簡易檢索 / 詳目顯示

研究生: 楊尊越
Tsun-Yueh Yang
論文名稱: 探討純鈦在不同微弧氧化時間對耐腐蝕性質之研究
Effect of oxidation time on corrosion resistance of pure Ti in micro-arc oxidation treatment
指導教授: 黃崧任
Song-Jeng Huang
口試委員: 陳復國
汪俊延
王丞浩
黃崧任
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 112
中文關鍵詞: 微弧氧化生物活性
外文關鍵詞: titanium, micro-arc oxidation, biological activities
相關次數: 點閱:229下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 生物醫學級的鈦合金高其耐腐蝕性通常是可被接受的。但有一些報導指出當使用鈦合金作為植入物時由於鈦在體內的溶解和釋放金屬離子會積聚在組織周圍。金屬離子如 Al、Zr 和 V,從而引起不希望
    的反應和過度的組織退化。另一方面,鈦的表面與活體骨組織之間的結合性非常差,因此造成癒合期需更長的時間。
    微弧氧化技術為表面改質新興技術之一,其技術特色在於生成氧化膜於閥金屬 (valve metal) 如鎂、鋁、鈦之表面,並提升其抗腐蝕和耐磨耗特性。因此本研究係利用微弧氧化技術在純鈦表層上來製備含鈣和磷之孔洞氧化膜,並探討其氧化膜之物理化學特性和抗腐蝕性質。透過 SEM、XRD、EDS 和三極電化學試驗等方式以分析不同微弧氧化之表面形貌、鍍膜厚度、抗腐蝕性之差異。
    由本實驗結果得知,隨著微弧氧化時間增長,氧化膜之厚度、孔洞大小與硬度也隨之成長。而時間較長的微弧氧化之氧化膜具有較優異的硬度,與透過 EDS 和 Mapping 成份分析可以得知鈣和磷離子伴隨著微弧氧化時間增長而增加並分佈均勻。氧化膜的表面形貌、緻密性皆為影響抗腐蝕能力的因素。


    The high corrosion resistant property of biomedical grade titanium alloys is commonly accepted. However, there are some reports indicated that titanium tends to accumulate in surrounding tissues due to dissolution and release of metallic ions in vivo. The use of Ti-based implants always brings out these concerns. Metallic ions such as Al, Zr and V would cause the undesirable reactions and excessive tissue degradation. On the other hand, the bonding between titanium surface and living bone tissue is very weak results in longer healing period.
    As one of the novel technologies in surface treatment field, micro–arc oxidation process is capable to produce oxide layers on surface of valve metal including magnesium, aluminum, titanium, etc., which improves the wear and corrosion resistant properties of metal. Porous oxide layers containing calcium and phosphorus were fabricated on titanium surface in this research. The object is to observe the physical, chemical and corrosion resistant properties of these porous oxide layers. The difference of surface morphology, layer thickness and corrosion resistance between various samples are examined by SEM, XRD, EDS and polarization curve.
    The result shows that the thickness, pore size and hardness increased by extending the process time. The observation by EDS and Mapping indicate that the amount and distribution of calcium and phosphorus ions were improved. Surface morphology and density of oxide layers are also important factor to affect corrosion resistance.

    第一章 緒論......................................................................... 1 1.1 前言 ........................................................................... 1 1.2 文獻回顧 .................................................................. 2 1.2.1 微弧氧化技術之簡介 ............................................................................ 2 1.2.2 影響氧化陶瓷膜生成之參數介紹 ............................................. 3 1.2.3 生物活性離子 ........................................................................... 18 1.3 文獻整理心得 ............................................................................ 21 1.4 研究動機與目的 ............................................................................ 23 第二章 研究理論基礎 ............................................................................ 24 2.1 純鈦及鈦合金的簡介[28] ............................................................................ 24 2.1.1 純鈦及鈦合金之基本性質 .................................................. 24 2.1.2 鈦的晶體結構與性質 ............................................................................. 32 2.2 電化學腐蝕 ............................................................................. 34 2.2.1 腐蝕的定義 ............................................................................. 34 2.2.2 影響金屬腐蝕的因素....................................................... 35 2.3 金屬表面處理技術 .............................................................................. 38 2.3.1 機械表面處理 .............................................................................. 38 2.3.2 化成處理 .............................................................................. 38 2.3.3 電子束合金化處理 .............................................................................. 39 2.3.4 雷射合金化處理 .............................................................................. 40 2.3.5 物理氣相沉積法 .............................................................................. 41 2.3.6 化學氣相沉積法 .............................................................................. 43 2.3.7 無電鍍表面處理 .............................................................................. 43 2.3.8 電鍍 .............................................................................. 44 2.3.9 陽極處理 .............................................................................. 44 2.3 微弧氧化技術之介紹 .............................................................................. 45 2.3.1 微弧氧化技術發展 .............................................................................. 46 2.3.2 微弧放電工作原理 .............................................................................. 47 2.3.3 影響膜層特性之控制因子 ................................................... 52 2.4 複合電鍍之機制 .............................................................................. 52 第三章 實驗方法與步驟 .............................................................................. 55 3.1 實驗流程 .............................................................................. 55 3.2 試片製備 .............................................................................. 56 3.3 微弧氧化步驟及參數 .............................................................................. 57 3.4 陶瓷氧化層宏觀分析 .............................................................................. 61 3.4.1 粗糙度分析 .............................................................................. 61 3.5 微觀結構觀察分析 .............................................................................. 62 3.5.1 SEM 顯微組織觀察 .............................................................................. 62 3.5.2 XRD 繞射分析 .............................................................................. 63 3.6 機械性質分析 .............................................................................. 64 3.6.1 維氏硬度 .............................................................................. 64 3.7 腐蝕分析 .............................................................................. 66 3.7.1 極化曲線分析 .............................................................................. 66 第四章 結果與討論 .............................................................................. 69 4.1 電壓與氧化時間曲線 .............................................................................. 69 4.2 表面粗糙度 .............................................................................. 72 4.3 微觀結構 .............................................................................. 74 4.4 成分分析 .............................................................................. 85 4.4.1 XRD .............................................................................. 85 4.5 機械性質 .............................................................................. 86 4.5.1 維氏硬度 .............................................................................. 86 4.6 腐蝕分析 .............................................................................. 86 4.6.1 極化曲線 .............................................................................. 86 第五章 結論 ............................................................................. 90 參考文獻 .............................................................................. 92

    [1] S. Tamilselvi, V. Raman, N. Rajendran, Evaluation of corrosion behavior of surface modified Ti–6Al–4V ELI alloy in hanks solution, J. Appl. Electrochem. 40 (2010) 285–293.
    [2] J. Chen, F.Y. Yan, B.B. Chen, J.Z. Wang, Assessing the tribocorrosion performance of Ti–6Al–4V, 316 stainless steel and Monel K500 alloys in artificial seawater, Mater. Corros. 62 (2013) 394–401.
    [3] R. Narayanan, S.K. Seshadri, Point defect model and corrosion of anodic oxide coatings on Ti–6Al–4V, Corros. Sci. 50 (2008) 1521– 1529.
    [4] S. Park, T.G. Woo, M.H. Lee, S.G. Ahn, M.S. Park, T.S. Bae, K.W. Seol, Effects of anodizing voltage on the anodized and hydrothermally treated titanium surface, Metals Mater. Int. 12 (2006) 505–511.
    [5] M.R. Garsivaz jazi, M.A. Golozar, K. Raeissi, M. Fazel, Surface characteristics and electrochemical impedance investigation of sparkanodized Ti6Al4V alloy, J. Mater. Eng. Perform. 23 (2014) 1270–1278.
    [6] M.V. Diamanti, M.P. Pedeferri, Effect of anodic oxidation parameters on the titanium oxides formation, Corros. Sci. 49 (2007) 939–948.
    [7] H. Song, M. Kim, G. Jung, M. Vang, Y. Park, The effects of spark anodizing treatment of pure titanium metals and titanium alloys on corrosion characteristics, Surf. Coat. Technol. 201 (2007) 8738–8745.
    [8] B. Bozzini, P. Carlino, L. D’Urzo, V. Pepe, C. Mele, F. Venturo, An electrochemical impedance investigation of the behavior of anodically oxidised titanium in human plasma and cognate fluids, relevant to dental applications, J. Mater. Sci. Mater. Med. 19 (2008) 3443–3453.
    [9] X. Liu, P.K. Chu, C. Ding, Surface modification of titanium, titanium alloys, and related materials for biomedical applications, Mater. Sci. Eng. R 47 (2004) 49–121.
    [10] X. Fan, B. Feng, Y. Di, X. Lu, K. Duan, J. Wang, J. Weng, Preparation of bioactive TiO film on porous titanium by micro-arc oxidation, Appl. Surf. Sci. 258 (2012) 7584–7588.
    [11] E.M. Szesz, B.L. Pereira, N.K. Kuromoto, C.E.B. Marino, G.B. de Souza, P. Soares, Electrochemical and morphological analyses on the titanium surface modified by shot blasting and anodic oxidation processes, Thin Solid Films 528 (2013) 163–166.
    [12] L. R. Krishna, G. Sundararajan, “Aqueous Corrosion Behavior of Micro Arc Oxidation(MAO)-Coated Magnesium Alloys: A Critical Review”, JOM, Vol. 66, No. 6, 1045-1060, 2014
    [13] R.L.W. Messer, G. Tackas, J. Mickalonis, Y. Brown, J.B. Lewis, J.C. Wataha, J. Biomed. Mater. Res. Part B: Appl. Biomater. 88B (2009) 474–481.
    [14] R. Hussein, D. Northwood, and X. Nie, “The effect of processing parameters and substrate composition on the corrosion resistance of plasma electrolytic oxidation (PEO) coated magnesium alloys”, Surface and Coatings Technology, Vol. 237, 357-368, 2013
    [15] X. M. Wang, L. Q. Zhu, W. P. Li, H. C. Liu, Y. H. Li, “Effects of halfwave and full-wave power source on the anodic oxidation process on AZ91D magnesium alloy”, Applied Surface Science, Vol. 255, No.11, 5721–5728, 2009
    [16] P. Bala Srinivasan, J. Liang, C. Blawert, M. Störmer, W. Dietzel, “Effect of current density on the microstructure and corrosion behavior of plasma electrolytic oxidation treated AM50 magnesium alloy”, Applied Surface Science, Vol. 255, No. 7, 4212–4218, 2009
    [17] S. Y. Chang, H. K. Lin, L. C. Tsao, W. T. Huang and Y. T. Huang, “Effect of voltage on microstructure and corrosion resistance of microarc oxidation coatings on CP-Ti”, Corrosion Engineering, Science and Technology, Vol.49, No.1, 2014
    [18] Y. H. Gu, C. F. Chen, S. Bandopadhyay, C. Y. Ning, Y. J. Zhang, Y. J. Guo, “Corrosion mechanism and model of pulsed DC microarc oxidation treated AZ31 alloy in simulated body fluid”, Applied Surface Science, Vol. 258, No. 16, 6116– 6126, 2012
    [19] L. Xu, C. Wu, X. C. Lei, K. Zhang, C. C. Liu, J. Ding, X. L. Shi, “Effect of oxidation time on cytocompatibility of ultrafine-grained pure Ti in micro-arc oxidation treatment”, Surface & Coatings Technology, 342 (2018) 12-22
    [20] X. M. Wang, L. Q. Zhu, W. P. Li, H. C. Liu, Y. H. Li, “Effects of halfwave and full-wave power source on the anodic oxidation process on AZ91D magnesium alloy”, Applied Surface Science, Vol. 255, No.11, 5721–5728, 2009
    [21] A C Alves, F Oliveira, F Wenger, P Ponthiaux, J-P Celis and L A Rocha, “Tribocorrosion behaviour of anodic treated titanium surfaces intended for dental implants”, IOP PUBLISHING, J. Phys. D: Appl. Phys. 46 (2013) 404001 (9pp)
    [22] Boyan BD, Hummert TW, Dean DD, Schwartz Z. “Role of material surfaces in regulating bone and cartilage cell response” Biomaterials 1996;17:137–46
    [23] Groessner-Schreiber B, Tuan RS. “Enhanced extracellular matrix production and mineralization by osteoblasts cultured on titanium surfaces in vitro” J Cell Sci 1992;101:209–17.
    [24] Larsson C, Thomsen P, Aronsson BO, Rodahl M, Lausmaa J, Kasemo B, Ericson LE. “Bone response to surface-modified titanium implants: studies on the early tissue response to machined and electropolished implants with different oxide thicknesses” Biomaterials 1996;17:605–16.
    [25] L. H. Li, Y. M. Kong , H. W. Kim , Y. W. Kim, H. E. Kim, S.J. Heob , J. Y . Koak. “Improved biological performance of Ti implants due to surface” Biomaterials 25 (2004) 2867-2875.
    [26] M.C. García-Alonso, L. Saldana, G. Vallés, J.L. González-Carrasco, J. González- Cabrero, M.E. Martínez, E. Gil-Garay, L. Munuera, Biomaterials 24 (2003) 19–26.
    [27] K. C. Kung, T. M. Lee, T. S. Lui, “Bioactivity and corrosion properties of novel coatings containing strontium by micro-arc oxidation” Journal of Alloys and Compounds 508 (2010) 384–390
    [28] 洪胤庭,純鈦及鈦合金特性及製程介紹,中工高雄會刊,第 21 卷,第 1 期
    [29] 王桂生,鈦的應用技術,中南大學出版社 ,2007。
    [30] 趙永慶,鈦合金相變及熱處理中南大學出 版社,2008。
    [31] 周連在,鈦材料及其應用,冶金工業出版 社,2008。
    [32] 王群驕,有色金屬熱處理技術,化學工業 出版社,2008
    [33] 何奕融,微弧氧化製程對鈦基材之影響,材料科學與工程研究所,國立台北科技大學,台北,2013。
    [34] 戴光勇, 「鎂合金表面處理技術(上)」 ,材料與社會,第 24 期, 57, 1988 年
    [35] 許正勳、林昭宏,偏壓參數對 AISI 304 不銹鋼電弧披覆 TiAlCrN 鍍膜特性之影響,碩士論文,大同大學材料工程學系暨研究所,2008 年 7 月
    [36] J. Gary, B. Luan, “Protective coating on magnesium and its alloys-a critical Review”, Journal of Alloys and Compounds, Vol. 336, No. 1-2, 88-113, 2002
    [37] 徐濱士,神奇的表面工程,清華大學出版社,2000 年 12 月,北京
    [38] Y. K. Yang,Physical Vapor Deposition, Nano Communication, Vol. 22, No.4, 33-35
    [39] 侯軍傳, 「化學氣相沉積法合成高結晶度的三元系 Cd1-xZnxS 奈米線」,物理化學學報,25 卷,第 4 期,724-728,2009 年 3 月
    [40] F. M. Lai, C.Y. Tsai, C. H. Lan, C. M. Yang, “Surface Mechanical Properties of Plastic Industrial Components for Electroless Coating Technology”, Journal of Science and Engineering Technology, Vol. 7, No. 4, 19-34, 2011
    [41] 陳志源,鐵微粒表面被覆奈米銀層之研究,碩士論文,國立成功大學化學工程學系,2004 年 6 月
    [42] 徐宇傑,鎂鋰合金雙極脈衝微弧氧化之表面平整化與抗腐蝕性研究,碩士論文,大同大學材料工程學系暨研究所,2012 年 7 月
    [43] X. S. Yin, Z. X. Zhao, J. H. Zhao, “Ash Removing Processes for Al alloy Anodization”, Electroplating & Pollution Control, Vol. 29, No.2, 22-24, 2009
    [44] 徐柏榮,利用雙極脈衝電源微弧氧化法探討佔空比和頻率對7075-T6 鋁合金表面膜層之影響,碩士論文,大同大學材料工程學系暨研究所,2009 年 7 月
    [45] 鐘時俊、翁榮洲, 「微弧氧化表面處理原理與應用」 ,工業材料雜誌,第 194 期,176-180,2003 年 2 月
    [46] 陳欽聖,LZ91 鎂鋰合金雙極脈衝微弧氧化研究,碩士論文,大同大學材料工程學系暨研究所,2009 年
    [47] F. Mecuson, T. Czerwiec, T. Belmonte, L. Duiardin, A. Viola, G. Henrion, “Diagnostics of an electrolytic microarc process for aluminium alloy oxidation”, Surface and Coatings Technology, Vol. 200, No.1-4, 804-808, 2005
    [48] A. L. Yerokhin, L. O. Snizhko, N. L. Gurevina, A. Leyland, A. Pilkington, A. Matthews, “Spatial characteristics of discharge phenomena in plasma electrolytic oxidation of aluminium alloy”, Surface and Coatings Technology, Vol. 177-178, 779-783, 2004
    [49] 陳仲宜,2007 年 10 月,「潛談微弧氧化技術在輕金屬表面之應用 」, 金 屬 工 業 發 展 中 心 , 產 業 評 析 專 欄 , 取 自 :https://goo.gl/quQiN7
    [50] W. B. Xue, C. Wang, Y. L. Li, Z. W. Deng , R. Y. Chen, T. H. Zhang, “Effect of microarc discharge surface treatment on the tensile properties of Al–Cu–Mg alloy”, Materials Letters, Vol. 56, No. 5, 737–743, 2002
    [51] Y. M. Wang, B. L. Jiang, T. Q. Lei, L. X. Guo, “Microarc oxidation and spraying graphite duplex coating formed on titanium alloy for antifriction purpose”, Applied Surface Science, Vol. 246, No. 1-3, 214-221, 2005
    [52] A. Gunterschulze, H. Betz, “Neue Untersuchungen über die elektrolytische Ventilwirkung”, Zeitschrift für Physik , vol. 68, No. 3-4, 145-161, 1931
    [53] A. Guntersehulze, H. Betz, “Die Elektronenstromung in Isolatoren bei extremen Feledstarken”, Zeitschrift für Physik, vol. 91, No.1-2, 7096, 1934
    [54] A.L. Yerokhin, L.O. Snizhko, N.L. Gurevina, A. Leyland, A. Pilkington, A. Matthews, “Spatial characteristics of discharge phenomena in plasma electrolytic oxidation of aluminum alloy”, Surface and Coatings Technology, Vol. 177-178, 779-783,2004
    [55] H.X. Li , V.S. Rudnev, X.H. Zheng, T.P. Yarovaya, R.G. Song, “Characterization of Al2O3 ceramic coatings on 6063 aluminum alloy prepared in borate electrolytes by micro-arc oxidation”, Journal of Alloys and Compounds, Vol. 462, 99–102, 2008
    [56] G.H. Lv, H. Chen, W.C. Gu, W.R. Feng, L. Li, E.W. Niu, X.H. Zhang, S.Z. Yang, “Effects of graphite additives in electrolytes on the microstructure and corrosion resistance of Alumina PEO coatings”, Current Applied Physics, Vol. 9, 324–328, 2009
    [57] 周偉萍,利用微弧氧化技術在鎂合金表面製備黑色氧化膜之研究,碩士論文,大同大學材料工程學系暨研究所,2012 年 6 月
    [58] 馮克林,2004 年 7 月,「輕金屬微電弧電漿電化學技術」 ,工業材料雜誌,第 211 期
    [59] Horst E. Friedrich, Barry L. Mordike, Magnesium Technology Metallurgy, Design Data, Applications, Springer-Verlag GmbH, Heidelberg, 2006
    [60] P. Kurze, “Anodische Oxidation unter Funkenentladungen auf Metalloberflächen in wäßrigen Elektrolyten-Grundlagen und Anwendungen”, Dechema-Monographien, Band 121, VCHVerlagsgesellschaft, 167–181, 1990
    [61] Z. K. He, P. S. Tang, “The Effects of solutions on Micro-Arc Anodizing Ceramic Films”, Materials Protection, Vol. 34, No. 11, 12-13, 2011
    [62] R. F. Zhang, T. P. Qu, Q. H. B. Chao, X. B. Nie, W. Wang, “Effects of environmentally friendly electrolytes on properties of anodic coatings formed on magnesium alloys”, The Chinese Journal of Nonferrous Metals, Vol. 18, No. 6, 2008
    [63] N. Guglielmi, “Kinetics of the Deposition of Inert Particles from Electrolytic Baths”, Electrochemical Science and Technology, Vol. 119, No. 8, 1009-1012
    [64] S. Shawki, Z. Abdel Hamid, “Deposition of High Wear Resistance of Ni-SiC Composite Coatings”, Aircraft Engineering and Aerospace Technology, Vol. 69, No. 5, 432-439, 1997.
    [65] 陳永錄,以微弧氧化法於 AZ91D 鎂合金上鍍製矽酸鹽及鋯酸鹽氧化膜之特性分析與腐蝕行為,碩士論文,國立台灣科技大學機械工程系,台北,台灣,2014 年 7 月
    [66] P. Bala Srinivasan, J. Liang, C. Blawert, M. Störmer, W. Dietzel, “Characterization of calcium containing plasma electrolytic oxidation coatings on AM50 magnesium alloy”, Applied Surface Science, Vol. 256, No. 12, 4017–4022, 2010 [67] 王偉成,電解液中添加 WS2 無機奈米顆粒對 AZ31 鎂合金的微弧氧化陶瓷膜影響之研究,碩士論文,國立台灣科技大學機械工程系,台北,台灣,2017 年 6 月
    [68] L. H. Lia , Y. M. Kong, H. W. Kim , Y. W. Kim , H. E. Kim, S. J. Heo, J. Y . Koak, “Improved biological performance of Ti implants due to surface modification by micro-arc oxidation ” Biomaterials 25(2004) 2867-2875
    [69] D.R.N. Correa, L.A. Rocha, A.R. Ribeiro, S. Gemini-Piperni, B.S. Archanjo, C.A. Achete, J. Werckmann, C.R.M. Afonso, M. Shimabukuro, H. Doi, Y. Tsutsumi, T. Hanawa, “Growth mechanisms of Ca- and P-rich MAO films in Ti-15Zr-xMo alloys for osseointegrative implants”, Surface & Coating Technology

    QR CODE