簡易檢索 / 詳目顯示

研究生: 盧彥宏
Yen-Hung Lu
論文名稱: 無溫控光纖光源之設計與改良
Design and Improvement of Uncooled ASE Fiber Sources
指導教授: 廖顯奎
Shien-Kuei Liaw
單秋成
Chow-Shing Shin
口試委員: 黃忠偉
Jong-Woei Whang
李穎玟
Yin-Wen Lee
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 76
中文關鍵詞: 超螢光光源光纖陀螺儀摻鉺光纖光纖感測
外文關鍵詞: Superfluorescence fiber source (SFS), Fiber optic gyroscopes (FOG), Er-doped fiber (EDF), Optical fiber sensors.
相關次數: 點閱:220下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本論文使用寬頻譜光柵搭配摻鉺光纖等元件,設計出各種超螢光光源系統架構,並分析探討輸出特性以及環境溫度變化之平均波長穩定性的影響以應用於光纖陀螺儀光路中感測,且環境溫度變化之平均波長穩定性能夠符合國家太空中心對於超螢光光源應用於光纖陀螺儀之標準: 2.5 ppm/ oC。第二章一開始的系統架構為寬頻譜光柵之雙通前向泵激超螢光光源,由於環境溫度變化之平均波長穩定性的量測結果與目標仍有一大段努力空間,因此在第三章中將寬頻譜光柵黏貼碳纖維複合材料,並且實驗其對於系統架構而言最佳化之疊層角度以優化環境溫度變化之平均波長穩定性。
      接下來,第四章設計多種具殘餘功率覆用之寬頻譜光柵超螢光光源,其系統架構分為雙通前向泵激以及雙通後向泵激,並且在系統架構中加上三種反射端面,分別為寬頻譜反射鏡、Sagnac Loop、光循環器。實驗中發現以光循環器為反射端面之寬頻譜光柵雙通後向泵激超螢光光源其具有優異的輸出特性表現,其中在3-dB頻寬方面更是達到非常高的標準,然而對此系統架構實驗環境溫度變化之平均波長穩定性時,其值略高於2.5 ppm/ oC。分析輸出頻譜圖後發現,未受溫度補償之寬頻譜光柵濾除的1530 nm波段為影響環境溫度變化之平均波長穩定性主要原因。因此,第五章以寬頻譜光柵之雙通後向泵激超螢光光源系統架構加上一段摻鉺光纖吸收體於量測輸出端之前,進行環境溫度變化之平均波長穩定性量測。實驗結果證實抑制1530 nm波段能夠大大地優化整體系統架構之平均波長穩定性,同時在長時間的穩定性量測中也符合目標的數值標準。最後,本論文成功地研製在環境溫度變化下,平均波長穩定性佳的以摻鉺光纖為吸收體之寬頻譜光柵雙通後向泵激超螢光光源系統架構。


      Some schemes for superfluorescence fiber sources are proposed in the thesis. We investigated and measured the effect of the output characteristic and mean wavelength for superfluorescence fiber sources, which were integrated by using such as broadband fiber Bragg grating (BBFBG), erbium doped fiber (EDF) and so on. To achieve the National Space Organization (NSPO) regulation for thermal stability of mean wavelength of 2.5 ppm/oC, the fiber optic gyroscope (FOG) light source in double-pass forward pumping scheme was proposed using BBFBG. But the experimental result shows that the thermal stability for mean wavelength superfluorescence fiber source still leaves room for improvement. Therefore, Carbon fiber composites glued upon BBFBG is used in Chapter 3. Later, we studied the optimum angle condition for carbon fiber composites between the adjacent layers to improve the thermal stability of mean wavelength for the proposed superfluorescence fiber source.
      Then, some configurations design for SFS with residual pumping power. Both double-pass forward pumping scheme and double-pass backward pumping scheme were discussed in Chapter 4. Three optional reflectors could be chosed, one is a broadband fiber mirror, another is a Sagnac Loop and the other is an optical circulator. The experimental results show that double-pass backward pumping scheme using an optical circulator as a reflector has excellent output characteristic among the three kinds of reflectors. But after the thermal stability of mean wavelength measurement, this thermal stability of mean wavelength is still a little bit higher than the target value. It is because that 1530 nm amplified spontaneous emission (ASE) in superfluorescence fiber source may degrade the average thermal stability of mean wavelength. In fortune, this issue was solved by using a piece of absorber and adopted a double-pass backward pumping scheme. Results shows that after we suppressed the 1530 nm ASE, the thermal stability of mean wavelength could be further improved successfully to 1.3 ppm/oC.

    摘要 I Abstract II 致謝 III 目錄 IV 圖表索引 VI 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 論文架構 3 第二章 超螢光光源原理簡介與文獻探討 4 2.1 超螢光光源介紹與重要性 4 2.2 超螢光光源基本架構 5 2.3 各種超螢光光源核心技術之比較 8 2.4 寬頻譜光纖光柵超螢光光源組成元件原理與簡介 12 2.4.1 泵激光源 13 2.4.2 光纖光柵 14 2.4.3 寬頻譜光纖光柵 18 2.4.4 摻鉺光纖 21 2.4.5 光隔離器 22 第三章 超螢光光源之架構量測與溫度補償 24 3.1 泵激光源之參數考量 24 3.2 摻鉺光纖之參數考量 25 3.3 超螢光光源之架構量測 32 3.4 超螢光光源之溫度補償 33 3.4.1 碳纖維複合材料 33 3.4.2 溫度補償效果量測 36 第四章 超螢光光源之殘餘功率覆用與穩定性 39 4.1 雙通前向泵激之超螢光光源架構 39 4.2 雙通後向泵激之超螢光光源架構 46 4.3 以OC為反射端面之雙通後向泵激系統架構溫度補償 53 4.4 雙通後向泵激系統架構之溫度補償 55 第五章 超螢光光源之優化系統架構量測 59 5.1 使用吸收體之雙通後向泵激系統架構溫度補償 59 5.2 使用吸收體之雙通後向泵激系統架構穩定性量測 62 5.3 使用吸收體之雙通後向泵激系統架構重覆性量測 65 第六章 結論與未來展望 69 6.1 結論 69 6.2 未來展望 70 參考文獻 72  

    [1]李春霖 譯,“飛行概要圖解,” 徐氏基金會, 1993.
    [2]W. J. Hesse, N. V. S. Mumford, and Jr.,“Jet Propulsion for Application,” 大學圖書出版社, 1981.
    [3]E.J. Friebele, C.G. Askins, G.A. Miller, J.R. Peele, and L.R. Wasserman,“Optical fiber sensors for spacecraft : applications and challenges,” SPIE, vol. 5554, 2004.
    [4]E. H. J. Pallett and V. Brown,“Aircraft Instruments Principles and Applications,” 滄海書局, 1972.
    [5]張連璧,“光纖感測器,” 文笙書局, 1991.
    [6]鄧正隆,“慣性技術,” 崧博出版, 2012.
    [7]胡志雄,“干涉型光纖陀螺的消光比和光源穩定性實驗研究,” 天津大學精密儀器與光電子工程學院學位論文,2007.
    [8]黃彥瑋,“干涉型光纖陀螺儀的研製及其效能探討,” 國立台灣大學光電工程學研究所碩士論文, 2009.
    [9]P.Z. Zatta and D.C. Hall, “Ultra-high-stability two-stage superfluorescent fiber sources for fiber optic gyroscopes,” Electronics Letters, vol. 38, no.9, pp. 406-408, 2002.
    [10]T.P. Gaiffe, P. Simonpietri, J. Morisse, N. Cerre, E.M. Taufflieb, and H.C. Lefevre ,“Wavelength stabilization of an erbium-doped fiber source with a fiber Bragg grating for high-accuracy FOG,” SPIE Fiber Optic Gyros: 20th Anniversary Conference , pp. 375–380, 1996.
    [11]W. Huang, X. Wang, B. Zheng, H. Xu, C.Ye, and Z.Cai ,“Stable and wideband L-band erbium superfluorescent fiber source using improved bi-directional pumping configuration,” Optics Express, vol. 15, no.15, pp. 9778–9783, 2007.
    [12]H.J. Patrick, A.D. Kersey, W.K. Burns, and R.P. Moeller,“Erbium-doped superfluorescent fibre source with long period fibre grating wavelength stabilisation,” Electronics Letters , vol.33, no.24, pp. 2061–2063, 1997.
    [13]P.F. Wysocki, M.J.F. Digonnet, B.Y. Kim, and H.J.Shaw,“Characteristics of erbium-doped superfluorescent fiber sources for interferometric sensor application,” Journal of Lightwave Technology, vol. 12, no.3, 1994.
    [14]謝馨瑩,“摻鉺光纖光源平均波長穩定性之研究,”中原大學應用物理研究所碩士論文, 2002.
    [15]K.A. Fesler, M.J.F. Digoneet, B.Y. Kim, and H.J. Shaw,“Stable fiber-source gyroscope,” Optics Letters, vol. 15, no.22, pp. 1321-1323, 1990.
    [16]P.R. Morkel, E.M. Taylor, J.E. Townsend, and D.H. Payne,“Wavelength stability of Nd3+ -doped fibre fluorescent sources,” Electronics Letters , vol.26, no.13, pp.873-875, 1990.
    [17]R.P. Moeller, W.K. Burns, and N.J. Frigo,“Open-loop output and the scale factor stability in a fiber-optic gyroscope,” Journal of Lightwave Technology, vol. 7, no.2, pp.262-269, 1989.
    [18]A. Lawrence,“The interferometric fiber-optic gyro,” Modern Inertial Technology, ch. 12, 1998.
    [19]J.L. Chang and M.Q. Tan,“Experimental optimization of an erbium-doped super-fluorescent fiber source for fiber optic gyroscopes,” Journal of Semiconductors, Vol.32, no. 10,2011.
    [20]M.J.F. Digoneet, “Rare-earth-doped fiber lasers and amplifiers,”Marcel Dekker, 2001.
    [21]P.F. Wysocki, R.F.Kalman, M.J.F. Digonnet, and B.Y. Kim,“Comparison of 1.48μm and 980 nm pumping for Er-doped superfluorescent fiber sources,”SPIE Fiber Laser Sources and Amplifiers Ⅲ, pp.40-46,1991.
    [22]P.F. Wysocki, M.J.F. Digoneet, and B.Y. Kim, “Wavelength stability of a
    high-output, broadband, Er-doped superfluorescent fiber source pumped
    near 980nm,” Optics Letters, vol.16, no.12, pp.961-963, 1991.
    [23]D.C. Hall and W.K. Burns,“Wavelength stability optimization in Er3+-doped superfluorescent fibre sources,” Electronics Letters, vol.30, no.8, pp.653-654, 1994.
    [24]D.C. Hall, W.K. Burns, and R.P. Moeller, “High-stability Er3+-doped superfluorescent fibre sources,” Journal of Lightwave Technology, vol. 13, no.7, pp.1452-1460, 1995.
    [25]M.J.F. Digonnet, “Theory of superfluoresent fiber lasers,” Journal of Lightwave Technology, vol. LT-4, no.11, 1986.
    [26]J.L. Chang and M.Q. Tan,“Experimental optimization of an erbium-doped super-fluorescent fiber source for fiber optic gyroscopes,” Journal of Semiconductors, Vol.32, no. 10,2011.
    [27]A.Wang, “High stability Er-doped superfluorescent fiber Source improved by incorporating bandpass filter,” IEEE Photonics Technology Letters, vol. 23, no.4, 2011.
    [28]P. Ou, B. Cao, C.X. Zhang, Y. Li, and Y.H. Yang,“Er-doped superfluorescent fibre source with enhanced mean-wavelength stability using chirped fibre grating,” Electronics Letters, vol.44 ,no. 3, 2008.
    [29]王祥,“線性型單縱模光纖雷射的研製,” 國立台灣科技大學電子工程研究所碩士論文, 2010.
    [30]洪寬綸,“建構於光纖光柵之光纖雷射、光感測與光監控技術之研究,” 國立台灣科技大學電子工程研究所碩士論文, 2006.
    [31]Y.G. Han, Y.J. Chung, S.B. Lee, C.S. Kim, M.Y. Jeong, and M.K. Kim,“Temperature and strain discrimination based on a temperature-insensitive birefringent interferometer incorporating an erbium-doped fiber,” Applied Optics, vol. 48, no. 12, 2009.
    [32]T. Erdogan,“Fiber Grating Spectra,” Journal of Lightwave Technology, vol. 15, no.8, pp.1277-1294, 1997.
    [33]李彥鉦,林文欽,陳永和,魏伊文,楊慶忠,“光纖光柵的製造與應用,” 物理雙月刊,十九卷六期,第553-555頁, 1997.
    [34]廖枝旺,“摻鉺光纖之製造及其在光纖耦合器之應用,” 國立台灣大學電機工程學研究所博士論文,第36-37頁, 1993.
    [35]廖顯奎,鄭旭志,江家慶,林淑娟,“光纖原理與應用技術,” 五南圖書出版有限公司, 2012.
    [36]吳宗遠,“以複合材料補償光纖光柵因溫度造成的波長飄移之改良式機制,” 國立台灣大學機械工程學系研究所碩士論文,2003.
    [37]L.A. Wang and C.D. Chen,“Stable and broadband Er-doped superfluorescent fiber source using double pass backward configuration,” Electronics Letters, vol.32, no.19, pp. 1815-1817, 1996.
    [38]L.A. Wang and C.D. Su, “Modeling of a double-pass backward Er-doped superfluorescent fiber source for fiber-optic gyroscope applications,” Journal of Lightwave Technology, vol.17, no.11, 1999.
    [39]T.C. Liang, Y.S. Lin, and Y.K. Chen,“Comparison of the characteristics of double-pass erbium-doped superfluorescent fiber sources obtained from different flattening techniques,” Applied Optics, vol.38, no.3, 1999.
    [40]Y. Li, M. Jiang, C.X. Zhang, and H. J. Wu,“High stabiltiy Er-doped superfluorescent fiber source incorporating an Er-doped fiber filter and a faraday rotator mirror,” IEEE Photonics Technology Letters, vol.25, no.8, pp. 731-733, 2013.
    [41]V. Bhatia and A.M. Vengsarkar,“Optical fiber long-period grating sensors,” Optics Letters, vol.21, no.9, pp.692-694, 1996.

    QR CODE