499-502.
    [147] J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon, P.-L. Taberna, Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer, Science, 313 (2006) 1760-1763.
    [148] L.Yin, J. Wang, F. Lin, J. Yang, Y. Nuli, Polyacrylonitrile/graphene composite as a precursor to a sulfur-based cathode material for high-rate rechargeable Li–S batteries, Energy & Environmental Science, 5 (2012) 6966-6972.
    165
    [149] X. Gu, Y. Wang, C. Lai, J. Qiu, S. Li, Y. Hou, W. Martens, N. Mahmood, S. Zhang, Microporous bamboo biochar for lithium-sulfur batteries, Nano Research, 8 (2015) 129-139.
    [150] Y. Cui, Z. Wen, X. Liang, Y. Lu, J. Jin, M. Wu, X. Wu, A tubular polypyrrole based air electrode with improved O 2 diffusivity for Li–O 2 batteries, Energy & Environmental Science, 5 (2012) 7893-7897.
    [151] G. Ma, Z. Wen, J. Jin, Y. Lu, K. Rui, X. Wu, M. Wu, J. Zhang, Enhanced performance of lithium sulfur battery with polypyrrole warped mesoporous carbon/sulfur composite, Journal of Power Sources, 254 (2014) 353-359.
    [152] G. C. Li, G. R. Li, S. H. Ye, X. P. Gao, A Polyaniline-Coated Sulfur/Carbon Composite with an Enhanced High-Rate Capability as a Cathode Material for Lithium/Sulfur Batteries, Advanced Energy Materials, 2 (2012) 1238-1245.
    [153] J. Shim, K. A. Striebel, E. J. Cairns, The lithium/sulfur rechargeable cell effects of electrode composition and solvent on cell performance, Journal of the Electrochemical Society, 149 (2002) A1321-A1325.
    [154] H. Li, M. Sun, T. Zhang, Y. Fang, G. Wang, Improving the performance of PEDOT-PSS coated sulfur@ activated porous graphene composite cathodes for lithium–sulfur batteries, Journal of Materials Chemistry A, 2 (2014) 18345-18352.
    [155] G. Zhou, S. Pei, L. Li, D.W. Wang, S. Wang, K. Huang, L.C. Yin, F. Li, H.M. Cheng, A Graphene–Pure‐Sulfur Sandwich Structure for Ultrafast, Long‐Life Lithium–Sulfur Batteries, Advanced materials, 26 (2014) 625-631.
    166
    [156] J. W. To, Z. Chen, H. Yao, J. He, K. Kim, H H. Chou, L. Pan, J. Wilcox, Y. Cui, Z. Bao, Ultrahigh surface area three-dimensional porous graphitic carbon from conjugated polymeric molecular framework, ACS central science, 1 (2015) 68-76.
    [157] J. L. Shi, C. Tang, H. J. Peng, L. Zhu, X. B. Cheng, J. Q. Huang, W. Zhu, Q. Zhang, 3D Mesoporous Graphene: CVD Self‐Assembly on Porous Oxide Templates and Applications in High‐Stable Li‐S Batteries, small, 11 (2015) 5243-5252.
    [158] F. Xu, Z. Tang, S. Huang, L. Chen, Y. Liang, W. Mai, H. Zhong, R. Fu, D. Wu, Facile synthesis of ultrahigh-surface-area hollow carbon nanospheres for enhanced adsorption and energy storage, Nature communications, 6 (2015) 7221.
    [159] C. Xu, Y. Wu, X. Zhao, X. Wang, G. Du, J. Zhang, J. Tu, Sulfur/three-dimensional graphene composite for high performance lithium–sulfur batteries, Journal of Power Sources, 275 (2015) 22-25.
    [160] J. Zhang, Z. Dong, X. Wang, X. Zhao, J. Tu, Q. Su, G. Du, Sulfur nanocrystals anchored graphene composite with highly improved electrochemical performance for lithium–sulfur batteries, Journal of Power Sources, 270 (2014) 1-8.
    [161] J. Song, T. Xu, M. L. Gordin, P. Zhu, D. Lv, Y. B. Jiang, Y. Chen, Y. Duan, D. Wang, Nitrogen‐Doped Mesoporous Carbon Promoted Chemical Adsorption of Sulfur and Fabrication of High‐Areal‐Capacity Sulfur Cathode with Exceptional Cycling Stability for Lithium‐Sulfur Batteries, Advanced Functional Materials, 24 (2014) 1243-1250.
    [162] H.Yan, M. Cheng, B. Zhong,Y. Chen,Three-dimensional nitrogen-doped graphene/sulfur composite for lithium-sulfur battery, Ionics, (2016) 1-8.
    167
    [163] X. Wang, Z. Zhang, Y. Qu, Y. Lai, J. Li, Nitrogen-doped graphene/sulfur composite as cathode material for high capacity lithium–sulfur batteries, Journal of Power Sources, 256 (2014) 361-368.
    [164] Y. Zhao, Z. Bakenova, Y. Zhang, H. Peng, H. Xie, Z. Bakenov, High performance sulfur/nitrogen-doped graphene cathode for lithium/sulfur batteries, Ionics, 21 (2015) 1925-1930.
    [165] C.Wang, K. Su, W. Wan, H. Guo, H. Zhou, J. Chen, X. Zhang, Y. Huang, High sulfur loading composite wrapped by 3D nitrogen-doped graphene as a cathode material for lithium-sulfur batteries, Journal of Materials Chemistry A, 2 (2014) 5018-5023.
    [166] H. Deng, L.Yao, Q. A. Huang, Q. Su, J. Zhang, G. Du,Highly improved electrochemical performance of Li-S batteries with heavily nitrogen-doped three-dimensional porous graphene interlayers, Materials Research Bulletin, 84 (2016) 218-224.
    [167] S. Pei, H. M. Cheng, The reduction of graphene oxide, Carbon, 50 (2012) 3210-3228.
    [168] G. Zhou, E. Paek, G. S. Hwang, A. Manthiram, Long-life Li/polysulphide batteries with high sulphur loading enabled by lightweight three-dimensional nitrogen/sulphur-codoped graphene sponge, Nature communications, 6 (2015) 7760.
    [169] S. Wang, L. Zhang, Z. Xia, A. Roy, D. W. Chang, J. B. Baek, L. Dai, BCN graphene as efficient metal‐free electrocatalyst for the oxygen reduction reaction, Angewandte Chemie International Edition, 51 (2012) 4209-4212.
    [170] K. Zhang, Y. Xu, Y. Lu, Y.Zhu, Y. Qian, D. Wang, J. Zhou, N. Lin, Y. Qian, A graphene oxide-wrapped bipyramidal sulfur@polyaniline core-shell structure as a cathode for Li-S batteries with enhanced electrochemical performance, Journal of Materials Chemistry A, 4 (2016) 6404-6410.
    168
    [171] A. Navaee, A. Salimi, Efficient amine functionalization of graphene oxide through the Bucherer reaction: an extraordinary metal-free electrocatalyst for the oxygen reduction reaction, RSC Advances, 5 (2015) 59874-59880.
    [172] J. Song, Z. Yu, M. L. Gordin, D. Wang, Advanced Sulfur Cathode Enabled by Highly Crumpled Nitrogen-doped Graphene Sheets for High-Energy-Density Lithium-Sulfur Batteries, Nano letters, (2015) 864-870.
    [173] H. Chen, C.Wang, W. Dong, W. Lu, Z. Du, L. Chen, Monodispersed sulfur nanoparticles for lithium–sulfur batteries with theoretical performance, Nano letters, 15 (2014) 798-802.
    [174] H. K. Jeong, Y. P. Lee, R. J. Lahaye, M. H. Park, K. H. An, I. J. Kim, C. W. Yang, C. Y. Park, R.S. Ruoff, Y. H. Lee, Evidence of graphitic AB stacking order of graphite oxides, Journal of the American Chemical Society, 130 (2008) 1362-1366.
    [175] Z. S.Wu, A. Winter, L. Chen, Y. Sun, A. Turchanin, X. Feng, K. Müllen, Three‐Dimensional Nitrogen and Boron Co‐doped Graphene for High‐Performance All‐Solid‐State Supercapacitors, Advanced Materials, 24 (2012) 5130-5135.
    [176] J. Zhao, W. Ren, H. M. Cheng, Graphene sponge for efficient and repeatable adsorption and desorption of water contaminations, Journal of Materials Chemistry, 22 (2012) 20197-20202.
    [177] T. Ramanathan, F. Fisher, R. Ruoff, L. Brinson, Amino-functionalized carbon nanotubes for binding to polymers and biological systems, Chemistry of Materials, 17 (2005) 1290-1295.
    169
    [178] Y. Hou, J. Li, X. Gao, Z. Wen, C. Yuan, J. Chen, 3D dual-confined sulfur encapsulated in porous carbon nanosheets and wrapped with graphene aerogels as a cathode for advanced lithium sulfur batteries, Nanoscale, 8 (2016) 8228-8235.
    [179] C. Zu, A. Manthiram, Hydroxylated Graphene–Sulfur Nanocomposites for High‐Rate Lithium–Sulfur Batteries, Advanced Energy Materials, 3 (2013) 1008-1012.
    [180] J. Pels, F. Kapteijn, J. Moulijn, Q. Zhu, K. Thomas, Evolution of nitrogen functionalities in carbonaceous materials during pyrolysis, Carbon, 33 (1995) 1641-1653.
    [181] N. P. Wickramaratne, J. Xu, M. Wang, L. Zhu, L. Dai, M. Jaroniec, Nitrogen enriched porous carbon spheres: Attractive materials for supercapacitor electrodes and CO2 adsorption, Chemistry of Materials, 26 (2014) 2820-2828.
    [182] G. Lota, K.Fic, E. Frackowiak, Carbon nanotubes and their composites in electrochemical applications, Energy & Environmental Science, 4 (2011) 1592-1605.
    [183] R. Xu, I. Belharouak, X. Zhang, R. Chamoun, C. Yu, Y. Ren, A. Nie, R. Shahbazian-Yassar, J. Lu, J. C. Li, Insight into Sulfur Reactions in Li–S Batteries, ACS applied materials & interfaces, 6 (2014) 21938-21945.
    [184] S. S. Zhang, New insight into liquid electrolyte of rechargeable lithium/sulfur battery, Electrochimica Acta, 97 (2013) 226-230.
    [185] J. Wang, J. Yang, J. Xie, N. Xu, Y. Li, Sulfur–carbon nano-composite as cathode for rechargeable lithium battery based on gel electrolyte, Electrochemistry Communications, 4 (2002) 499-502.
    [186] G. Li, J. Sun, W. Hou, S. Jiang, Y. Huang, J. Geng, Three-dimensional porous carbon composites containing high sulfur nanoparticle content for high-performance lithium-sulfur batteries, Nat Commun, 7 (2016) 10601.
    170
    [187] C. Zhang, Y. Lin, J. Liu, Sulfur double locked by a macro-structural cathode and a solid polymer electrolyte for lithium-sulfur batteries, Journal of Materials Chemistry A, 3 (2015) 10760-10766.
    [188] C. Barchasz, J. C. Leprêtre, F. Alloin, S. Patoux, New insights into the limiting parameters of the Li/S rechargeable cell, Journal of Power Sources, 199 (2012) 322-330.
    [189] M. K. Song, E. J. Cairns, Y.Zhang, Lithium/sulfur batteries with high specific energy: old challenges and new opportunities, Nanoscale, 5 (2013) 2186-2204.
    [190] B. He, W. C. Li, C. Yang, S. Q. Wang, A. H. Lu, Incorporating Sulfur Inside the Pores of Carbons for Advanced Lithium–Sulfur Batteries: An Electrolysis Approach, ACS Nano, (2016) 1633–1639.
    [191] N. W. Li, Y. X. Yin, Y. G. Guo, Three-dimensional sandwich-type graphene@ microporous carbon architecture for lithium–sulfur batteries, RSC Advances, 6 (2016) 617-622.
    [192] G. Li, H. Jing, H. Li, L. Liu, Y. Wang, C. Yuan, H. Jiang, L. Chen, Sulfur/microporous carbon composites for Li-S battery, Ionics, 21 (2015) 2161-2170.
    [193] A. Rosenman, R. Elazari, G. Salitra, D. Aurbach, A. Garsuch, Li-S cathodes with extended cycle life by sulfur encapsulation in disordered micro-porous carbon powders, Journal of The Electrochemical Society, 161 (2014) A657-A662.
    [194] W. Zhang, D. Qiao, J. Pan, Y. Cao, H. Yang, X. Ai, A Li+-conductive microporous carbon–sulfur composite for Li-S batteries, Electrochimica Acta, 87 (2013) 497-502.
    [195] H. Wang, Z. Xu, H. Yi, H. Wei, Z. Guo, X. Wang, One-step preparation of single-crystalline Fe 2 O 3 particles/graphene composite hydrogels as high performance anode materials for supercapacitors, Nano Energy, 7 (2014) 86-96.
    171
    [196] J. Wang, S. Chew, Z. Zhao, S. Ashraf, D. Wexler, J. Chen, S. Ng, S. Chou, H. Liu, Sulfur–mesoporous carbon composites in conjunction with a novel ionic liquid electrolyte for lithium rechargeable batteries, Carbon, 46 (2008) 229-235.
    [197] A. Ganesan, A. Varzi, S. Passerini, M.M. Shaijumon, Graphene derived carbon confined sulfur cathodes for lithium-sulfur batteries: Electrochemical impedance studies, Electrochimica Acta, 214 (2016) 129-138.
    [198] J. Zheng, M. Gu, C. Wang, P. Zuo, P. K. Koech, J. G. Zhang, J. Liu, J. Xiao, Controlled nucleation and growth process of Li2S2/Li2S in lithium-sulfur batteries, Journal of The Electrochemical Society, 160 (2013) A1992-A1996.
    [199] S. Wei, L. Ma, K.E. Hendrickson, Z. Tu, L.A. Archer, Metal–Sulfur Battery Cathodes Based on PAN–Sulfur Composites, Journal of the American Chemical Society, 137 (2015) 12143-12152.
    [200] S. Zhang, M. Zheng, Z. Lin, N. Li, Y. Liu, B. Zhao, H. Pang, J. Cao, P. He, Y. Shi, Activated carbon with ultrahigh specific surface area synthesized from natural plant material for lithium-sulfur batteries, Journal of Materials Chemistry A, 2 (2014) 15889-15896.
    [201] . hou, . u, H. Chen, F.J. DiSalvo, H.c.D. bru a, olk–shell structure of polyaniline-coated sulfur for lithium–sulfur batteries, Journal of the American Chemical Society, 135 (2013) 16736-16743.
    [202] W. Li, G. Zheng, Y. Yang, Z.W. Seh, N. Liu, Y. Cui, High-performance hollow sulfur nanostructured battery cathode through a scalable, room temperature, one-step, bottom-up approach, Proceedings of the National Academy of Sciences, 110 (2013) 7148-7153.
    172
    [203] L.Yuan, X. Qiu, L. Chen, W. Zhu, New insight into the discharge process of sulfur cathode by electrochemical impedance spectroscopy, Journal of Power Sources, 189 (2009) 127-132.

    QR CODE