簡易檢索 / 詳目顯示

研究生: 林曉慶
Hsiao-Ching Lin
論文名稱: 剪切干涉式波前感測器透鏡輪廓與像差量測系統
Shearing Interferometric Wavefront Sensor System for Lense Profile and Aberration Measurement
指導教授: 謝宏麟
Hung-Lin Hsieh
口試委員: 李朱育
Ju-Yi Lee
許正治
Cheng-Chih Hsu
鄧昭瑞
Geo-Ry Tang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 118
中文關鍵詞: 波前像差二維棋盤式相位光柵四波橫向剪切干涉術透鏡三維表面輪廓
外文關鍵詞: Wavefront, Two-Dimensional checkerboard phase grating, Quadri-Wave Lateral Shearing Interferometry, Lens, Three-Dimensional Surface Profile
相關次數: 點閱:131下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究成功開發出一套新式剪切干涉式波前感測器透鏡輪廓與像差量測系統,用以量測光束穿過待測透鏡後的波前變化。除了可藉由分析波前的變化情形求出待測透鏡的各階像差及相對應的Zernike像差係數之外,亦能進一步建立待測透鏡的三維表面輪廓。
    此套新式剪切干涉式波前感測器透鏡輪廓與像差量測系統包含一光學模組及一影像分析模組,光學模組是以四波橫向剪切干涉術為技術核心進行光路開發,由一穩頻氦氖雷射、空間濾波器、準直透鏡、二維棋盤式相位光柵以及感光耦合元件(Charge-coupled Device, CCD)所組成,可針對待測透鏡進行波前量測;而影像分析模組則以LabVIEW進行程式開發,主要由波前傅立葉解相單元、Zernike像差擬合演算單元及透鏡輪廓重建單元所組成,可分別針對波前影像進行頻譜相關訊號處理與分析、各階像差擬合與反解,以及待測透鏡的三維輪廓重建。
    由我們所提出的剪切干涉式波前感測器透鏡輪廓與像差量測系統的運作原理可知,當雷射光源經過顯微物鏡與針孔所組成的空間濾波器後,顯微物鏡會將雷射光束聚焦於針孔上,而後通過針孔將部分空間雜訊濾除後形成乾淨的點光源。由此空間濾波器發出的點光源為一發散球面波,我們藉由通過準直透鏡後形成準直光束,此光束將穿透待測透鏡後引入透鏡的波前相位資訊,而後再入射至二維棋盤式相位光柵後,因繞射效應產生四道保有相同原始待測波前訊息的正負一階繞射光束,此四道繞射光束彼此相互交疊後形成干涉光斑,此即為四波橫向剪切干涉光路,干涉光斑影像將入射並成像於CCD感測器的影像接收區中,最後由CCD進行影像擷取。取得的干涉斑紋影像會因不同的待測透鏡而引入相對應的待測波前相位,我們利用傅立葉解相單元對影像進行頻譜區域框選與平移修正,用以獲得正確的待測波前相位資訊,而後再利用Zernike像差擬合演算單元計算出待測透鏡36階的像差以及相對應的Zernike像差係數,最後由透鏡厚度與相位關係式重建待測透鏡的三維表面輪廓。
    於研究中,我們先藉由實驗的方式確認自行設計的二維棋盤式相位光柵符合繞射理論,同時確認Zernike像差擬合演算法是否能擬合各階像差及計算出相對應的Zernike像差係數。接著針對不同規格的商用標準透鏡進行波前量測實驗,並將量測結果與理論值比較,由實驗結果可知,本套量測系統的量測結果與理想球面透鏡波前理論的平均誤差量約為2.97 %,與透鏡規格的高度平均誤差量約為 3.56 %。為了驗證本系統可適應不同尺寸規格的透鏡進行量測,我們分別進行了聚焦式及發散式兩種不同量測模式的實驗,藉由將透鏡放置於Z軸上的不同位置處使待測波前以收斂或發散方式入射至CCD,由實驗結果證明,本系統能正確地量測出相對應的待測透鏡波前並回推透鏡的各項參數。此外,本系統亦可透過平移拼接的方式進行大尺寸(直徑)透鏡的參數量測,具備彈性的量測能力。


    A novel shearing interferometric wavefront sensor system for lense profile and aberration measurement for measuring the wavefornt variation of the light beam passing through the lens is presented in this study. This system can not only calculate the various order aberrations and the corresponding Zernike coefficients by analyzing the wavefornt variation, but also further establish the three-dimensional surface profile of the lens.
    The shearing interferometric wavefront sensor system for lense profile and aberration measurement consists of the optical module and the image analysis module. The opical module is based on Quadri-Wave Lateral Shearing Interferometry to develop the optical configuration, which consists of a frequency-stabilized He-Ne laser, spatial filiter, collimated lens, two-dimensional checkerboard phase grating and charge-coupled device, can be used to measure the wavefornt variation; the image analysis module is developed by LabVIEW, which is composed of the fourier phase retrieval unit, the Zernike aberration fitting algorithm, and the lens three-dimensional surface profile unit, which can analyze frequency spectrum-related signal for wavefront image, fit the calculate each order aberration, and reconstruct the hree-dimensional surface profile of the lens.
    According to the operating principle of shearing interferometric wavefront sensor system for lense parameters measurement presented in this study, when the laser beam passes the spatial filter which consists of microscope objectives lens and pinhole, the microscope objectives lens focuses the laser beam on the pinhole. Also, the pinhole cleans up the spatial noise when spot light source through the pinhole. The point light source is a divergent spherical wave, then we form a collimated beam by passing through the collimating lens. When the collimated beam passes through the test lens, it will introduce the phase information of the test lens and incidient into the two-dimensional chessboard phase grating. Because of the diffraction effect, four positive and negative first-order diffraction beams with the same wavefront information are generated. The four diffraction beams overlap with each other to form interference pattern, which is called Quardi-Wave Lateral Shearing In transverse shearing interference light path. Finally, the interference spot image is captured by CCD. The interference pattern will introduce the corresponding wavefront phase due to the different test lenses. We use the fourier phase retrieval unit to frame the area of the frequency spectrum and shift frequency to obtain the correct wavefront phase information. Next using the Zernike aberration fitting calculation unit to calculate the 36 order aberration and corresponding Zernike aberration codfficient. Finally, reconstructing the three-dimensional surface profile of the lens by the thickness and phase relationship.
    We confirm that the self-designed two-dimensional checkerboard phase grating conforms to the diffraction theory experimentally first, and then we confirm whether the Zernike aberration fitting algorithm can fit each order aberration and calculate the corresponding Zernike aberration coefficient. Next, wavefront measurement experiments for commercial standard lenses of different specifications, and the results of the experiment compared with the theoretical value, the experimental results show that the average error of the measurement results of this set of measurement systems and ideal spherical lens Wavefront theory is about 2.97%, and the height of the average error of the lens specifications is about 3.56 %. In order to verify that the system can be adapted to different sizes of lenses can be measured, the experiment whcih focused and divergent two different experiments in two different measurement modes by placing the lens at different locations on the Z-axis so that the wavefront to focus or divergent incident to the CCD. The results of the experiment show that the system can correctly measure the corresponding wavefront and calculatue the parameters of the lens. In addition, the system can also measure larger diameter lens parameter measurement by translation stitching. Therefore the system has the flexible measurement capabilities.

    摘要 I Abstract III 符號說明 V 目錄 VIII 圖目錄 X 表目錄 XIV 第一章 緒論 1 1.1 研究背景 1 1.2 文獻回顧 2 1.2.1 透鏡量測技術之文獻回顧 3 1.2.2 波前量測技術之文獻回顧 11 1.3 研究目的 20 1.4 論文架構 20 第二章 基礎理論 22 2.1 四波橫向剪切干涉術原理 22 2.1.1 干涉原理 23 2.1.2 繞射元件設計原理 23 2.1.3 四波橫向剪切干涉術 26 2.2 傅立葉解相原理 28 2.3 理想球面透鏡與相位關係 30 2.3.1 理想球面透鏡波前理論 30 2.3.2 透鏡厚度與相位關係 31 2.4 波前像差理論 32 2.4.1 球面像差 32 2.4.2 慧差 33 2.4.3 像散 34 2.4.4 畸變 35 2.4.5 場曲 35 2.5 Zernike數學多項式 36 2.6 小結 40 第三章 剪切干涉式波前感測器透鏡輪廓與像差量測系統 42 3.1 系統元件介紹 42 3.2 剪切干涉式波前感測器透鏡輪廓與像差量測系統 43 3.2.1 剪切干涉式波前感測器透鏡輪廓與像差量測系統架構 43 3.2.2 二維棋盤式相位光柵設計 44 3.3 影像分析模組 49 3.4 波前相位建立透鏡表面輪廓 54 3.5 大尺寸透鏡拼接量測架構 55 3.6 小結 56 第四章 實驗結果與討論 58 4.1 二維棋盤式相位光柵繞射光強驗證實驗 58 4.2 Zernike像差擬合演算法驗證 59 4.3 剪切干涉式波前感測器透鏡輪廓與像差量測實驗 63 4.3.1 剪切干涉式波前感測器透鏡輪廓與像差量測架構 63 4.3.2 待測平凸球面透鏡平坦度實驗與量測結果 64 4.3.3 剪切干涉式波前感測器透鏡輪廓量測結果 66 4.3.4 剪切干涉式波前感測器透鏡像差量測結果 72 4.4 Z軸向不同位置量測實驗 75 4.5 大尺寸透鏡拼接實驗量測結果 77 4.6 小結 81 第五章 誤差分析 82 5.1 待測透鏡擺放誤差 82 5.2 非(±1, ±1)階繞射光影響 84 5.3 Talbot Effect 88 5.4 拼接量測誤差 91 5.5 隨機誤差 93 5.5.1 環境振動 93 5.5.2 電子雜訊 94 5.6 小結 94 第六章 結論 95 6.1 結論 95 6.2 未來展望 97 參考文獻 98

    參考文獻
    [1] E. P. Goodwin et al., Field Guide to Interferometric Optical Testing (Academic, 2006).
    [2] “Coordinate Measuring Machine History – Fifty Years of CMM History leading up to a Measuring Revolution,” COORD3 MetrologyArchived 2013-09-08 at the Wayback Machine. Accessed 23 Aug., (2013).
    [3] B. Andreas, “Metrology for the production process of aspheric lenses,” Advanced Optical Technologies 5: 211 – 228 (2016).
    [4] K. Kubo, “Laser based asphere and freeform measurement technology by UA3P,” Proc. of 11th Laser Metrology for Precision Measurement and Inspection in Industry 2014, 1-6 (2014).
    [5] Spaan H.A.M et al., Isara 400: Development of an ultraprecision CMM for measurement of large parts, Proceedings of the ASPE spring topical meeting on Mechanical Metrology and Measurement Uncertainty, Apr. (2009).
    [6] F. Twyman, “An Interferometer for Testing Camera Lenses,” Nature, 107, 635–636 (1921).
    [7] 梁逸平, “熔融法折射式微透鏡陣列之設計製造與檢測,” 碩士論文, 桃園, 台灣, 2001年7月。
    [8] S. Maurya, “Fizeau Interferometer,” Indian Institute of Space Science and Technology (IIST), (2015).
    [9] S. H. Fu, “Surface Profile and Radius of Curvature Measurement of a Microlens Array Using Optical Interferometric Microscope,” Master Dissertation, Feng Chia University (2011).
    [10] ZYGO ,” http://www.zygo.com/.
    [11] http://www.infocrops.com/a/technology/virtuallab/2018070164.html
    [12] T. Miyashita, “Standardization for microlenses and microlens arrays,” JPN. J. APPL. PHYS., 46(8), 5391-5396 (2007).
    [13] J. Hartmann, “Bemerkungen über den Bau und die Justirung von Spektrographen,” Zt. Instrumentenkd. 20, 47. (1900).
    [14] D. M. Hernández et al., “What is a Hartmann test,” Appl. Opt. 54(9), 2296-2301 (2015).
    [15] R. V. Shack et al., “Production and use of a lenticular Hartmann screen,” JOSA 61, 656 (1971).
    [16] B. C. Platt et al., “History and Principles of Shack-Hartmann Wavefront Sensing,” J. Refract. Surg., 19, S573–7 (2001).
    [17] J. Liang et al., “Objective measurement of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor,” J. Opt. Soc. Am. A , 11, 7 (1994).
    [18] G. Y. Yoon et al., “Shack Hartmann wavefront measurement with a large F-number plastic microlens array,” Appl. Opt., 35(1), 188-192 (1996).
    [19] J. A. Koch et al., “Experimental comparison of a Shack-Hartmann sensor and a phase-shifting interferometer for large-optics metrology applications.” Appl. Opt., 39(25), 4540-4546 (2000).
    [20] Lee et al., “Wavefront error measurement of high-numerical-aperture optics with a Shack-Hartmann sensor and a point source,” Appl. opt. 46 (9), 1411-1415 (2007).
    [21] C. Li et al., “Three-Dimensional Surface Profile Measurement of Microlenses Using the Shack–Hartmann Wavefront Sensor,” in Journal of Microelectromechanical Systems, 21, 3, 530-540 (2012).
    [22] M. V. R. K. Murty, “The Use of a Single Plane Parallel Plate as a Lateral Shearing Interferometer with a Visible Gas Laser Source,” Appl. Opt., 3(4), 531-534 (1964).
    [23] D. Nyyssonen et al., "Lens Testing with a Simple Wavefront Shearing Interferometer,” Appl. Opt., 12(9), 2061-2070 (1973).
    [24] J. Primot, “Three-wave lateral shearing interferometer,” Appl. Opt. 32(31), 6242-6249 (1993).
    [25] Phasics, ” http://phasicscorp.com/.
    [26] P. Bon et al., “Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells,” Opt. Express., 17(15), 13080-13094 (2009).
    [27] J. C. Chanteloup et al., “Multiple-wave lateral shearing interferometry for wave-front sensing,” Appl. Opt., 44(9), 1559-1571 (2005).
    [28] S. Velghe et al., “Advanced wave-front sensing by quadri-wave lateral shearing interferometry,” Proc. SPIE 6292, 62920E (2006).
    [29] D. Malacara-Hernandez et al., “Wavefront fitting with discrete orthogonal polynomials in a unit radius circle,” Opt. Eng., 29(6), 672-676 (1990).
    [30] 朱淑君, “同調光學系統的波動光學分析,” 國立成功大學 (2016).
    [31] H. Wang et al., “Approach to characterize manufacture tolerances of two-dimensional cross-phase grating,” Opt. Eng., 52(10) (2013).

    無法下載圖示 全文公開日期 2025/08/26 (校內網路)
    全文公開日期 2025/08/26 (校外網路)
    全文公開日期 2025/08/26 (國家圖書館:臺灣博碩士論文系統)
    QR CODE