簡易檢索 / 詳目顯示

研究生: 呂映燁
Ying-Yeh Lu
論文名稱: 旋轉液體黏滯阻尼器 數值模型之開發與實驗驗證
Development and Validation of Numerical Modeling for A Rotary Fluid Viscous Damper
指導教授: 陳沛清
Pei-Ching Chen
口試委員: 汪向榮
Xing-Rong Wang
黃尹男
Yin-Nan Huang
游忠翰
Zhong-Han You
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 116
中文關鍵詞: 旋轉液態黏滯阻尼器生物共生演算法阻尼器物理模型結構控制即時複合實驗
外文關鍵詞: rotary fluid viscous damper, symbiotic organisms search, numerical model,, structural control, real-time hybrid simulation
相關次數: 點閱:308下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隔震結構系統遇近斷層地震會產生較大之隔震位移,容易造成隔震元件破壞或結構傾覆。本研究開發一種新型阻尼器,稱為「旋轉液態黏滯阻尼器」,透過直線運動轉換成旋轉運動的機制,將阻尼器的速度放大數倍,以期在速度小的情形仍能提供足夠的阻尼力。本研究中透過不同頻率及不同振幅之正弦波進行實驗測試,考慮旋轉阻尼器的物理性質,開發其物理的數值模型。此外,使用生物共生演算法進行數值模型的參數識別最佳化,並透過隨機波驗證其模型之正確性。
    本研究使用即時複合實驗,驗證含有旋轉液態黏滯阻尼器之隔震結構的受震行為,以大幅降低結構試體製作之成本和時間。以狀態空間線性模型模擬隔震結構,作為複合實驗中的數值子結構,旋轉液態黏滯阻尼器做為實驗子結構。在每個積分步中得到數值子結構的隔震層相對位移,以此位移作為致動器命令驅動阻尼器,在將其阻尼力傳回至隔震結構之隔震層。實驗結果顯示,旋轉液態黏滯阻尼器可有效降地隔震結構受近斷層作用時隔震層之相對位移。


    It is realized that large deformation of seismic isolation devices is expected when the isolated building is subjected to a near-fault earthquake, resulting in damage to the building. Therefore, a novel rotary fluid viscous damper is proposed in this study. The numerical model of the rotary damper is developed and proposed based on the physical properties of the damper mechanism. The parameters of the numerical model are identified through the experimental data of sinusoidal tests with different frequencies and amplitudes. Meanwhile, the Symbiotic Organisms Search (SOS) algorithm is applied to optimize the parameters of the numerical model. Finally, the accuracy of the model is evaluated through validating tests with random waves.
    Real-time hybrid simulation (RTHS) has been demonstrated effective in verifying the seismic behavior of buildings subjected to earthquakes. In this study, RTHS is applied to evaluate the seismic performance of a base-isolated building with the rotary fluid viscous dampers installed at the isolation layer. In the RTHS, the base-isolated building is numerically simulated representing by a linear state-space model, while the rotary fluid viscous damper is experimentally tested in the laboratory. At each integration time step, the relative displacement of the isolation layer is treated as the desired displacement of the actuator. The actuator then drives the damper and the damping force is measured and transmitted back to the numerical substructure. Experimental results show that the proposed rotary fluid viscous damper can effectively reduce the deformation of isolation devices when the isolated building is subjected to near-fault earthquakes.

    摘要 i ABSTRACT iv 致謝 v 目錄 vi 表目錄 VIII 圖目錄 IX 第一章緒論 1 1.1 研究背景 1 1.2 研究目的 2 1.3 研究內容與架構 2 第二章文獻回顧 3 2.1 含阻尼器隔震結構 3 2.2 慣質(Inerter) 4 2.3 數值模型 6 2.4 即時複合實驗 7 第三章旋轉液態黏滯阻尼器 (RFVD) 9 3.1 RFVD機構設計 9 3.2 實驗架設 9 3.3 軟硬體介紹 10 3.4 數值模型 10 3.5 測試過程 11 第四章RFVD實驗結果與討論 13 4.1 RFVD之滑軌測試 13 4.2 RFVD之慣質係數 14 4.3 RFVD之摩擦力及阻尼力 14 4.4 結果討論 15 第五章5層樓隔震結構之即時複合實驗 17 5.1 RTHS之實驗流程與架構 17 5.2 5層樓之結構模型 18 5.3 數值模擬 20 5.3.1 補償器設計 21 5.3.2 結果分析 22 5.4 數值模型和RTHS之結果與分析 23 第六 結論與建議 25 6.1 結論 25 6.2 未來發展 25 參考文獻 28

    1. Makris, N. and Chang, S.P. (2000). Effect of viscous, viscoplastic and friction damping on the response of seismic isolated structures. Earthquake Engineering & Structural Dynamics, 29(1): p. 85-107.
    2. Zhang, Y. and Iwan Wilfred, D. (2002). Protecting Base-Isolated Structures from Near-Field Ground Motion by Tuned Interaction Damper. Journal of Engineering Mechanics, 128(3): p. 287-295.
    3. Lu, L.Y. and Lin, G.L. (2009). Improvement of near-fault seismic isolation using a resettable variable stiffness damper. Engineering Structures, 31(9): p. 2097-2114.
    4. Lu, L.Y., Lin, C.C., and Lin, G.L. (2013). Experimental evaluation of supplemental viscous damping for a sliding isolation system under pulse-like base excitations. Journal of Sound and Vibration, 332(8): p. 1982-1999.
    5. Providakis, C.P. (2008). Effect of LRB isolators and supplemental viscous dampers on seismic isolated buildings under near-fault excitations. Engineering Structures, 30(5): p. 1187-1198.
    6. Smith, M.C. (2002). Synthesis of mechanical networks: the inerter. IEEE Transactions on Automatic Control, 47(10): p. 1648-1662.
    7. Smith, M.C. and Wang, F.C. (2004). Performance Benefits in Passive Vehicle Suspensions Employing Inerters. Vehicle System Dynamics, 42(4): p. 235-257.
    8. 徐茂盛 (2005). 慣質觀念之實現及在建築物減震之應用. 國立臺灣大學機械工程學系碩士論文,王富正指導.
    9. 林子謙 (2007). 慣質模型的實現. 國立臺灣大學機械工程學系碩士論文,王富正指導.
    10. 詹翔安 (2008). 機電懸吊系統之設計及應用. 國立臺灣大學機械工程學系碩士論文,王富正指導.
    11. Wang, F.C., Hong, M.F., and Lin, T.C. (2010). Designing and testing a hydraulic inerter. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 225(1): p. 66-72.
    12. Marian, L. and Giaralis, A. (2017). The tuned mass-damper-inerter for harmonic vibrations suppression, attached mass reduction, and energy harvesting. Smart Structures and Systems, 19: p. 665-678.
    13. Den Hartog, J.P. (1956). Mechanical Vibrations. New York, NY, USA, McGraw-Hill.
    14. Giaralis, A. and Petrini, F. (2017). Wind-Induced Vibration Mitigation in Tall Buildings Using the Tuned Mass-Damper-Inerter. Journal of Structural Engineering, 143(9): p. 04017127.
    15. Cao, L. (2019). High performance active tuned mass damper inerter for structures under the ground acceleration. Earthquake and Structures, 16: p. 149-163.
    16. Kennedy, J. and Eberhart, R. (1995). Particle swarm optimization. Proceedings of ICNN'95 - International Conference on Neural Networks, 4: p. 1942-1948 vol.4.
    17. Ma, R.S., Bi, K.M., and Hao, H. (2021). A novel rotational inertia damper for amplifying fluid resistance: Experiment and mechanical model. Mechanical Systems and Signal Processing, 149: p. 20.
    18. Harris, T.A. (1971). An Analytical Method to Predict Skidding in Thrust-Loaded, Angular-Contact Ball Bearings. Journal of Lubrication Technology, 93(1): p. 17-23.
    19. Nakamura, Y., et al. (2014). Seismic response control using electromagnetic inertial mass dampers. Earthquake Engineering & Structural Dynamics, 43(4): p. 507-527.
    20. Brzeski, P., Lazarek, M., and Perlikowski, P. (2017). Experimental study of the novel tuned mass damper with inerter which enables changes of inertance. Journal of Sound and Vibration, 404: p. 47-57.
    21. Hakuno, M., Shidawara, M., and Hara, T. (1969). Dynamic destructive test of a cantilever beam, controlled by an analog-computer. Proceedings of the Japan Society of Civil Engineers, 171: p. 1-9.
    22. Nakashima, M., Kato, H., and Takaoka, E. (1992). Development of real-time pseudo dynamic testing. Earthquake Engineering & Structural Dynamics, 21(1): p. 79-92.
    23. Chen, P.C., Tsai, K.C., and Lin, P.Y. (2014). Real-time hybrid testing of a smart base isolation system. Earthquake Engineering & Structural Dynamics, 43(1): p. 139-158.
    24. Wang, J.T., et al. (2016). Real-time hybrid simulation of multi-story structures installed with tuned liquid damper. Structural Control and Health Monitoring, 23(7): p. 1015-1031.
    25. Chen, P.C., Ting, G.C., and Li, C.H. (2020). A versatile small-scale structural laboratory for novel experimental earthquake engineering. Earthquakes and Structures, 18(3): p. 337-348.
    26. Cheng, M.Y. and Prayogo, D. (2014). Symbiotic Organisms Search: A new metaheuristic optimization algorithm. Computers & Structures, 139: p. 98-112.

    27. Kelly, J.M., Leitmann, G., and Soldatos, A.G. (1987). Robust control of base-isolated structures under earthquake excitation. J. Optim. Theory Appl, 53: p. 159-181.
    28. Chen, P.C. and Tsai, K.C. (2013). Dual compensation strategy for real-time hybrid testing. Earthquake Engineering & Structural Dynamics, 42(1): p. 1-23.
    29. Uang, C.M. and Bertero, V.V. (1990). Evaluation of seismic energy in structures. Earthquake Engineering & Structural Dynamics, 19(1): p. 77-90.

    QR CODE