簡易檢索 / 詳目顯示

研究生: 李衍青
LEE,YEN-CHING
論文名稱: 結合布里淵光時域與相位靈敏光時域之多參數光纖感測系統研發
Development of multi-parameter optical fiber sensing system combining Brillouin optical time domain and phase sensitive optical time domain
指導教授: 廖顯奎
Shien-Kuei Liaw
口試委員: 廖顯奎
Shien-Kuei Liaw
陳俊仲
Jun zhong-Chen
黃忠偉
Zhong wei-Huang
沈育霖
Yu lin-Shen
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 81
中文關鍵詞: 布里淵光時域分析系統相位靈敏光時域分析系統混成分佈式感測系統布里淵散射雷利散射光纖感測
外文關鍵詞: Brillouin optical time-domain analysis system, Phase sensitive time-domain analysis, Hybrid distributed sensing system, Brillouin scattering, Rayleigh scattering, fiber sensing
相關次數: 點閱:223下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 分佈式光纖感測系統由於它是以光纖作為感測介質,具備體積小、抗電磁干擾、能在惡劣的環境中使用等優勢,且可實現長距離、大範圍、多參量的感測。特別適用於大型土木工程、光纖通訊、石油化工、電力工業等高危險領域的結構健康監測,是目前國內外感測技術研究的熱點。基於受激布里淵散射的布里淵光時域分析(BOTDA)和基於雷利散射的相位靈敏光時域反射(φ-OTDR) 是兩種重要的光纖感測技術,也是本論文討論的主題。
    本研究之主要目的在於結合布里淵光時域分析系統與相位靈敏光時域反射系統。BOTDA技術主要用於應變與溫度的測量,具有高精度和長距離的優點,但BOTDA泵激光與探測光雙端接入進行感測,這也代表當光纖出現斷點時,BOTDA系統將不能正常運作,限制了BOTDA的應用場合。因此透過結合相位靈敏光時域反射,具有光纖監測功能且還可以用於震動的感測,加上前述的雙參數量測,達到三參數測量,在實際應用上也十分重要。
    透過參考光纖法,利用兩種不同布里淵頻率之光纖,其中一種光纖作為參考光纖(處於不受應變干擾),而另一種光纖作為量測光纖(受到溫度及應變同時干擾)。將兩種光纖放置很近比擬成受到環境的干擾接近,接著透過參考光纖受到周圍環境溫度的變化,得到溫度的變化量,再由量測光纖的變化扣除參考光纖的溫度變化,即可獲得光纖的應變變化量,實現溫度與應變的區分量測。
    藉由文獻探討蒐集的資料進行實驗研究,將系統的各項參數進行實驗研究,首先針對BOTDA系統透過電光調製器的移頻效果與可調式濾波器輸出通道調整以及探測光與泵激光比例的調整,達到本系統感測距離29公里,空間解析度2公尺。接著是φ-OTDR系統,透過調整入射光至待測光纖前功率避免受激布里淵效應的干擾以及濾波器輸出調整,最後訊號處理,達成本系統感測距離5公里,空間解析度10公尺且震動點的SNR值為4.52。


    Distributed optical fiber sensing systems are small in size, have anti-electromagnetic interference, can be used in harsh environments, and can measure long-distance, large-scale, multi-parameters due to their use of optical fibers as the sensing medium. It is especially suitable for structural health monitoring in high-risk fields such as large-scale civil engineering, optical fiber communication, petrochemical, and the electric power industry. Brillouin Optical Time Domain Analysis (BOTDA) based on Stimulated Brillouin Scattering and Phase Sensitive Optical Time Domain Reflectometry (φ-OTDR) based on Rayleigh Scattering are two important fiber sensing techniques and are also discussed in this paper theme.
    The primary purpose of this research is to combine the Brillouin optical time-domain analysis system with the phase-sensitive optical time-domain reflectometry system. BOTDA technology is mainly used to measure strain and temperature, which has the advantages of high precision and long distance. Still, the BOTDA pump light and probe light are connected at both ends for sensing, which means that when the fiber breaks, the BOTDA system will not work properly The operation limits the application of BOTDA. Therefore, combining phase-sensitive optical time domain reflection, has an optical fiber monitoring function and can also be used for vibration sensing, which is not only of academic value but also very important in practical applications.
    Through the reference fiber method, two kinds of fibers with different Brillouin frequencies are used as the reference fiber (under strain interference), and the other fiber is used as the measurement fiber (under both temperature and strain interference). Both kinds of optical fibers are placed close to each other and are not disturbed by the environment.. Then the temperature change is obtained through the ambient temperature change through the reference fiber. Then the temperature change of the reference fiber is deducted from the change of the measurement fiber to obtain the fiber. The amount of strain change can be achieved to distinguish the measurement of temperature and strain.
    Experimental research is carried out based on the data collected from the literature research, and the system parameters are experimentally studied. First, the frequency shifting effect of the BOTDA system through the electro-optical modulator, the adjustment of the output channel of the tunable filter, and the adjustment of the ratio of the probe light and the pump light, reaching a sensing distance of 29 kilometers and a spatial resolution of 2 meters. Next is the φ-OTDR system, which avoids the interference of the stimulated Brillouin effect and adjusts the output of the filter by adjusting the power of the incident light before the fiber is tested. Finally, the signal is processed to achieve a sensing distance of 5 kilometers and a spatial resolution of 10 kilometers and the SNR value of the vibration point is 4.52.

    4 目錄 摘要 I Abstract III 誌謝 V 圖目錄 X 表目錄 XIII 第一章 緒論 1 1.1 前言 1 1.1 研究動機 2 1.2 論文架構 3 第二章 光纖感測原理概說 4 2.1 光纖感測的優點 4 2.2 逐點式光纖感測技術 7 2.3 分佈式光纖感測技術 10 2.4 光學散射概述 12 2.4.1 雷利散射 13 2.4.2 拉曼散射 14 2.4.3 布里淵散射 15 2.4.4 光學散射之比較與應用 19 2.5 基於布里淵光時域分析法之技術應用 20 2.5.1 布里淵光時域分析系統(BOTDA) 22 第三章 布里淵光時域分析系統文獻探討及架構 24 3.1 光學元組件與儀器介紹 24 3.1.1 主動元件 24 3.1.2 光被動元件 32 3.2 文獻探討 35 3.2.1 空間解析度 36 3.2.2 待測距離 37 3.2.3 溫度與應變解調 39 第四章 BOTDA雙光纖雙參數量測 40 4.1 布里淵頻移之溫度與應變特性 41 4.2 雙光纖雙參數量測結果 43 4.3 布里淵光時域分析系統設備更換 49 4.3.1 光電調變器更換 49 4.3.2 脈衝訊號產生器更換 51 第五章 混成分佈式光纖感測系統 54 5.1 電光調製器移頻設置 55 5.2 濾波器通道設置 57 5.3 探測光功率調整 59 5.4 BOTDA原理介紹 60 5.5 BOTDA感測距離與空間解析度實驗結果 61 5.6 φ-OTDR實驗介紹 62 5.6.1 φ-OTDR訊號擷取與處理介紹 63 5.6.2 φ-OTDR散射光處理 65 5.7 φ-OTDR 5km/10m實驗結果 67 第六章 結論與未來展望 70 6.1 結論 70 6.2 未來展望 71

    [1] K.Grattan, and T,Sun, " Optical-fiber sensors: Temperature and pressure sensors, "in Mrs bulletin, Vol. 27, Issue 5,pp.389-395, May. 2002.
    [2] B,Lee, "Review of the present status of optical fiber sensors, "in Optical fiber technology, Vol. 9, Issue 2,pp.57-59, Apr. 2003.
    [3] WU. Huijuan, X.Shunkun, L.Xiaoyu, W. Ziana, X. Jiwei, and R. Yunjiang, "Separation and Determination of the Disturbing Signals in Phase-Sensitive Optical Time Domain Reflectometry (Φ-OTDR), " IEEE/OSA J. Lightwave Technonlogy, Vol. 33, Issue 15,pp.3156-3162, Apr. 2015.
    [4] A.Zornoza, M. Sagues, and A. Loayssa, "Self-Heterodyne Detection for SNR Improvement and Distributed Phase-Shift Measurements in BOTDA, " Journal of Lightwave Technology, Vol. 30, Issue 8,pp.1066-1072, Apr. 2012.
    [5] T.Marie, B. Yang, H. Dezhi, and A.Bowen, "Principle and Application State of Fully Distributed Fiber Optic Vibration Detection Technology Based on Φ-OTDR: A Review, "IEEE Sensors Journal, Vol. 21, Issue 15,pp.16428-16442, May. 2021.
    [6] H.N. Zhu, L. Yu, Y.F. Zhang, L. Cheng, Z.Y. Zhu, J.Y. Song, J.L. Zhang, B. Luo, and K.Yang, "Optimized Support Vector Machine Assisted BOTDA for Temperature Extraction With Accuracy Enhancement, "IEEE Photonics Journal, Vol. 12,no.1 , Apr. 2020.
    [7] L. Zhao, Y. Li, Z. Xu, Z. Yang, and A. Lv, "On-line monitoring system of 110kV submarine cable based on BOTDR",Sensors and Actuators A: Physical, vol. 216, pp. 28-35, Sep. 2014.
    [8] T. Hara, K. Terashima, H. Takashima, and H. Suzuki, "Development of long range optical fiber sensors for composite submarine power cable maintenance",IEEE Transactions on Power Delivery, vol. 14, no. 1, pp. 23-30, Jan. 1999.
    [9] X.Y. Bao, and L. Chen, "Recent Progress in Distributed Fiber Optic Sensors, "Sensors, Vol. 12, Issue 7,pp.8601-8639, Jul. 2012.
    [10] K. C. Kao, and G. A. Hockham (1966), "Dielectric-fibre surface waveguides for optical frequencies",Proc. IEE 113(7): 1151–1158.
    [11] K.O. Hill, and M. Gerald, “Fiber Bragg grating technology fundamentals and overview,” IEEE/OSA Journal of Lightwave Technology, vol. 15, no. 8, pp. 1263-1276, 1997.
    [12] A. D. Kersey, M. A. Davis, H. J. Patrick, M. L. Leblanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Frieble,“Fiber grating sensor, ”Journal of Lightwave Technology, vol. 15, no. 8, pp. 1442-1463, 1997.
    [13] Q.S. Li, L. Cai, YH.Ma, JH.Yang, Y.Yang, QJ. Meng, and JG.Shi“Research progress of biosensors based on long period fiber grating, ” Chinese optics, vol. 11, no. 3, pp. 475-502, Jun 2018.
    [14] D. Tosi, “Review of Chirped Fiber Bragg Grating (CFBG) Fiber-Optic Sensors and Their Applications,”Sensors, vol. 18, no. 7, p. 2147, Apr. 2018.
    [15] C. Li, X. Peng, J. Liu, C. Wang, S. Fan, and S. Cao, “D-Shaped Fiber Bragg Grating Ultrasonic Hydrophone With Enhanced Sensitivity and Bandwidth,”Journal of Lightwave Technology, vol. 37, no. 9, pp. 2100–2108, Jan. 2019.
    [16] R.Aashia, K.V.Madhav, B.Srinivasan, and S.Asokan “Strain-Temperature Discrimination Using a Single Fiber Bragg Grating,“ IEEE Photonics Technology Letters, vol. 22 no.11, pp.778-780, June 2010.
    [17] Y. Zhang, Y. Tian, X. Fu, and W. Bi, "Wide-Range Fiber Bragg Grating Displacement Sensor with Temperature Compensation," 2017 2nd International Conference for Fibre-optic and Photonic Sensors for Industrial and Safety Applications (OFSIS), Brisbane, QLD, 2017, pp. 91-96, doi: 10.1109/OFSIS.2017.11.
    [18] 陳柏偉,“液體多參數感測之元組件開發與系統量測”,台灣科技大學電子工程研究所碩士論文,2016,7月
    [19] D. Grobnic, S. Dedyulin, C. Hnatovsky, RB. Walker, HM. Ding, and SJ.Mihailov, "Fiber Bragg Grating Wavelength Drift in Long-Term High Temperature Annealing," Sensors, vol. 21, no. 4, Apr.2021.
    [20] K. Kao, and G. Hockham, “Dielectric-fibre surface waveguides for optical frequencies,” Proceedings of the Institution of Electrical Engineers, vol. 113, no. 7, pp. 1151–1158, Jan. 1966.
    [21] N. Guo, L. Wang, J. Wang, C. Jin, H.-Y. Tam, A. Zhang, and C. Lu, “Bi-Directional Brillouin Optical Time Domain Analyzer System for Long Range Distributed Sensing,” Sensors, vol. 16, no. 12, p. 2156, 2016.
    [22] K.O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in mono-mode photosensitive optical fiber by UV exposure through a phase mask,” Applied Physics Letters, vol. 62, no. 10, pp. 1035-1037, 1993.
    [23] L. Fenglei, and C.J. Zarowski, “Events in fiber optics given noisy OTDR data. I. GSR/MDL method,” IEEE Transactions on Instrumentation and Measurement, vol. 50, no. 1, pp. 47-58, Feb, 1993.
    [24] W. Xiangchuan, Y. Zhijun, W. Feng, H. Ji, M. Chengbo , S. Zhongyuan, Z. Lin, and Z. Xuping, “An OTDR and Gratings Assisted Multifunctional Fiber Sensing System,” IEEE Sensors Journal, vol. 15, no. 8, pp. 4660-4666, Aug, 2015.
    [25] S. Boydak, and M. Yucel, “The Analysis of Raman Scattering in the Fiber Optic Cable,” Journal of polytechnic-politeknik dergisi, vol. 20, no. 2, pp. 257-265, Jun, 2017.
    [26] Garcia-Ruiz, Andres, J. Pastor-Graells, HF. Martins, KH. Tow, L. Thevenaz, and M. Gonzalez-Herraez, “Distributed photothermal spectroscopy in microstructured optical fibers: towards high-resolution mapping of gas presence over long distances,” Optic express, vol. 25, no. 3, pp. 1789-1805, Feb, 2017.
    [27] R.J. Kasumove, N.V. Kerimli, and G.A. Safarova, “Phase Effects on Coherent Anti-Stokes Raman Light Scattering,” Journal of applied spectroscopy, vol. 88, no. 1, pp. 12-18, Mar, 2021.
    [28] T.S. van den Bremer, and O. Breivik, “Stokes drift ,”Philophical.transactions of the royal society a-mathematical physcial and engineering sciences, vol. 376, no. 2111, Jan 2018.
    [29] E. Garmire, “Perspectives on stimulated Brillouin scattering,” New journal of physics, vol.19, Jan 2017.
    [29] 楊書銘,“布里淵光時域分析法之感測距離及靈敏度優化研究,”台灣科技大學電子工程研究所碩士論文,2019.7月
    [30] Z.L.Li, LS. Yan, X.P.Zhang, and W. Pan, “Temperature and Strain Discrimination in BOTDA Fiber Sensor by Utilizing Dispersion Compensating Fiber,” IEEE Sensors Journal, vol. 18, no. 17, pp. 7100-7105, Sep, 2018.
    [31] E.P.Ippen, and R.H. Stolen , “ Stimulated Brillouin scattering in optical fibers,” Appl. Phys. Lett . ,21, 539, 1972.
    [32] T. Horiguchi, T. Kurashima, and M. Tateda , “Tensile strain dependence of Brillouin frequency shift in silica optical fibers,” IEEE Photonics Technology Letters, vol. 1, no. 5, pp. 107-108, May 1989.
    [33] T. Horiguchi, and M. Tateda , “Optical-fiber-attenuation investigation using stimulated Brillouin scattering between a pulse and a continuous wave,” Opt Lett, vol. 14, no. 8, pp. 408-410,Apr. 1989.
    [34] X. Bao, DJ. Webb, and D.A. Jackson, “32-Km Distributed temperature sensor-based on brillouin loss in an optical-fiber,” optics letters, vol. 18, no. 18, pp. 1561-1563, Sep. 1993.
    [35] M. Tateda, and K. Hotate, “Distributed fiber Brillouin strain sensing with 1-cm spatial resolution by correlation-based continuous-wave technique,” IEEE Photonics Technology Letters, vol. 14, no. 2, pp. 179-181, Feb. 2002.
    [36] S.M. Maughan, H.H. Kee, and T.P. Newson, “57-km single-ended spontaneous Brillouin-based distributed fiber temperature sensor using microwave coherent detection,” Optics letters, vol. 26, no. 6, pp. 331-333, Mar. 2001
    [37] A.W. Brown, B.G. Colpitts, and K. Brown, “Dark-pulse Brillouin optical time-domain sensor with 20-mm spatial resolution,” Journal of lughtwave technology, vol. 25, no. 1, pp. 381-386, Jan. 2007.
    [38] SM. Foaleng, M. Tur, JC. Beugnot, and L. Thevenaz, “High Spatial and Spectral Resolution Long-Range Sensing Using Brillouin Echoes,” Journal of lughtwave technology, vol. 28, no. 20, pp. 2993-3003, Oct. 2010.
    [39]WH. Li, XY. Bao, Y. Li, and L. Chen, “Differential pulse-width pair BOTDA for high spatial resolution sensing,” Optics express, vol. 16, no. 6, pp. 21616-21625, Dec. 2008.
    [40] MA. Soto, M. Taki, G. Bolognini, and F. Di.Pasquale, “Optimization of a DPP-BOTDA sensor with 25 cm spatial resolution over 60 km standard single-mode fiber using Simplex codes and optical pre-amplification,” Optics express, vol. 20, no. 7, pp. 6860-6869, Mar. 2012.
    [41] K.Y. Song, S.Chin, N.Primerov, and L. Thevenaz, “Time-Domain Distributed Fiber Sensor With 1 cm Spatial Resolution Based on Brillouin Dynamic Grating,” Journal of lughtwave technology, vol. 28, no. 14, pp. 2062-2067, Jul. 2010.
    [42] A. Motil, A. Bergman, and M. Tur, “[INVITED] State of the art of Brillouin fiber-optic distributed sensing,” Optics & Laser Technology, vol. 78, pp. 81–103, 2016.
    [43] 夏朱勇, “建構於布里淵光時域分析法之光纖感測系統:參數量測與優化,” 台灣科技大學電子工程研究所碩士論文, 2021年7月
    [44] S. Diakaridia, Y. Pan, P. Xu, D. Zhou, B. Wang, L. Teng, Z. Lu, D. Ba, and Y. Dong, "Detecting cm-scale hot spot over 24-km-long single-mode fiber by using differential pulse pair BOTDA based on double-peak spectrum," Optic Express, 17727-17736 (2017).
    [45] Q. Sun,X. Tu,S. Sun, and Z. Meng, "Long-range BOTDA sensor over 50 km distance employing pre-pumped Simplex coding," Journal of Optic.
    [46] X. Bao, DJ. Webb, and DA. Jackson, "Combined distributed temperature and strain sensor-based on brillouin loss in an optical-fiber, " Optics letters, Vol. 19, Issue 2,pp.141-143, Jan. 1994.
    [47] T. Horiguchi , and M.Tateda,"Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers," Optics Letters, 15, 1038-1040(1990).
    [48] T. Horiguchi, and M. Tateda, “BOTDA-Nondestructive Measurement of Single-Mode Optical Fiber Attenuation Characteristics Using Brillouin Interaction: Theory,” IEEE/OSA J. Lightwave Technonlogy, vol.7, no. 8, 1989.
    [49] Q. Wu, S. Nair, M. Shuck, E. v. Oort, A. Guzik and K. Kishida, "Advanced distributed fiber optic sensors for monitoring real-time cementing operations and long term zonal isolation", Journal of Petroleum Science and Engineering, Volume 158, 2017.
    [50] L.R.Hofer, D.B.Schaeffer, C.Constantin, and C. Niemann, "Bias Voltage Control in Pulsed Applications for Mach–Zehnder Electrooptic Intensity Modulators,"In ransactions on controlsystems technology, Vol. 25, Issue 5, pp.1890-1898, Sep. 2017.
    [51] M. Nikles, L. Thevenaz, and P. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” IEEE/OSA J. Lightwave Technonlogy, vol. 15, no. 10, pp. 1842–1851, 1997.
    [52] B. Vanus, C. Baker, L. Chen, and X. Y. Bao, “All-optical pulse peak power stabilization and its impact in phase-OTDR vibration detection” OSA Continuum, vol. 4, Issue 5, pp. 1430-1436, May 2020.
    [53] S. Diakaridia, Y. Pan, X.Pengbai, Z. dengwang, W. benzhang, T. lei, B. Dexin, and D. yingkang, “Detecting cm-scale hot spot over 24-km-long single-mode fiber by using differential pulse pair BOTDA based on double-peak spectrum,” Optics Express, vol. 25, Issue 15, pp. 17727-17736, Jun 2017.

    無法下載圖示 全文公開日期 2027/09/26 (校內網路)
    全文公開日期 2027/09/26 (校外網路)
    全文公開日期 2027/09/26 (國家圖書館:臺灣博碩士論文系統)
    QR CODE