簡易檢索 / 詳目顯示

研究生: 林文弘
WEN-HUNG LIN
論文名稱: 二維金屬有機框架複合物應用於超高效藍色能源轉換薄膜
Two-Dimensional Metal-Organic Framework Composites as Ultrahigh-Performance Blue Energy Conversion Membranes
指導教授: 葉禮賢
Li-Hsien Yeh
口試委員: 吳嘉文
Kevin C.-W. Wu
蔡德豪
De-Hao Tsai
朱建威
Chien-Wei Chu
王丞浩
Chen-Hao Wang
葉禮賢
Li-Hsien Yeh
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 112
中文關鍵詞: 奈米流體離子傳輸金屬有機框架二維碳化鈦MXene醯胺纖維滲透能源轉換
外文關鍵詞: Nanofluidics, Ion transport, Metal organic framework (MOF), Two-dimensional Ti3C2Tx MXene, Aramid fiber, Osmotic energy conversion
相關次數: 點閱:294下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 逆向電透析藍色能源轉換(或滲透能源轉換)是一種能將儲存在海水和河水間濃度梯度差化學勢能利用離子選擇薄膜來收集之新穎技術,然而,目前對離子選擇薄膜的研究仍存在離子選擇性、離子通量差和電阻高等問題。為了提高離子選擇性,過去報導了數種基於層狀二維材料堆疊而成之次奈米孔洞薄膜;然而,這些二維奈米片堆疊而成的離子擴散路徑過長,導致系統離子通量較差,進而使這些基於層狀二維材料的離子選擇薄膜能實現的功率輸出仍然有限。為了解決這個問題,我們開發了兩種新型二維金屬有機框架(metal organic framework,簡稱MOF)所組成之複合薄膜,包括(i)二維Ti3C2Tx MXene和二維Cu-TCPP MOF複合薄膜(在此稱為MXCT)、與(ii)芳綸奈米纖維(aramid nanofiber,簡稱ANF)和二維Cu-TCPP MOF複合薄膜(在此稱為 AMOF),此兩薄膜與在水溶液中極不穩定的傳統 Cu-TCPP MOF薄膜相比,由於所設計分子之間存在強氫鍵,在電解質溶液中皆具有高穩定性,也驗證此兩類以二維MOF材料為基準之複合薄膜在藍色能源轉換應用上深具潛力。得益於二維Cu-TCPP MOF奈米片中豐富且有序的次奈米離子通道,我們驗證此兩種複合薄膜皆具有比獨立式Ti3C2Tx MXene 薄膜和 ANF 薄膜具有更高離子選擇性、離子傳輸通量、和更低的電阻,通過混合人工海水和河水(50倍NaCl濃度梯度),MXCT和AMOF皆分別可實現高達8.12和10.1 W/m2的驚人高滲透功率輸出密度,此兩數值皆明顯高於商業基準(5 W/m2),並且優於過去文獻中報導過的所有最先進離子選擇性薄膜。此外,我們也驗證MXCT和AMOF均顯示出連續 7 天收集滲透能源的高穩定性,展示出長期運行實際應用的潛力。上述成果證明了基於二維Cu-TCPP MOF所組成之複合薄膜在高選擇性和高性能藍色滲透能源發電中具有高應用前景。


    Chemical potential energy stored in a concentration gradient between seawater and river water can be harvested using an ion-selective membrane, and this reverse electrodialysis-based technique is also called the blue energy conversion (or osmotic energy conversion). However, the current investigations of ion-selective membranes suffer from poor ion selectivity, inferior ionic flux and high resistance. To enhance up ion selectivity, sub-nanometer-scale pore membranes based on several types of the two-dimensional (2D) materials have been reported. However, the power output achieved from these 2D material-based membranes is still limited because of the inferior ionic flux caused by the tortuous interlayer ion diffusion pathway. To resolve this issue, we develop two novel types of 2D metal-organic framework (MOF) based composite membranes, including (i) 2D Ti3C2Tx MXene and Cu-TCPP MOF (named as MXCT) and (ii) aramid nanofibers (ANF) and 2D Cu-TCPP MOF (named as AMOF). In contrast to the conventional Cu-TCPP membrane which is unstable in aqueous solution, both the 2D Cu-TCPP composite membranes exploited are highly stable in salty solutions due to the existence of strong hydrogen bonding between engineered molecules. This indicates the potential use of these 2D MOF composites as blue energy conversion membranes. Benefiting from abundant, ordered sub-nm ion channels in 2D Cu-TCPP nanosheets, both the 2D MOF composite membranes show much higher ion selectivity, higher ionic flux, and lower resistance than the pure free-standing Ti3C2Tx MXene and ANF membranes. By mixing artificial seawater and river water (50-fold NaCl gradient), the amazingly high osmotic power densities up to 8.12 and 10.1 W/m2 can be achieved for the MXCT and AMOF, respectively. Both of these two values are apparently higher than the commercial benchmark (5 W/m2) and outperform all of the state-of-the-art ion-selective membranes reported in the literatures. In addition, both the 2D MOF composite membranes (MXCT and AMOF) reveal high stability in harvesting osmotic energy for continuous 7 days, demonstrating the potential of long-term operation for practical application. These works demonstrate the promising utilization of 2D Cu-TCPP MOF composite membranes for highly selective and high-performance osmotic power generation.

    中文摘要 IV Abstract V 致謝 VII 目錄 VIII 圖目錄 XI 表目錄 XVII 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 4 1.3 研究動機 14 第二章 原理機制 15 2.1滲透能源轉換機制 15 2.2垂直孔道對於滲透能源轉換機制 18 2.3 電雙層 19 2.4 離子選擇性(Ion selectivity) 23 2.5 電導(conductance) 23 第三章 實驗設備與方法 25 3.1 實驗藥品與設備 25 3.1.1 實驗材料與藥品 25 3.1.2 儀器設備 28 3.2 實驗製備與方法 31 3.2.1 MXCT複合薄膜(MXene/Cu-TCPP)製備流程 31 3.2.2 AMOF複合薄膜製備流程 33 3.2.3 MXCT複合薄膜之離子傳輸、鹽差、穩定性之滲透能源轉換實驗 35 第四章 結果討論 41 4.1 MXCT (MXene+Cu-TCPP)複合薄膜材料特性分析 42 4.1.1 掃描式電子顯微鏡分析結果(SEM) 42 4.1.2 傅立葉轉換紅外線光譜分析結果(FTIR) 42 4.1.3 雷射界面電位分析儀(Zeta potential) 43 4.1.4 X射線繞射分析結果(XRD) 43 4.2 MXCT 複合薄膜離子傳輸及滲透能源轉換結果討論 44 4.2.1 離子傳輸 44 4.2.2 電導量測結果分析 44 4.2.3 鹽差滲透能源轉換 45 4.2.4 不同離子之滲透能源轉換 47 4.2.5鹽差滲透能源轉換之穩定性測試 47 4.3 AMOF複合薄膜材料特性分析 48 4.3.1 掃描式電子顯微鏡分析結果(SEM) 48 4.3.2 傅立葉轉換紅外線光譜分析結果(FTIR) 48 4.3.3複合薄膜拉伸性質測試 (material strength) 49 4.3.4雷射界面電位分析儀(Zeta potential) 49 4.3.5 X射線繞射分析結果(XRD) 50 4.4、AM70 (AMOF)複合薄膜離子傳輸及滲透能源結果討論 50 4.4.1 離子傳輸 50 4.4.2 不同比例下之滲透能源轉換 51 4.4.3 鹽差滲透能源轉換 51 4.4.4 不同離子之滲透能源轉換 52 4.4.5 不同厚度下之滲透能源轉換 52 4.4.6滲透能源轉換之穩定性測試 53 第五章 結論 84 參考文獻 86

    1. McKenna, R.; Pfenninger, S.; Heinrichs, H.; Schmidt, J.; Staffell, I.; Bauer, C.; Gruber, K.; Hahmann, A. N.; Jansen, M.; Klingler, M., High-Resolution Large-Scale Onshore Wind Energy Assessments: A Review of Potential Definitions, Methodologies and Future Research Needs. Renew. Energ. 2022, 182, 659-684.
    2. Li, X.; Gao, Q.; Cao, Y.; Yang, Y.; Liu, S.; Wang, Z. L.; Cheng, T., Optimization Strategy of Wind Energy Harvesting via Triboelectric-Electromagnetic Flexible Cooperation. Appl. Energy 2022, 307, 118311.
    3. Correia, S. F.; Bastos, A. R.; Martins, M.; Macário, I. P.; Veloso, T.; Pereira, J. L.; Coutinho, J. A.; Ventura, S. P.; André, P. S.; Ferreira, R. A., Bio‐Based Solar Energy Harvesting for Onsite Mobile Optical Temperature Sensing in Smart Cities. Adv. Sci. 2022, 9, 2104801.
    4. Wang, W. B.; Shi, Y.; Zhang, C. L.; Li, R. Y.; Wu, M. C.; Zhuo, S. F.; Aleid, S.; Wang, P., Conversion and Storage of Solar Energy for Cooling. Energy Environ. Sci. 2022, 15, 136-145.
    5. Haas, J.; Prieto-Miranda, L.; Ghorbani, N.; Breyer, C., Revisiting the Potential of Pumped-Hydro Energy Storage: A Method to Detect Economically Attractive Sites. Renew. Energ. 2022, 181, 182-193.
    6. Al-Qadami, E. H. H.; Mustaffa, Z.; Al-Atroush, M. E., Evaluation of the Pavement Geothermal Energy Harvesting Technologies Towards Sustainability and Renewable Energy. Energies 2022, 15, 1201.
    7. Khojasteh, D.; Lewis, M.; Tavakoli, S.; Farzadkhoo, M.; Felder, S.; Iglesias, G.; Glamore, W., Sea Level Rise will Change Estuarine Tidal Energy: A Review. Renew. Sust. Energ. Rev. 2022, 156, 111855.
    8. Cossu, R.; Penesis, I.; Nader, J.-R.; Marsh, P.; Perez, L.; Couzi, C.; Grinham, A.; Osman, P., Tidal Energy Site Characterisation in A Large Tidal Channel in Banks Strait, Tasmania, Australia. Renew. Energ. 2021, 177, 859-870.
    9. Achilli, A.; Cath, T. Y.; Childress, A. E., Power Generation with Pressure Retarded Osmosis: An Experimental and Theoretical Investigation. J. Membr. Sci. 2009, 343, 42-52.
    10. Achilli, A.; Childress, A. E., Pressure Retarded Osmosis: From The Vision of Sidney Loeb to The First Prototype Installation. Desalination 2010, 261, 205-211.
    11. Lee, K.; Baker, R.; Lonsdale, H., Membranes for Power Generation by Pressure-Retarded Osmosis. J. Membr. Sci. 1981, 8, 141-171.
    12. Thorsen, T.; Holt, T., The Potential for Power Production from Salinity Gradients by Pressure Retarded Osmosis. J. Membr. Sci. 2009, 335, 103-110.
    13. Post, J. W.; Veerman, J.; Hamelers, H. V.; Euverink, G. J.; Metz, S. J.; Nymeijer, K.; Buisman, C. J., Salinity-Gradient Power: Evaluation of Pressure-Retarded Osmosis and Reverse Electrodialysis. J. Membr. Sci. 2007, 288, 218-230.
    14. Mei, Y.; Tang, C. Y., Recent Developments and Future Perspectives of Reverse Electrodialysis Technology: A Review. Desalination 2018, 425, 156-174.
    15. Post, J. W.; Hamelers, H. V.; Buisman, C. J., Energy Recovery from Controlled Mixing Salt and Fresh Water with A Reverse Electrodialysis System. Environ. Sci. Technol. 2008, 42, 5785-5790.
    16. Hong, J. G.; Zhang, B.; Glabman, S.; Uzal, N.; Dou, X.; Zhang, H.; Wei, X.; Chen, Y., Potential Ion Exchange Membranes and System Performance in Reverse Electrodialysis for Power Generation: A Review. J. Membr. Sci. 2015, 486, 71-88.
    17. Hou, X.; Guo, W.; Jiang, L., Biomimetic Smart Nanopores and Nanochannels. Chem. Soc. Rev. 2011, 40, 2385-2401.
    18. Yameen, B.; Ali, M.; Neumann, R.; Ensinger, W.; Knoll, W.; Azzaroni, O., Single Conical Nanopores Displaying pH-Tunable Rectifying Characteristics. Manipulating Ionic Transport with Zwitterionic Polymer Brushes. J. Am. Chem. Soc. 2009, 131, 2070-2071.
    19. Yameen, B.; Ali, M.; Neumann, R.; Ensinger, W.; Knoll, W.; Azzaroni, O., Ionic Transport Through Single Solid‐State Nanopores Controlled with Thermally Nanoactuated Macromolecular Gates. Small 2009, 5, 1287-1291.
    20. Liu, N. N.; Jiang, Y. N.; Zhou, Y. H.; Xia, F.; Guo, W.; Jiang, L., Two-Way Nanopore Sensing of Sequence-Specific Oligonucleotides and Small-Molecule Targets in Complex Matrices Using Integrated DNA Supersandwich Structures. Angew. Chem. Int. Ed. 2013, 52, 2007-2011.
    21. Vlassiouk, I.; Park, C.-D.; Vail, S. A.; Gust, D.; Smirnov, S., Control of Nanopore Wetting by A Photochromic Spiropyran: A Light-Controlled Valve and Electrical Switch. Nano Lett. 2006, 6, 1013-1017.
    22. Cohen-Tanugi, D.; Lin, L.-C.; Grossman, J. C., Multilayer Nanoporous Graphene Membranes for Water Desalination. Nano Lett. 2016, 16, 1027-1033.
    23. Sun, P.; Zheng, F.; Zhu, M.; Song, Z.; Wang, K.; Zhong, M.; Wu, D.; Little, R. B.; Xu, Z.; Zhu, H., Selective Trans-Membrane Transport of Alkali and Alkaline Earth Cations Through Graphene Oxide Membranes Based on Cation− π Interactions. ACS Nano 2014, 8, 850-859.
    24. Muscatello, J.; Jaeger, F.; Matar, O. K.; Müller, E. A., Optimizing Water Transport Through Graphene-Based Membranes: Insights From Nonequilibrium Molecular Dynamics. ACS Appl. Mater. Interfaces 2016, 8, 12330-12336.
    25. Yu, W.; Graham, N., Development of a Stable Cation Modified Graphene Oxide Membrane for Water Treatment. 2D Mater. 2017, 4, 045006.
    26. Zhao, J.; Wang, Z.; White, J. C.; Xing, B., Graphene in The Aquatic Environment: Adsorption, Dispersion, Toxicity and Transformation. Environ. Sci. Technol. 2014, 48, 9995-10009.
    27. Sun, P.; Zhu, M.; Wang, K.; Zhong, M.; Wei, J.; Wu, D.; Xu, Z.; Zhu, H., Selective Ion Penetration of Graphene Oxide Membranes. ACS Nano 2013, 7, 428-437.
    28. Sun, P.; Liu, H.; Wang, K.; Zhong, M.; Wu, D.; Zhu, H., Selective Ion Transport Through Functionalized Graphene Membranes Based on Delicate Ion–Graphene Interactions. J. Phys. Chem. C 2014, 118, 19396-19401.
    29. Gao, J.; Guo, W.; Feng, D.; Wang, H.; Zhao, D.; Jiang, L., High-Performance Ionic Diode Membrane for Salinity Gradient Power Generation. J. Am. Chem. Soc. 2014, 136, 12265-12272.
    30. Li, R.; Jiang, J.; Liu, Q.; Xie, Z.; Zhai, J., Hybrid nanochannel membrane based on polymer/MOF for high-performance salinity gradient power generation. Nano Energy 2018, 53, 643-649.
    31. Zhou, S.; Xie, L.; Li, X. F.; Huang, Y. A.; Zhang, L. P.; Liang, Q. R.; Yan, M.; Zeng, J.; Qiu, B. L.; Liu, T. Y.; Tang, J. Y.; Wen, L. P.; Jiang, L.; Kong, B., Interfacial Super-Assembly of Ordered Mesoporous Carbon-Silica/AAO Hybrid Membrane with Enhanced Permselectivity for Temperature- and pH-Sensitive Smart Ion Transport. Angew. Chem. Int. Ed. 2021, 60, 26167-26176.
    32. Jubin, L.; Poggioli, A.; Siria, A.; Bocquet, L., Dramatic Pressure-Sensitive Ion Conduction in Conical Nanopores. Proc. Natl. Acad. Sci. U.S.A. 2018, 115, 4063-4068.
    33. Zhang, Z.; Sui, X.; Li, P.; Xie, G.; Kong, X.-Y.; Xiao, K.; Gao, L.; Wen, L.; Jiang, L., Ultrathin and Ion-Selective Janus Membranes for High-Performance Osmotic Energy Conversion. J. Am. Chem. Soc. 2017, 139, 8905-8914.
    34. Zhang, Z.; Zhang, P.; Yang, S.; Zhang, T.; Löffler, M.; Shi, H.; Lohe, M. R.; Feng, X., Oxidation Promoted Osmotic Energy Conversion in Black Phosphorus Membranes. Proc. Natl. Acad. Sci. U.S.A. 2020, 117, 13959-13966.
    35. Cao, L.; Wu, H.; Fan, C.; Zhang, Z.; Shi, B.; Yang, P.; Qiu, M.; Khan, N. A.; Jiang, Z., Lamellar Porous Vermiculite Membranes for Boosting Nanofluidic Osmotic Energy Conversion. J. Mater. Chem. A 2021, 9, 14576-14581.
    36. Ji, J.; Kang, Q.; Zhou, Y.; Feng, Y.; Chen, X.; Yuan, J.; Guo, W.; Wei, Y.; Jiang, L., Osmotic Power Generation with Positively and Negatively Charged 2D Nanofluidic Membrane Pairs. Adv. Funct. Mater. 2017, 27, 1603623.
    37. Ding, L.; Xiao, D.; Lu, Z.; Deng, J.; Wei, Y.; Caro, J.; Wang, H., Oppositely Charged Ti3C2Tx MXene Membranes with 2D Nanofluidic Channels for Osmotic Energy Harvesting. Angew. Chem. Int. Ed. 2020, 59, 8720-8726.
    38. Zhang, Z.; Yang, S.; Zhang, P.; Zhang, J.; Chen, G.; Feng, X., Mechanically Strong MXene/Kevlar Nanofiber Composite Membranes as High-Performance Nanofluidic Osmotic Power Generators. Nat. Commun. 2019, 10, 2920.
    39. Xin, W.; Xiao, H.; Kong, X.-Y.; Chen, J.; Yang, L.; Niu, B.; Qian, Y.; Teng, Y.; Jiang, L.; Wen, L., Biomimetic Nacre-Like Silk-Crosslinked Membranes for Osmotic Energy Harvesting. ACS Nano 2020, 14, 9701-9710.
    40. Chen, J.; Xin, W.; Chen, W.; Zhao, X.; Qian, Y.; Kong, X.-Y.; Jiang, L.; Wen, L., Biomimetic Nanocomposite Membranes with Ultrahigh Ion Selectivity For Osmotic Power Conversion. ACS Cent. Sci. 2021, 7, 1486-1492.
    41. Zhu, C.; Liu, P.; Niu, B.; Liu, Y.; Xin, W.; Chen, W.; Kong, X.-Y.; Zhang, Z.; Jiang, L.; Wen, L., Metallic Two-Dimensional MoS2 Composites as High-Performance Osmotic Energy Conversion Membranes. J. Am. Chem. Soc. 2021, 143, 1932-1940.
    42. Lei, Z. L.; Guo, B., 2D Material‐Based Optical Biosensor: Status and Prospect. Adv. Sci. 2022, 9, 2102924.
    43. Hong, S.; El-Demellawi, J. K.; Lei, Y.; Liu, Z.; Marzooqi, F. A.; Arafat, H. A.; Alshareef, H. N., Porous TI3C2Tx MXene Membranes for Highly Efficient Salinity Gradient Energy Harvesting. ACS Nano 2022, 792-800.
    44. Qiao, X.; Arsalan, M.; Ma, X.; Wang, Y.; Yang, S.; Wang, Y.; Sheng, Q.; Yue, T., A Hybrid of Ultrathin Metal-Organic Framework Sheet and Ultrasmall Copper Nanoparticles for Detection of Hydrogen Peroxide with Enhanced Activity. Anal. Bioanal.Chem. 2021, 413, 839-851.
    45. Bu, F.; Zagho, M. M.; Ibrahim, Y.; Ma, B.; Elzatahry, A.; Zhao, D., Porous MXenes: Synthesis, Structures, and Applications. Nano Today 2020, 30, 100803.
    46. Schoch, R. B.; Han, J.; Renaud, P., Transport Phenomena in Nanofluidics. Rev. Mod. Phys. 2008, 80, 839 - 883.
    47. Tadmor, R.; Hernández-Zapata, E.; Chen, N.; Pincus, P.; Israelachvili, J. N., Debye Length and Double-Layer Forces in Polyelectrolyte Solutions. Macromolecules 2002, 35, 2380-2388.
    48. Schellman, J. A.; Stigter, D., Electrical Double Layer, Zeta Potential, and Electrophoretic Charge of Double‐Stranded DNA. Biopolymers 1977, 16, 1415-1434.
    49. Chen, J.; Yuan, X.; Lyu, F.; Zhong, Q.; Hu, H.; Pan, Q.; Zhang, Q., Integrating MXene Nanosheets with Cobalt-Tipped Carbon Nanotubes for an Efficient Oxygen Reduction Reaction. J. Mater. Chem. A 2019, 7, 1281-1286.
    50. Zhao, S.; Li, S.; Zhao, Z.; Su, Y.; Long, Y.; Zheng, Z.; Cui, D.; Liu, Y.; Wang, C.; Zhang, X., Microwave-Assisted Hydrothermal Assembly of 2D Copper-Porphyrin Metal-Organic Frameworks for The Removal of Dyes and Antibiotics from Water. Environ. Sci. Pollut. Res. 2020, 27, 39186-39197.
    51. Biswas, S.; Alegaonkar, P. S., MXene: Evolutions in Chemical Synthesis and Recent Advances in Applications. Surf. 2021, 5, 1-34.
    52. Songfeng, E.; Ma, Q.; Huang, J.; Jin, Z.; Lu, Z., Enhancing Mechanical Strength and Toughness of Aramid Nanofibers by Synergetic Interactions of Covalent and Hydrogen Bonding. Compos. Part A Appl. Sci. Manuf. 2020, 137, 106031.
    53. Yin, Q.; Jia, H.; Mohamed, A.; Ji, Q.; Hong, L., Highly Flexible and Mechanically Strong Polyaniline Nanostructure@ Aramid Nanofiber Films for Free-Standing Supercapacitor Electrodes. Nanoscale 2020, 12, 5507-5520.
    54. Hou, S.; Zhang, Q.; Zhang, Z.; Kong, X.; Lu, B.; Wen, L.; Jiang, L., Charged Porous Asymmetric Membrane for Enhancing Salinity Gradient Energy Conversion. Nano Energy 2021, 79, 105509.
    55. Bian, G. S.; Pan, N.; Luan, Z. H.; Sui, X.; Fan, W. X.; Xia, Y. Z.; Sui, K. Y.; Jiang, L., Anti-Swelling Gradient Polyelectrolyte Hydrogel Membranes as High-Performance Osmotic Energy Generators. Angew. Chem. Int. Ed. 2021, 60, 20294-20300.
    56. Yang, G. L.; Liu, D.; Chen, C.; Qian, Y. J.; Su, Y. Y.; Qin, S.; Zhang, L. Z.; Wang, X. G.; Sun, L.; Lei, W. W., Stable Ti3C2Tx MXene-Boron Nitride Membranes with Low Internal Resistance for Enhanced Salinity Gradient Energy Harvesting. ACS Nano 2021, 15, 6594-6603.
    57. Hou, S. H.; Ji, W. T.; Chen, J. J.; Teng, Y. F.; Wen, L. P.; Jiang, L., Free-Standing Covalent Organic Framework Membrane for High-Efficiency Salinity Gradient Energy Conversion. Angew. Chem. Int. Ed. 2021, 60, 9925-9930.
    58. Huang, X.; Pang, J.; Zhou, T.; Jiang, L.; Wen, L., Engineered Sulfonated Polyether Sulfone Nanochannel Membranes for Salinity Gradient Power Generation. ACS Appl. Polym. Mater. 2020, 3, 485-493.
    59. Hu, Y.; Teng, Y.; Sun, Y.; Liu, P.; Fu, L.; Yang, L.; Kong, X.-Y.; Zhao, Q.; Jiang, L.; Wen, L., Bioinspired Poly (Ionic Liquid) Membrane for Efficient Salinity Gradient Energy Harvesting: Electrostatic Crosslinking Induced Hierarchical Nanoporous Network. Nano Energy 2022, 97, 107170.
    60. Chang, C.-W.; Chu, C.-W.; Su, Y.-S.; Yeh, L.-H., Space Charge Enhanced Ion Transport in Heterogeneous Polyelectrolyte/Alumina Nanochannel Membranes for High-Performance Osmotic Energy Conversion. J. Mater. Chem. A 2022, 2867-2875.
    61. Zhu, X.; Hao, J.; Bao, B.; Zhou, Y.; Zhang, H.; Pang, J.; Jiang, Z.; Jiang, L., Unique Ion Rectification in Hypersaline Environment: A High-Performance and Sustainable Power Generator System. Sci. Adv. 2018, 4, eaau1665.
    62. Wu, Y. D.; Xin, W. W.; Kong, X. Y.; Chen, J. J.; Qian, Y. C.; Sun, Y.; Zhao, X. L.; Chen, W. P.; Jiang, L.; Wen, L. P., Enhanced Ion Transport by Graphene Oxide/Cellulose Nanofibers Assembled Membranes for High-Performance Osmotic Energy Harvesting. Mater. Horiz. 2020, 7, 2702-2709.
    63. Chen, W.; Wang, Q.; Chen, J.; Zhang, Q.; Zhao, X.; Qian, Y.; Zhu, C.; Yang, L.; Zhao, Y.; Kong, X.-Y.; Lu, B.; Jiang, L.; Wen, L., Improved Ion Transport and High Energy Conversion Through Hydrogel Membrane with 3d Interconnected Nanopores. Nano Lett. 2020, 20, 5705-5713.
    64. Zhao, Y. Y.; Wang, J.; Kong, X. Y.; Xin, W. W.; Zhou, T.; Qian, Y. C.; Yang, L. S.; Pang, J. H.; Jiang, L.; Wen, L. P., Robust Sulfonated Poly (Ether Ether Ketone) Nanochannels for High-Performance Osmotic Energy Conversion. Natl. Sci. Rev. 2020, 7, 1349-1359.
    65. Chen, J.; Xin, W.; Kong, X.-Y.; Qian, Y.; Zhao, X.; Chen, W.; Sun, Y.; Wu, Y.; Jiang, L.; Wen, L., Ultrathin and Robust Silk Fibroin Membrane for High-Performance Osmotic Energy Conversion. ACS Energy Lett. 2020, 5, 742-748.
    66. Chen, W. P.; Dong, T. D.; Xiang, Y.; Qian, Y. C.; Zhao, X. L.; Xin, W. W.; Kong, X. Y.; Jiang, L.; Wen, L. P., Ionic Crosslinking-Induced Nanochannels: Nanophase Separation for Ion Transport Promotion. Adv. Mater. 2022, 34, 2108410.
    67. Luo, Q.; Liu, P.; Fu, L.; Hu, Y.; Yang, L.; Wu, W.; Kong, X.-Y.; Jiang, L.; Wen, L., Engineered Cellulose Nanofiber Membranes with Ultrathin Low-Dimensional Carbon Material Layers for Photothermal-Enhanced Osmotic Energy Conversion. ACS Appl. Mater. Interfaces 2022, 14, 13223-13230.
    68. Hao, J.; Bao, B.; Zhou, J.; Cui, Y.; Chen, X.; Zhou, J.; Zhou, Y.; Jiang, L., Euryhaline‐Fish‐Inspired Salinity Self‐adaptive Nanofluidic Diode Leads to High Performance Blue Energy Harvester. Adv. Mater. 2022, DOI: 10.1002/adma.202203109.

    QR CODE