簡易檢索 / 詳目顯示

研究生: 梁誠
Cheng Liang
論文名稱: 真空燒結法製備鈦鉬基複合材料之微結構與性質研究
Study on the Microstructures and Properties of Ti-Mo base Composites Processed by Vacuum Sintering
指導教授: 林舜天
Shun-Tian Lin
口試委員: 李丕耀
Pei-Yau Lee
林寬泓
Kwan-Hun Lin
吳明偉
Ming-Wei Wu
郭俞麟
Yu-Lin Kuo
周賢鎧
Shyan-kay Jou
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 118
中文關鍵詞: 鈦鉬基複合材料真空燒結惠德曼類結構抗腐蝕性碳化鈦原位析出強化
外文關鍵詞: Titanium molybdenum matrix composites, vacuum sintering, Widmanstätten –like structure, corrosion resistance, titanium carbide, In-situ precipitation strengthening
相關次數: 點閱:280下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究目的是探討有關製備耐蝕性鈦鉬基複合材料之微結構及性質,並以粉末真空燒結法完成最佳之成品。鈦鉬基複合材料的優異物理性能是質量輕,機械性能佳,抗腐蝕性好。在本研究中,我們研究了Ti-8Mo-xNi複合材料在不同溫度下燒結後的顯微組織、機械性能和抗腐蝕性。在Ti-8Mo-xNi複合材料的β鈦相上形成顯著的Widmanstätten類結構。隨著Ni添加量的增加,Widmanstätten類結構中的針狀鎳化鈦金屬間化合物析出增加。 Ti-8Mo-6Ni複合材料具有相對較高的相對密度(94.9%)和硬度(42HRC),在1175℃下燒結1小時後,TRS值達到1177MPa。 且Ti-8Mo-xNi樣品易形成鈍化膜,將有助於產生更好的抗腐蝕性能。其中Ti-8Mo-6Ni複合材料還確定了添加碳化物後微結構之演變,通過真空燒結工藝,在各種溫度下添加不同含量NbC碳化物到Ti-8Mo-6Ni複合材料中,也找出機械和腐蝕性能的影響。在1275℃燒結1小時後,獲得NbC-1wt%樣品有較佳的燒結密度(99.7%)和硬度(48HRC)。在1275℃燒結1小時後,NbC試樣中出現最低的Icorr(3.21×10 -7 A•cm -2)和最高Rp(29172Ω•cm2),有效地提高了抗腐蝕性。
    我們還研究了Ti-8Mo-xCu複合材料在不同溫度下燒結後的顯微組織,力學性能和抗腐蝕性。 Ti-8Mo-12Cu複合材料在1200℃燒結後表現出優異的機械性能; 鈦複合材料在氯化鈉中的抗腐蝕性亦非常優異,它將完全適用於大氣環境。在燒結複合材料中,觀察到Ti2(Cu,Mo)過共析之析出相。接著鈦銅基複合材料也採用添加碳化物來實現分散強化的作用; 實驗結果顯示,添加不同碳化物(WC,TaC和ZrC)與鈦組合,形成碳化鈦和β穩定固熔相,隨著各種碳化物含量和燒結溫度的升高,微觀結構的相對密度增加,硬度和機械性能也顯著提高。添加5%的碳化鋯(ZrC)具有最優異的效果。燒結密度(98.9%),硬度(45HRC)和橫向斷裂強度(1068MPa)顯著提高。加入不同的碳化物(WC,TaC和ZrC)與鈦組合形成碳化鈦和穩定的β固熔相,這種反應是原位析出強化的機理,且形成反應式2Ti + MC = TiC + Ti(M),(M = Ta,W,Zr)。


    The aim of this study is to explore the titanium-molybdenum matrix composites, using vacuum sintering to optimize the properties. The characteristics of titanium- molybdenum matrix composites, has lightweight, strong mechanical properties, and good resistance to corrosion. In this study, we investigated the microstructure, mechanical properties and corrosion resistance of Ti-8Mo-xNi composites after sintering at different temperatures. Significant Widmanstätten-like structures formed on the β titanium matrix of the Ti-8Mo-xNi composites. The acicular TiNi intermetallic compound precipitates within the Widmanstätten-like structure increased as the added amount of Ni increased. the Ti-8Mo-6Ni composites possessed a relatively high relative density (94.9%) and hardness (42 HRC), but the highest TRS value of 1177 MPa was reached after sintering at 1175°C for 1 h. Ti-8Mo-xNi specimens formed a passive film, which contributed to better anti-corrosion properties. The effects with NbC carbides added in the microstructural evolution, the mechanical and corrosion properties of Ti-8Mo-6Ni composites were also investigated, through the vacuum sintering process at various temperatures were determined the best results. After sintering at 1275°C for 1 hour, the sintered density (99.7%) and hardness (48 HRC) of the NbC-1 wt% sample were obtained. The lowest Icorr (3.21ⅹ10-7 A•cm-2) and highest Rp (29172 Ω•cm2) appeared in the NbC-1 specimens after sintering at 1275°C for 1 h, which effectively improved the corrosion resistance.
    We also investigated the microstructure, mechanical properties and corrosion resistance of Ti-8Mo-xCu composites after sintering at different temperatures. Ti-12Cu-8Mo sintered alloys exhibited the excellent mechanical properties after sintered at 1200°C. Ti2(Cu, Mo) hypereutectoid phase was obviously observed in the sintered alloys. The titanium alloy for the corrosion resistance in sodium chloride is very excellent; it will be fully applied to the atmospheric environment. And then Titanium-based composites also use the addition of carbides to achieve the effect of dispersive precipitation strengthening. The experimental results show that, Adding different carbides (WC, TaC and ZrC), are combined with titanium to form titanium carbide and stable β phase, with the increasing of various carbide contents and sintering temperature, the relative density of microstructure increasing. Hardness and mechanical properties are also significantly improved. The addition of 5 wt% zirconium carbide (ZrC) has a most exceptional effect, The sintering density (98.9%), hardness (45 HRC) and transverse rupture strength (1068 MPa) were significantly improved. Adding different carbides (WC, TaC and ZrC), are combined with titanium to form titanium carbide and stable β phase, Such reaction after sintering at high temperature, revealed the mechanisms of in-situ precipitation strengthening, are the reaction as 2Ti + MC = TiC + Ti (M), (M = Ta, W, Zr).

    Contents (目錄) Chinese Abstract I English Abstract II Acknowledgements (誌謝) IV Contents (目錄) V List of Figures and Tables VII List of Symbols XII Chapter One. Ti-Mo-Ni -base Powder Composites by Vacuum Sintering Processes 1 1-1. Introduction 1 1-2. Experimental Procedure 5 1-3. Results and Discussion 8 1.3.1 Effect of Ni content and sintering temperature on microstructure 8 1.3.2 Effect of Ni content and sintering temperature on mechanical properties 14 1.3.3 Effect of Ni content and sintering temperature on corrosion resistance 18 1-4. Conclusions 23 Chapter Two. Ti-Mo-Ni-base Powder Composites with Carbides Additives by Vacuum Sintering Processes 24 2-1. Introduction 24 2-2. Experimental Procedures 25 2-3. Results and Discussion 27 2-4. Conclusions 36 Chapter Three. Ti-Mo-Cu-base Powder Composites by Vacuum Sintering Processes 37 3-1. Introduction 37 3-2. Experimental Procedure 38 3-3 Results and Discussions: 40 3-3-1. Microstructural Analysis of Titanium Composites: 40 3-3-2. Effect of Cu content and sintering temperature on mechanical properties 47 3-4. Conclusions 53 Chapter Four. Ti-Mo-Cu -base Powder Composites with Carbides Additives by Vacuum Sintering Processes 54 4-1. Introduction 54 4-2. Experimental Procedure 55 4-3.Results and Discussions 57 4-3-1. Effect of Carbides content on mechanical properties 57 4-3-2. Microstructure Analysis of Titanium Composites (Ti-8Mo-12Cu-xMC) 61 4-4. Conclusions 75 Chapter Five. General Conclusions of Corrosion-Resistance Powder Composites by Vacuum Sintering Processes 76 References 78 Appendix 83 A-1. Introduction : Cr-base Powder Composites by Vacuum Sintering Processes 83 A-2. Experimental Procedure 84 A-3. Results and Discussion 88 A-4. Conclusions 100

    1.M. Niinomi: Metall Mater. Trans. A. 33 (2002) 477-486.
    2.Y. L. Zhou and D. M. Luo, J. Alloys Compd. 509 (2011) 6267-6272.
    3.T. Duerig, A. Pelton and D. Stockel: Mater. Sci. Eng. A. 273-275 (1999)149-160.
    4.P. J. S. Buenconsejo, K. Ito H. Y. Kim and S. Miyazaki, Acta Mater. 56 (2008) 2063-2072.
    5.H. Matsumoto, S. Watanabe and S. Hanada: J Alloy Compd. 439 (2007) 146-155.
    6.W. D. Zhang, Y. Liu, H. Wu, M. Song, T. Y. Zhang, X. D. Lan and T. H. Yao, Mater. Charact. 106 (2015) 302-307.
    7.E. W. Collings, The Physical Metallurgy of Titanium Alloys, (reproduced from Molchanova,) ASM Int., Materials Park, OH 1984, p. 54.
    8.F. X. Xie, X. M. He, Y. M. Lv, M. P. Wu, X. B He and X.H. Qu: Corr. Sci. 95 (2015) 117-124.
    9.S. H. Chang, J. C. Chen and K. T. Huang and J. K. Chen: Mater. Trans. 54 (2013) 1034-1039.
    10.S. H. Chang and S. L. Chen: J. Alloys Compd. 585 (2014) 407-413.
    11.M. Rahimiana, N. Ehsani and N. Parvin and H. R. Baharvandi: J. Mater. Process. Technol. 209 (2009) 5387-5393.
    12.S. H. Chang and P. Y. Chang: Mater. Sci. Eng. A. 606 (2014) 150-156.
    13.F. Z. Xing, N. Mitsuo, N. Masaaki and H. Junko: Acta Biomater. 8 (2012) 1990-1997.
    14.K. Otsuka and X. Ren: Prog. Mater. Sci. 50 (2005) 511-678.
    15.P. Sun, Z. Z. Fang and M. Koopman: Adv. Eng. Mater. 15 (2012) 1007-1013.
    16.S. H. Chang, Y. K. Lin and K. T. Huang: Surf. Coat. Technol. 207 (2012) 571-578.
    17.B. B. Panigrahi: Mater. Lett. 61 (2007) 152-155.
    18.H. Fujii: Nippon steel technical report, 62, (1994) 74-79.
    19.C. Liang, S. H. Chang, J. R. Huang, K. T. Huang and S. T. Lin: Mater. Trans. 56 (2015) 1127-1132.
    20.S. H. Chang and C.C. Chen: Mater. Trans. 55 (2014) 1755-1761.
    21.N. Ergin and O. Ozdemir: ACTA Phys. Pol. A 123 (2013) 248-249.
    22.E. Dudrová and M. Kabátová: Powder Metall. Prog. 8 (2008) 59-75.
    23.Y. L. Zhou and D. M. Luo: Mater. Charact. 62 (2011) 931-937.
    24.B. S Sung, T. E. Park and Y. H. Yun: Adv. Mater. Sci. Eng. 2015 (2015) 1-7.
    25.F. R. Marciano, E. C. Almeida, D. A. Lima-Oliveira, E. J. Corat and V. J. Trava-Airoldi: Diam. Relat. Mater. 19 (2010) 537-540.
    26.R. L. O. Basso, R. J. Candal, C. A. Figueroa, D. Wisnivesky and F. Alvarez: Surf. Coat. Technol. 203 (2009) 1293-1297.
    27.S. H. Chang, T. P. Tang and K. T. Huang: ISIJ Int. 50 (2010) 569-573.
    28.X. Zhao, M. Niinomi, M. Nakai, J. Hieda. Beta type Ti–Mo alloys with changeable Young’s modulus for spinal fixation applications. Acta Biomaterialia Vol.8 (2012) pp 1990–1997.
    29.W.F. Ho, S.C. Wu, S.K. Hsu, L.S. Fang, H.C. Hsu. Bond strength of Ti–5Cr based alloys to dental porcelain with Mo addition. Materials and Design Vol.43 (2013) pp 233–236
    30.G.W. Franti, J.C. Williams, and H.I. Aaronson: Metall. Trans. A, 1978, vol. 9A, pp. 1641–49.
    31.R.I Jaffe: in Progress in Metal Physics, B. Chalmers and R. King, eds., Pergamon Press, London, 1958, vol. 7, pp. 65–163.
    32.S. Banerjee and P. Mukhopadhyay: in Phase Transformation: Examples from Titanium and Zirconium Alloys, Pergamon Press, Oxford, United Kingdom, 2004, pp. 670–75.
    33.M. Hillert: in Interscience, V.F. Zackay and H.I. Aaronson, New York, NY, 1962, pp. 197–247.
    34.C.W. Spencer and D.J. Mack: in Interscience, V.F. Zackay and H.I. Aaronson, eds., New York, NY, 1962, pp. 549–603.
    35.H.J. Lee and H.I. Aaronson: J. Mater. Sci., 1988, vol. 23, pp. 150– 60.
    36.S.A. Souza, C.R.M. Afonso, P.L. Ferrandini, A.A. Coehlo, and R. Caram: MSE C, 2009, vol. 29, pp. 1023–28.
    37.J.C. Williams, R. Taggart, and D.H. Polonis: Metall. Trans., 1970, vol. 1, pp. 2265–70.
    38.Erlin Zhang, Fangbing Li, Hongying Wang, et al., A new antibacterial titanium–copper sintered alloy: preparation and antibacterial property, Mater. Sci. Eng. C 33 (2013) 4280–4287.
    39.Jie Liu, Xinxin Zhang, Hongying Wang, et al., The antibacterial properties and iocompatibility of a Ti–Cu sintered alloy for biomedical application, Biomed. Mater. 9 (2014) 025013 (11 pp.).
    40.F.H. Froes, D. Eylon, G.E. Eichelman, H.M. Burte, J. Met. 2 (1980) 47–54.
    41.T. Fujita, A. Ogawa, C. Ouchi, H. Tajima, Mater. Sci. Eng. A213 (1996) 148– 153.
    42.V.S. Moxson, O.N. Senkov, F.H. Froes, Int. J. Powder Metall. 34 (1998) 45–53.
    43.M. Hagiwara, Y. Kaieda, Y. Kawabe, S. Miura, ISIJ Int. 31 (1991) 922–930.
    44.M. Hagiwara, S. Emura, Mater. Sci. Eng. A352 (2003) 85–92.
    45.T.E. Norgate, G. Wellwood, JOM 9 (2006) 58–62.
    46.T. Saito, H. Takamiya, T. Furuta, Mater. Sci. Eng. A243 (1998) 273–278
    47.Cui Chun-xiang, Hu Bao-Min, Zhao Lichen and Liu Shuang-jin, Titanium alloy production technology, market prospects and industry development, Materials and Design Vol.32, 2011, pp. 1684-1691。
    48.C. Leyens and M. Peters, Titanium and titanium alloys: fundamentals and applications, New York, Weinheim, Wiley-VCH, John Wiley, 2003, pp. 121-154.
    49.D.M. Brunette, Titanium in medicine: material science, surface science, engineering, biological responses, and medical applications, 2001, Berlin, New York, Springer, 2001, pp. 112-129.
    50.M.J. Donachie, Titanium, a technical guide, 2nd edition, Materials Park, OH, ASM International , 2000, pp. 217-236.
    51.G.C. Obasi, O.M. Ferri, T. Ebel and R. Bormann, Influence of processing parameters on mechanical properties of Ti-6Al-4V alloy fabricated by MIM, Materials Science and Engineering A 527, 2010, pp. 3929-3935.
    52.Y. Liu, L.F. Chen, H.P. Tang, C.T. Liu, B. Liu and B.Y. Huang, Design of powder metallurgy titanium alloys and composites, Materials Science and Engineering A 418, 2006, pp. 25-35.
    53.Margam Chandrasekaran and Zhang Su Xia, Effect of alloying time and composition on the mechanical properties of Ti alloy, Materials Science and Engineering A 394, 2005, pp. 220-228.
    54.M.A. Mihaela1, G. Brânduşa, G. Nicolaeand and A. Iuliac, Corrosion Behaviour in Ringer Solution of Ti-Mo Alloys used for Orthopaedic Biomedical Applications. Solid State Phenomena Vol.188, 2012, pp. 98-101.
    55.T. Okabe, M. Kikuchi, C. Ohkubo, M. Koike, O. Okuno and Y. Oda. The grind ability and wear of Ti-Cu alloys for dental applications. JOM Vol. 56 Issue 2, 2004, pp. 46-48.
    56.A. Cremasco, A.D. Messias, A.R. Esposito, E. A. de Rezende Duek and R. Caram, Effects of alloying elements on the cytotoxic response of titanium alloys. Materials Science and Engineering C Vol.31, 2011, pp. 833-839.
    57.Wislei R, Osorio, Alessandra Cremasco, Protasio N, Amauri Garcia and Rubens Caram, Electrochemical behavior of centrifuged cast and heat treated Ti–Cu alloys for medical applications, Electrochimica Acta 55, 2010, pp. 759-770.
    58.Jose´ Roberto Severino Martins, Jr and Carlos Roberto Grandini, Structural characterization of Ti-15Mo alloy used as biomaterial by Rietveld method. J. Appl. Phys. Vol.111, 2012, 083535.
    59.A. Carman, L.C. Zhang,1, O.M. Ivasishin, D.G. Savvakin, M.V. Matviychuk and E.V. Pereloma, Role of alloying elements in microstructure evolution and alloying elements behaviour during sintering of a near-β titanium alloy, Materials Science and Engineering A 528, 2011, pp. 1686-1693。
    60.林殿傑,鑄造鈦-鉬-鐵及鈦-鉬-鉻合金性質研究, 國立成功大學材料科學及工程學系博士論文,pp. 92-98.
    61.R.P. Siqueira, H.R.Z. Sandima, A.O.F. Hayama and V.A.R. Henriques, Microstructural evolution during sintering of the blended elemental Ti-5Al-2.5Fe alloy, Journal of Alloys and Compounds 476, 2009, pp. 130-137.
    62.Y.Q. Zhao, S.W. Xin and W.D. Zeng, Effect of major alloying elements on microstructure and mechanical properties of a highlyβ stabilized titanium alloy, Journal of Alloys and Compounds 481, 2009, pp. 190-194.
    63.L. Bolzoni, E.M. Ruiz-Navas, E. Neubauer and E. Gordo, Inductive hot-pressing of titanium and titanium alloy powders, Materials Chemistry and Physics, Vol.131, 2012, pp. 672-679.
    64.S. Sun, M. Wang, L. Wang, J. Qin, W. Lu and D. Zhang, The influences of trace TiB and TiC on microstructure refinement and mechanical properties of in situ synthesized Ti matrix composite, Composites: Part B, vol. 43, 2012, pp.3334-3337
    65.Hugh O. Pierson, Handbook of refractory carbides and nitrides: properties, characteristics, processing, and applications, Park Ridge, N.J.: Noyes Publications, c1996, pp. 39-43.
    66.H.W. Wang, J.Q. Qi, C.M. Zou, D.D. Zhu and Z.J. Wei, High-temperature tensile strengths of in situ synthesized TiC/Ti-alloy composites, Materials Science and Engineering A, vol. 545, 2012, pp. 209-213.
    67. E. A. Levashov, V. V. Kurbatkina, A. A. Zaitsev, S. I. Rupasov, E. I. Patsera, A.A. Chernyshev, Ya.V. Zubavichus and A.A. Veligzhanin, Structure and Properties of Precipitation_Hardening Ceramic Ti-Zr-C and Ti-Ta-C Materials, The Physics of Metals and Metallography, Vol. 109, No. 1, 2010, pp. 95-105.
    68. H. Choe, S. Abkowitz, S.M. Abkowitz and D.C. Dunand, Mechanical properties of Ti-W alloys reinforced with TiC particles, Materials Science and Engineering A, vol. 485, 2008, pp. 703-710.
    69. 黃坤祥,粉末冶金學,第十章,中華民國粉末冶金協會,第三版, 2015年, pp. 299-320.
    70. A. Ota, H. Egawa, H. Izui, Mechanical properties and wear resistances of TiC or B4C reinforced Ti-6Al-4V prepared by spark plasma sintering, Materials Science Forum, vol. 706-709, 2012, pp. 222-227.
    71. C. Leyens and M. Peters, Titanium and titanium alloys: fundamentals and applications, New York, Weinheim, Wiley-VCH, John Wiley, 2003, pp. 121-154.
    72. S. Gollapudi, R. Sarkar, U.C. Babu, R. Sankarasubramanian, T.K. Nandy and A.K. Gogia, Microstructure and mechanical properties of a copper containing three phase titanium alloy, Materials Science and Engineering A, vol. 528, 2011, pp. 6794-6803.
    73. X. Sauvage, P. Jessner, F. Vurpillot, R. Rippan, Scr. Mater. 58 (2008) 1125-1128.
    74. S.-H. Chang, S.-H. Chen, K.-T. Huang, C. Liang, Powder Metall. 56 (1) (2013) 77-82.
    75. A. Lamperti, P.M. Ossi and V.P. Rotshtein: Surf. Coat. Technol. 200 (2006) 6373-6377.
    76. I. Lahiri and S. Bhargava: Powder Technol. 189 (2009) 433-438.
    77. C.G. Zhang, Z.M. Yang and B.J. Ding: Mod. Phys. Lett. B. 20 (2006) 1329-1334.
    78. S.H. Chang, T.P. Tang, K.T. Huang and F.C. Tai: Powder Metall. 56 (2013) 77-82.
    79. S.H. Chang, S.H. Chen and K.T. Huang: Mater. Trans. 53 (2012) 1689-1694.
    80. S.H. Chang, S.H. Chen and K.T. Huang: Mater. Trans. 54 (2013) 1857-1862.
    81. Z.H. Qiao, X.F. Ma, W. Zhao, H.G. Tang and B. Zhao: J. Alloys Compd. 462 (2008) 416-420.
    82. X.M. Duan, D.C. Jia, Z.L. Wu, Z. Tian, Z.H. Yang, S.G. Wang and Y. Zhou: Scr. Mater. 68 (2013) 104-107.
    83. W.T. Lo, P.K. Nayak, H.H. Lu, D.F. Lii and J.L. Huang: Mater. Sci. Eng. B. 172 (2013) 18-23.
    84. K.B. Gerasimov, S.V. Mytnichenko, S.V. Pavlov, V.A. Chernov and S.G. Nikitenko: J. Alloys Compd. 252 (1997) 179-183.
    85. X. Wang, Z.Z. Fang and H.Y. Sohn: Int. J. Refract. Met. Hard Mat. 26 (2008) 232-241.
    86. Z.Z. Fang, X. Wang, T. Ryu, K.S. Hwang and H.Y. Sohn: J. Refract. Met. Hard Mat. 27 (2009) 288-299.
    87. H.S. Huang, I.T. Hong, H.G. Dong and C.H. Chiu: Bulletin of Powder. Metall. Association. 35 (2010) 161-167.

    QR CODE