簡易檢索 / 詳目顯示

研究生: 許哲豪
Che-Hao Hsu
論文名稱: 電漿電解質氧化法鍍製含奈米氧化鋯顆粒氧化層於AZ91D鎂合金上並探討其抗蝕及機械性質
Corrosion resistance and mechanical properties of ZrO2 nanoparticle embedded in the oxide layer using plasma electrolytic oxidation on AZ91D magnesium alloy
指導教授: 周振嘉
: Chen-Chia Chou
口試委員: 黃振煌
Jen-Huang Huang
蔡秉均
Ping-Chun Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 中文
論文頁數: 96
中文關鍵詞: 電漿電解氧化技術鎂合金氧化鋯弱工作現象電流比
外文關鍵詞: Plasma electrolytic oxidation, Magnesium alloy, Zirconia, soft sparking, current ratio
相關次數: 點閱:39下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究針對AZ91D鎂合金,使用鋯酸鹽基電解液漿料在定電流使用直流雙極脈衝模式下,進行電漿電解質氧化(Plasma Electrolytic Oxidation,PEO)實驗,控制電弧區(Arcing regime)及弱工作(火花區)(Soft sparking)影響之電性參數,及發生弱工作區對鍍鋯之影響機制,再回顧弱工作區及鋯酸鹽基氧化鋯的論文,可得知弱工作區的發生,建立各項電性參數[包含電流密度J(A/dm2)[J+=4.094/J-=-2.862(A/dm2)J+=5.434/J-=-4.71(A/dm2)]、正負電荷比Q+/Q-(Charge Ratio, CR)[0.58~0.92,以及正負電流比I+/I-(Current Ratio, IR)[0.88;1.15;1.43]等,探討其對氧化層生成速率、抗蝕特性與機械性質的影響。亦即藉由調控 PEO 過程中放電行為,運用軟火花(soft sparking)的成膜機制與電弧區的成相特徵,鍍製出緻密且抗蝕特性良好的氧化膜。選用的改良型鋯酸鹽漿料擬添加具備自我調適能力的奈米氧化鋯。為達到金屬/氧化物界面匹配,擬以電解質添加奈米顆粒鍍膜,並設計適當電性參數使中間層Mg2Zr5O12鎂鋯螢石相變厚;並藉由穿透式電子顯微鏡(TEM)等微觀分析手法,鑑別PEO氧化層相結構及形成機制,解析奈米氧化鋯顆粒如何與低溫相MgO反應並提升鎂合金機械強度與抗腐蝕能力。
    實驗結果顯示,不同電流比、電荷比皆可得到不同的電弧區、弱工作區行為,在IR0.88時,陰極電流I-大於陽極電流I+,CR愈高,富氫環境下,亦即正電量固定時,負電量越小,氫氣量將受到負電量變化影響,改變氧化膜因氫被導通的速率,越快達成弱工作區條件;IR1.15時,陽極電流大於陰極電流,負電量大於正電量,負電量愈大,亦即CR0.58、0.75、0.92越快達成弱工作區條件。弱工作區將隨著CR值愈低,發生時間愈早。IR1.43時,正電量大於負電量,負電量愈大,弱工作區將提早發生。IR0.88時,雖於富氫環境,但因沒有能量產生燒結,故不會有二次起弧。IR1.15、1.43會有二次電壓的起伏,由斜率判定與電場強度之轟擊能量有關,可發現IR1.15的二次電弧區因電漿強度上升緩慢,對比於IR1.43因電漿強度較高,致使二次起弧斜率驟升,高能量使鍍膜速率增快。由此驗證氧化膜被導通後吸附的氧化鋯含量會增厚。經實驗時間45分鐘後, IR0.88,因負電量提高,無論CR如何改變,含鋯氧化膜平均厚度均為15μm;IR1.15,負電量提高,當CR降低,含鋯氧化膜平均厚度約為50μm增加到70μm; IR1.43,負電量變小,若CR提高,含鋯氧化膜平均厚度由34μm增長到91μm。但不同條件下總體厚度均可達到100μm。
    為了比較基底電解液(氟鋯酸鉀)及添加奈米氧化鋯顆粒電解液,使用EDS、XRD及TEM分析電弧區及弱工作區的成相,在相同電性參數IR1.43、CR0.92,可由XRD及EDS確定了鋯成分的提升由原子百分比4.4%提升到19.2%,Mg2Zr5O12鎂鋯螢石相強度提升,TEM驗證於PEO高溫液態時,不穩定MgO將因短程有序,高能態會與奈米氧化鋯反應,形成穩定的Mg2Zr5O12化合物,將改善MgO結構強度不佳的問題,抗腐蝕能力將達到Rp1.535*107(Ω-cm2),硬度提升至6.4(GPa)。
    綜合所述,兩組電解液於實驗時間45分鐘,控制電弧區及弱工作區時間,可改變氧化及還原層厚度,電漿強度高,因添加奈米氧化鋯顆粒,燒結後高溫相Mg2Zr5O12強度將顯著提升,避免絕緣氧化層導通將是吾人將探討的重點,將抗腐蝕性及機械性質最好的IR1.43、CR0.92用TEM觀察在高溫時PEO於電弧區的反應會以奈米氧化鋯包覆MgO,改善結構不佳的問題。
    控制電弧區及弱工作區調整氫及氧的含量,避免絕緣氧化層形成導通,膜層導電性上升,氧化膜層性質將下降,即使因斜率驟升,產生弧光是微米等級將燒結新的氧化膜覆蓋住已被導通之氧化膜,結果所示,有Soft Regime含氫缺陷之氧化膜,形成導通路徑,使膜層特性下降,於鋯酸鹽漿料應避免進入電壓崩潰。


    The present study focuses on conducting Plasma Electrolytic Oxidation (PEO) experiments on AZ91D magnesium alloy using zirconia-based electrolyte plasma. The experiments are carried out under direct current bipolar pulse mode, specifically targeting the effects of the arc regime and soft sparking on the electrical parameters and the formation of zirconia coating. The aim is to investigate the mechanisms behind the occurrence of soft sparking and its influence on the electrical properties, oxidation rate, corrosion resistance, and mechanical properties of the coating. In this study, we seek to optimize the PEO process by controlling the discharge behavior, utilizing the soft sparking mechanism, and observing the phase characteristics in the arc regime. By implementing a two-step PEO treatment with different electrical parameters, we intend to obtain a dense and corrosion-resistant oxide coating that incorporates the advantages of different phases. This includes enhancing the coating thickness and mechanical properties while reducing roughness, surface porosity, and discharge channels to improve the corrosion resistance. To achieve this, we will use an improved zirconia-based electrolyte, which will contain self-adjusting nano-zirconia particles and stress-induced phase-change improved zirconia. To ensure compatibility between the metal/oxide interface, we plan to add nano-particles during the electrolytic coating process and design appropriate electrolyte parameters to achieve a thicker intermediate Mg2Zr5O12 magnesium zirconate phase. Microscopic analysis techniques such as Transmission Electron Microscopy (TEM) will be employed to identify the oxide layer's phase structure and formation mechanism and analyze how the nano-zirconia particles strengthen the low-temperature MgO phase, ultimately enhancing the mechanical strength and corrosion resistance of the magnesium alloy. Experimental results indicate that different arc and soft sparking behaviors can be achieved under various current ratios (IR) and charge ratios (CR). The occurrence of soft sparking is influenced by the hydrogen concentration, which is affected by the negative charge amount. Additionally, a second voltage fluctuation is observed under IR1.15 and IR1.43, which relates to the plasma intensity and bombardment energy. Furthermore, the addition of nano-zirconia particles results in increased zirconia content, leading to the formation of the stable Mg2Zr5O12 phase, which improves the MgO structure's strength and enhances the corrosion resistance. In conclusion, our study demonstrates that by controlling the arc and soft sparking time during the 45-minute experimental period and optimizing the plasma intensity through the addition of nano-zirconia particles, we can achieve varying oxide and reduction layer thickness. The higher plasma intensity facilitates the reaction between nano-zirconia and the low-temperature MgO, resulting in the formation of the stable Mg2Zr5O12 phase and improving corrosion resistance and mechanical properties. The focus of our future investigation will be on studying the behavior of the insulating oxide layer during high-temperature PEO under IR1.43 and CR0.92, utilizing TEM analysis to understand the interaction between nano-zirconia and poorly structured MgO. Overall, this research aims to advance the understanding and optimization of the PEO process for AZ91D magnesium alloy, resulting in a high-performance oxide coating with enhanced corrosion resistance and mechanical strength

    摘要 i Abstract iii 致謝 v 目錄 vi 圖目錄 ix 表目錄 xiii 第一章 緒論 1 1.1前言 1 1.2研究動機方法 3 第二章 文獻回顧 5 2.1鎂金屬簡介 5 2.1.1 AZ91D鎂合金 5 2.2閥金屬的定義 7 2.3電漿電解質氧化法發展史 10 2.4 PEO電漿電解氧化機制及原理 11 2.4.1 PEO Arc regime及Soft regime成膜機制 12 2.4.2 PEO工作參數 14 2.4.3 PEO行為電流比電荷比物理意義 15 2.5電解液添加氧化鋯粉體之化學反應 16 2.6電漿電解氧化(PEO)製備氧化鋯膜 18 2.6.1氧化鋯基陶瓷材料 20 2.6.2氧化鋯膜的緩衝層-Mg2Zr5O12 22 2.6.3奈米氧化鋯顆粒分散機制 23 2.6.4電解液添加氧化鋯奈米粒子 25 2.6.5奈米顆粒氧化鋯填補機制 27 2.6.6探討添加奈米顆粒於電漿電解氧化機制 28 2.7研究目的與動機 32 第三章 研究方法 34 3.1實驗藥品規格 34 3.2實驗設備 34 3.3實驗流程 36 3.4試片製備 36 3.5儀器原理及實驗分析 37 3.5.1掃描式電子顯微鏡 38 3.5.2 X-ray分析儀 39 3.5.3膜厚測定儀 40 3.5.4動態極化曲線測試 40 3.5.5奈米壓痕硬度測試 43 第四章 結果與討論 45 4.1實驗工作參數 45 4.1.1電解液漿料濃度 45 4.1.2電性參數設計 45 4.1.3點座標系統 48 4.1.4不同電流密度PEO對氧化膜電性行為 50 4.1.5不同電流密度PEO對氧化膜相成分分析 51 4.1.6不同電流密度PEO對氧化膜層微觀結構 53 4.1.7不同電流密度PEO對氧化膜層極化曲線分析 54 4.2基底電解液形成之氧化膜行為 55 4.2.1無添加奈米氧化鋯顆粒基底電解液探討不同IR (CR=0.92)對PEO電壓對時間作圖 56 4.2.2無添加奈米氧化鋯顆粒基底電解液探討不同IR (CR=0.92)對PEO氧化膜層微觀分析 57 4.2.3無添加奈米氧化鋯顆粒基底電解液探討不同IR (CR=0.92)對PEO成分及相分析 58 4.2.4無添加奈米氧化鋯顆粒基底電解液探討不同IR (CR=0.92)對PEO氧化膜層極化曲線分析 60 4.3添加奈米氧化鋯電性參數設計對氧化膜層之影響 61 4.3.1探討不同CR (IR=0.88)對添加奈米氧化鋯PEO氧化膜行為 62 4.3.2探討不同CR (IR=1.15)對添加奈米氧化鋯PEO對氧化膜行為 66 4.3.3探討不同CR (IR=1.43)對添加奈米氧化鋯PEO對氧化膜行為 71 4.3.4添加奈米氧化鋯顆粒電解液之成分及相分析 76 4.4氧化鋯奈米粒子添加對PEO現象中鍍膜生成機制影響 77 4.4.1氧化鋯奈米粒子於試片內層發生弱工作區界面處 79 4.4.2氧化鋯奈米粒子於試片外層發生電弧區孔洞界面處 81 4.5添加奈米氧化鋯顆粒探討不同IR (CR=0.92)對PEO氧化膜層機械性質 87 第五章 結論 89 參考文獻 91

    [1] 2001-Microstructure and properties of ceramic coatings produced on 2024 aluminum alloy by microarc oxidation.pdf.
    [2] M, S., A. M, A. T, S. M.P, S. S, and R. N, Effect of electrical parameters on morphology and in-vitro corrosion resistance of plasma electrolytic oxidized films formed on zirconium. Surface and Coatings Technology, 2015. 269: p. 286-294.
    [3] Wang, Z., L. Wu, W. Cai, A. Shan, and Z. Jiang, Effects of fluoride on the structure and properties of microarc oxidation coating on aluminium alloy. Journal of Alloys and Compounds, 2010. 505(1): p. 188-193.
    [4] Arrabal, R., E. Matykina, F. Viejo, P. Skeldon, G.E. Thompson, and M.C. Merino, AC plasma electrolytic oxidation of magnesium with zirconia nanoparticles. Applied Surface Science, 2008. 254(21): p. 6937-6942.
    [5] Wang, L., L. Chen, Z. Yan, H. Wang, and J. Peng, Effect of potassium fluoride on structure and corrosion resistance of plasma electrolytic oxidation films formed on AZ31 magnesium alloy. Journal of Alloys and Compounds, 2009. 480(2): p. 469-474.
    [6] Kamil, M.P., M. Kaseem, and Y.G. Ko, Soft plasma electrolysis with complex ions for optimizing electrochemical performance. Sci Rep, 2017. 7: p. 44458.
    [7] Tsai, D.-S. and C.-C. Chou, Review of the Soft Sparking Issues in Plasma Electrolytic Oxidation. Metals, 2018. 8(2).
    [8] <[8]1996-Crystallite Growth in Yttria-Doped Superfine.pdf>.
    [9] Carta, G., N. El Habra, G. Rossetto, P. Zanella, M. Casarin, D. Barreca, C. Maragno, and E. Tondello, MgO and CaO stabilized ZrO2 thin films obtained by Metal Organic Chemical Vapor Deposition. Surface and Coatings Technology, 2007. 201(22-23): p. 9289-9293.
    [10] Luo, H., Q. Cai, B. Wei, B. Yu, J. He, and D. Li, Study on the microstructure and corrosion resistance of ZrO2-containing ceramic coatings formed on magnesium alloy by plasma electrolytic oxidation. Journal of Alloys and Compounds, 2009. 474(1-2): p. 551-556.
    [11] Martin, J., A. Nominé, V. Ntomprougkidis, S. Migot, S. Bruyère, F. Soldera, T. Belmonte, and G. Henrion, Formation of a metastable nanostructured mullite during Plasma Electrolytic Oxidation of aluminium in “soft” regime condition. Materials & Design, 2019. 180.
    [12] Matykina, E., R. Arrabal, F. Monfort, P. Skeldon, and G.E. Thompson, Incorporation of zirconia into coatings formed by DC plasma electrolytic oxidation of aluminium in nanoparticle suspensions. Applied Surface Science, 2008. 255(5): p. 2830-2839.
    [13] Lee, K.M., K.R. Shin, S. Namgung, B. Yoo, and D.H. Shin, Electrochemical response of ZrO2-incorporated oxide layer on AZ91 Mg alloy processed by plasma electrolytic oxidation. Surface and Coatings Technology, 2011. 205(13-14): p. 3779-3784.
    [14] Lee, K.M., B.U. Lee, S.I. Yoon, E.S. Lee, B. Yoo, and D.H. Shin, Evaluation of plasma temperature during plasma oxidation processing of AZ91 Mg alloy through analysis of the melting behavior of incorporated particles. Electrochimica Acta, 2012. 67: p. 6-11.
    [15] Qian, W., Z. Zhang, S. Wang, Z. Guo, Y. Chen, M.A. Islam, Q. Zhao, H. Li, Y. Liu, and H. Zhan, Enhancing the toughness of nano-composite coating for light alloys by the plastic phase transformation of zirconia. International Journal of Plasticity, 2023. 163.
    [16] Wei, D., Y. Zhou, D. Jia, and Y. Wang, Effect of heat treatment on the structure and in vitro bioactivity of microarc-oxidized (MAO) titania coatings containing Ca and P ions. Surface and Coatings Technology, 2007. 201(21): p. 8723-8729.
    [17] Cheng, S., D. Wei, and Y. Zhou, Formation and structure of sphene/titania composite coatings on titanium formed by a hybrid technique of microarc oxidation and heat-treatment. Applied Surface Science, 2011. 257(8): p. 3404-3411.
    [18] Daroonparvar, M., M.A. Mat Yajid, R. Kumar Gupta, N. Mohd Yusof, H.R. Bakhsheshi-Rad, H. Ghandvar, and E. Ghasemi, Antibacterial activities and corrosion behavior of novel PEO/nanostructured ZrO2 coating on Mg alloy. Transactions of Nonferrous Metals Society of China, 2018. 28(8): p. 1571-1581.
    [19] Jaspard-Mécuson, F., T. Czerwiec, G. Henrion, T. Belmonte, L. Dujardin, A. Viola, and J. Beauvir, Tailored aluminium oxide layers by bipolar current adjustment in the Plasma Electrolytic Oxidation (PEO) process. Surface and Coatings Technology, 2007. 201(21): p. 8677-8682.
    [20] Shrestha, S., Magnesium and surface engineering. Surface Engineering, 2013. 26(5): p. 313-316.
    [21] Duan, H., C. Yan, and F. Wang, Effect of electrolyte additives on performance of plasma electrolytic oxidation films formed on magnesium alloy AZ91D. Electrochimica Acta, 2007. 52(11): p. 3785-3793.
    [22] Tacikowski, M., P. Kobus, J. Kamiński, B. Kucharska, K. Kulikowski, P. Marchlewski, and M. Pisarek, Structure and properties of composite aluminum oxide layers produced on magnesium alloys using hybrid method. Vacuum, 2019. 160: p. 325-332.
    [23] Tjiang, F., L.-W. Ye, Y.-J. Huang, C.-C. Chou, and D.-S. Tsai, Effect of processing parameters on soft regime behavior of plasma electrolytic oxidation of magnesium. Ceramics International, 2017. 43: p. S567-S572.
    [24] Rogov, A.B., A. Nemcova, T. Hashimoto, A. Matthews, and A. Yerokhin, Analysis of electrical response, gas evolution and coating morphology during transition to soft sparking PEO of Al. Surface and Coatings Technology, 2022. 442.
    [25] Rogov, A.B., Y. Huang, D. Shore, A. Matthews, and A. Yerokhin, Toward rational design of ceramic coatings generated on valve metals by plasma electrolytic oxidation: The role of cathodic polarisation. Ceramics International, 2021. 47(24): p. 34137-34158.
    [26] Sah, S.P., E. Tsuji, Y. Aoki, and H. Habazaki, Cathodic pulse breakdown of anodic films on aluminium in alkaline silicate electrolyte – Understanding the role of cathodic half-cycle in AC plasma electrolytic oxidation. Corrosion Science, 2012. 55: p. 90-96.
    [27] Sah, S.P., Y. Tatsuno, Y. Aoki, and H. Habazaki, Dielectric breakdown and healing of anodic oxide films on aluminium under single pulse anodizing. Corrosion Science, 2011. 53(5): p. 1838-1844.
    [28] Rahmati, M., K. Raeissi, M.R. Toroghinejad, A. Hakimizad, and M. Santamaria, Effect of Pulse Current Mode on Microstructure, Composition and Corrosion Performance of the Coatings Produced by Plasma Electrolytic Oxidation on AZ31 Mg Alloy. Coatings, 2019. 9(10).
    [29] Caricato, A., Pulsed excimer laser ablation deposition of YSZ and TiN/YSZ thin films on Si substrates. Applied Surface Science, 2003. 208-209: p. 615-619.
    [30] 1988-The effect of β-phase, Mg2Zr5O12, on the stabilization of the tetragonal phase in MgO-PSZ.
    [31] Hyun Sam Ryu and Seong-Hyeon Hong,Effects of KF, NaOH, and KOH Electrolytes on Properties of Microarc-Oxidized Coatings on AZ91D Magnesium Alloy, 2009 J. Electrochem. Soc. 156 C298
    [32] Yao, Z., H. Gao, Z. Jiang, and F. Wang, Structure and Properties of ZrO2Ceramic Coatings on AZ91D Mg Alloy by Plasma Electrolytic Oxidation. Journal of the American Ceramic Society, 2008. 91(2): p. 555-558.
    [33] Pezzato, L., V. Angelini, K. Brunelli, C. Martini, and M. DabalÀ, Tribological and corrosion behavior of PEO coatings with graphite nanoparticles on AZ91 and AZ80 magnesium alloys. Transactions of Nonferrous Metals Society of China, 2018. 28(2): p. 259-272.
    [34] Barati Darband, G., M. Aliofkhazraei, P. Hamghalam, and N. Valizade, Plasma electrolytic oxidation of magnesium and its alloys: Mechanism, properties and applications. Journal of Magnesium and Alloys, 2017. 5(1): p. 74-132.
    [35] Li, X., X. Liu, and B.L. Luan, Corrosion and wear properties of PEO coatings formed on AM60B alloy in NaAlO2 electrolytes. Applied Surface Science, 2011. 257(21): p. 9135-9141.
    [36] Rehman, Z.U., B. Heun Koo, and D. Choi, Effect of K(2)ZrF(6) Concentration on the Two-Step PEO Coating Prepared on AZ91 Mg Alloy in Alkaline Silicate Solution. Materials (Basel), 2020. 13(3).
    [37] Yao, Z.P., R.H. Cui, Z.H. Jiang, and F.P. Wang, Micro-arc formation of ZrO2ceramic coatings on AZ91D Mg alloy. Surface Engineering, 2013. 24(5): p. 355-357.
    [38] Han, Y. and J. Song, Novel Mg2Zr5O12/Mg2Zr5O12-ZrO2-MgF2Gradient Layer Coating on Magnesium Formed by Microarc Oxidation. Journal of the American Ceramic Society, 2009. 92(8): p. 1813-1816.
    [39] Rajan Ambat*, Naing Naing Aung, W. Zhou, Evaluation of microstructural effects on corrosion behaviour of AZ91D magnesium alloy. Corrosion Science 42 (2000) 1433±1455
    [40] Arrabal, R., E. Matykina, P. Skeldon, and G.E. Thompson, Incorporation of zirconia particles into coatings formed on magnesium by plasma electrolytic oxidation. Journal of Materials Science, 2008. 43(5): p. 1532-1538.
    [41] Bordbar-Khiabani, A., B. Yarmand, and M. Mozafari, Enhanced corrosion resistance and in-vitro biodegradation of plasma electrolytic oxidation coatings prepared on AZ91 Mg alloy using ZnO nanoparticles-incorporated electrolyte. Surface and Coatings Technology, 2019. 360: p. 153-171.
    [42] Liang, J., L. Hu, and J. Hao, Preparation and characterization of oxide films containing crystalline TiO2 on magnesium alloy by plasma electrolytic oxidation. Electrochimica Acta, 2007. 52(14): p. 4836-4840.
    [43] Ciou, S.-J., K.-Z. Fung, and K.-W. Chiang, The mathematical expression for kinetics of electrophoretic deposition and the effects of applied voltage. Journal of Power Sources, 2007. 172(1): p. 358-362.
    [44] J. D. McCuLLOVGH A~D K. N. TRUEBLOOD,The Crystal Structure of Baddeleyite (Monoclinic ZrO2), Received 8 January 1959.
    [45] G. TEUFER, The crystal structure of tetragonal ZrO2, Aeta Cryst. (1962). 15, 1187.
    [46] Smith, D.K. and C.F. Cline, Verification of Existence of Cubic Zirconia at High Temperature. Journal of the American Ceramic Society, 1962. 45(5): p. 249-250.
    [47] Nikumbh, A.K. and P.V. Adhyapak, Formation characterization and rheological properties of zirconia and ceria-stabilized zirconia. Natural Science, 2010. 02(07): p. 694-706.
    [48] Wadhawan, V.K., Ferroelasticity and related properties of crystals. Phase Transitions, 2006. 3(1): p. 3-103.
    [49] R. H. J. Hannink & R. C. Garvie, Sub-eutectoid aged Mg-PSZ alloy with enhanced thermal up-shock resistance,Volume 17, pages 2637–2643, (1982).
    [50] Quadling, A., L. Vandeperre, M. Parkes, W.E. Lee, and K. Faber, Second Phase-Induced Degradation of Fused MgO Partially Stabilized Zirconia Aggregates. Journal of the American Ceramic Society, 2015. 98(4): p. 1364-1371.
    [51] Feng-Chau Wu,Shu-Cheng Yu, The effect of β-phase, Mg2Zr5O12, on the stabilization of the tetragonal phase in MgO-PSZ,Volume 23, Issue 4, April 1988, Pages 467-474.
    [52] Necula, B.S., L.E. Fratila-Apachitei, A. Berkani, I. Apachitei, and J. Duszczyk, Enrichment of anodic MgO layers with Ag nanoparticles for biomedical applications. J Mater Sci Mater Med, 2009. 20(1): p. 339-45.
    [53] Hanaor, D., M. Michelazzi, C. Leonelli, and C.C. Sorrell, The effects of carboxylic acids on the aqueous dispersion and electrophoretic deposition of ZrO2. Journal of the European Ceramic Society, 2012. 32(1): p. 235-244.
    [54] Fattah-alhosseini, A., R. Chaharmahali, and K. Babaei, Effect of particles addition to solution of plasma electrolytic oxidation (PEO) on the properties of PEO coatings formed on magnesium and its alloys: A review. Journal of Magnesium and Alloys, 2020. 8(3): p. 799-818.
    [55] Pezzato, L., L. Lorenzetti, L. Tonelli, G. Bragaggia, M. Dabalà, C. Martini, and K. Brunelli, Effect of SiC and borosilicate glass particles on the corrosion and tribological behavior of AZ91D magnesium alloy after PEO process. Surface and Coatings Technology, 2021. 428.
    [56] Nikoomanzari, E., A. Fattah-alhosseini, M.R. Pajohi Alamoti, and M.K. Keshavarz, Effect of ZrO2 nanoparticles addition to PEO coatings on Ti–6Al–4V substrate: Microstructural analysis, corrosion behavior and antibacterial effect of coatings in Hank's physiological solution. Ceramics International, 2020. 46(9): p. 13114-13124.
    [57] Lu, X., C. Blawert, Y. Huang, H. Ovri, M.L. Zheludkevich, and K.U. Kainer, Plasma electrolytic oxidation coatings on Mg alloy with addition of SiO2 particles. Electrochimica Acta, 2016. 187: p. 20-33.
    [58] Mashtalyar, D.V., I.M. Imshinetskiy, K.V. Nadaraia, A.S. Gnedenkov, S.L. Sinebryukhov, A.Y. Ustinov, A.V. Samokhin, and S.V. Gnedenkov, Influence of ZrO2/SiO2 nanomaterial incorporation on the properties of PEO layers on Mg-Mn-Ce alloy. Journal of Magnesium and Alloys, 2022. 10(2): p. 513-526.
    [59] Ur Rehman, Z. and D. Choi, Investigation of ZrO2 nanoparticles concentration and processing time effect on the localized PEO coatings formed on AZ91 alloy. Journal of Magnesium and Alloys, 2019. 7(4): p. 555-565.
    [60] Atapour, M., C. Blawert, and M.L. Zheludkevich, The wear characteristics of CeO2 containing nanocomposite coating made by aluminate-based PEO on AM 50 magnesium alloy. Surface and Coatings Technology, 2019. 357: p. 626-637.
    [61] Wang, Y., D. Wei, J. Yu, and S. Di, Effects of Al2O3 Nano-additive on Performance of Micro-arc Oxidation Coatings Formed on AZ91D Mg Alloy. Journal of Materials Science & Technology, 2014. 30(10): p. 984-990.
    [62] Toorani, M., M. Aliofkhazraei, and A. Sabour Rouhaghdam, Microstructural, protective, inhibitory and semiconducting properties of PEO coatings containing CeO2 nanoparticles formed on AZ31 Mg alloy. Surface and Coatings Technology, 2018. 352: p. 561-580.
    [63] Gnedenkov, S.V., S.L. Sinebryukhov, D.V. Mashtalyar, I.M. Imshinetskiy, A.V. Samokhin, and Y.V. Tsvetkov, Fabrication of Coatings on the Surface of Magnesium Alloy by Plasma Electrolytic Oxidation Using ZrO2and SiO2Nanoparticles. Journal of Nanomaterials, 2015. 2015: p. 1-12.
    [64] Fahad, M. and B. B, Tribological and ageing behavior of Az91D magnesium alloy fortified with nano lanthanum and nanoceria by stir casting for aviation application. Industrial Lubrication and Tribology, 2021. 73(4): p. 635-641.
    [65] Korpysa, J., J. Kuczmaszewski, and I. Zagorski, Dimensional Accuracy and Surface Quality of AZ91D Magnesium Alloy Components after Precision Milling. Materials (Basel), 2021. 14(21).
    [66] Wang, D.-d., X.-t. Liu, Y. Wang, Q. Zhang, D.-l. Li, X. Liu, H. Su, Y. Zhang, S.-x. Yu, and D. Shen, Role of the electrolyte composition in establishing plasma discharges and coating growth process during a micro-arc oxidation. Surface and Coatings Technology, 2020. 402.
    [67] 張筑婷, 周振嘉, “正負電荷比對鎂合金微弧氧化鍍製含鋯膜層之影響與腐蝕特性分析”, 國立台灣科技大學機械系, P124-125, 2014..

    無法下載圖示 全文公開日期 2026/05/16 (校內網路)
    全文公開日期 2029/05/16 (校外網路)
    全文公開日期 2026/05/16 (國家圖書館:臺灣博碩士論文系統)
    QR CODE