簡易檢索 / 詳目顯示

研究生: 許安鋒
An-Feng Hsu
論文名稱: 同調檢測之相位靈敏光時域反射儀研究與設計
Study and Design on Phase-sensitive Optical Time-domain Reflectometry Based on Coherent Detection
指導教授: 廖顯奎
Shien-Kuei Liaw
口試委員: 吳文方
Wen-Fang Wu
單秋成
Chow-Shing Shin
宋峻宇
Jiun-Yu Sung
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 80
中文關鍵詞: 背向雷利散射相位靈敏光時域反射儀窄線寬雷射LabViewMATLAB數位訊號處理
外文關鍵詞: Rayleigh backscattering, phase-sensitive optical time-domain reflectometer, narrow linewidth laser, LabView, MATLAB, digital signal processing
相關次數: 點閱:307下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文初步地建置相位靈敏光時域反射儀,可作為分佈式光纖震動感測之應用,其機制是使用窄線寬雷射,經調變形成一道脈衝光,用於分析在待測光纖中有異常或擾動發生時所形成的背向雷利散射光的相位變化。透過文獻探討了解此架構的重要參數如雷射線寬、脈衝寬度與雜訊來源及其解決辦法,線寬可轉換成同調長度,直接地影響感測距離;脈衝寬度則可轉換成空間解析度,亦即最小可偵測異常發生的長度;雜訊來源包括衰退雜訊、極化相關的波動以及背向雷利散射光與本地震盪光的相對相位改變所導致的外差偵測效能波動,個別的解決辦法亦在文獻回顧中提及。
    於論文的中段介紹當前的感測系統,包含各元件及儀器在此架構中的功能,同時分析元組件的特性。與文獻中大多使用資料擷取來存取數據及訊號處理相比,本論文透過LabView控制示波器取出平衡式光偵測器轉換的電訊號資料,並用MATLAB做額外的數位訊號處理如數位濾波器、降頻處理及移動平均法來濾除雜訊,可節省設備成本。受限於現有雷射線寬過大使得待測長度不得過長,而待測區長度過短會造成反射的功率過小,不足以讓平衡式光偵測器接收並轉換,目前能達到量測待測長度1.7公里的功能,相位變化的分析仍需進一步改善。


    This thesis preliminarily established phase-sensitive optical time-domain reflectometer, which could be used as the application of distributed fiber vibration sensing. Its mechanism was to use narrow linewidth laser and it will be modulated into light pulse that was used to analyze the phase change of Rayleigh backscattering induced by abnormality or perturbation in the fiber under test (FUT). Realizing the key parameters in this architecture, such as laser linewidth, pulse width, noise sources and their corresponding solutions were made by doing survey on the related literature. Laser linewidth could be transformed into coherent length. So, it also affected the sensing length. In terms of pulse width, it could be equivalent to spatial resolution, which meant the minimum detectable length for the location of perturbation. As for noise resources, they were fading noise, polarization-dependent fluctuation and the fluctuation of the heterodyne detection efficiency induced by the relative phase change between RBS light. The individual solution to each noise was mentioned and discussed in the literature review.
    Amid the thesis, the experimental set-up, including each component and equipment with the explanation of their functions were introduced, and the characteristics of some components with the theories and experimental results were analyzed as well. Compared to the usage of data acquisition (DAQ) for getting access to the data and digital signal processing (DSP), LabView was used to control digital phosphor oscilloscope (DPO) for extraction of the data, and extra DSP like digital filter, frequency down conversion, and moving average were used to eliminate the noise. Overall, it was cost-efficient way that no extra expense will be spent on DAQ. However, our sensing length too long could not be too long, which in turn resulted in lower reflected optical power that was not enough to let BPD receive and do the optical to electronic (O/E) transformation due to the wide linewidth limit with the equivalence of the shorter coherent length. As a result, the function of measuring the sensing length, whose value is 1.7 km, was achieved, and the improvement on the analysis of phase change is needed.

    目錄 摘要 I Abstract II 誌謝 III 圖目錄 VI 表目錄 IX 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 論文架構 3 第二章 光纖感測原理 4 2.1 光纖感測技術 4 2.2 光學散射原理 6 2.2.1 雷利散射 6 2.2.2 布里淵散射 7 2.2.3 拉曼散射 8 2.2.4 光學散射應用與比較 9 2.3 逐點式光纖感測技術 10 2.4 分佈式光纖感測技術 12 2.5 基於背向雷利散射之分佈式感測技術 12 2.5.1 光時域反射儀 13 2.5.2 同調檢測之相位靈敏光時域反射 15 第三章 同調檢測之相位靈敏光時域反射儀 18 3.1 同調檢測之相位靈敏光時域反射儀文獻探討 18 3.1.1 雷射線寬與頻率飄移 18 3.1.2 感測距離與空間解析度 19 3.1.3 感測系統雜訊來源及解決辦法 20 3.2光學元組件原理與儀器介紹 22 3.2.1 光被動元組件 24 3.2.2 光主動元組件 27 3.2.3 儀器設備 40 第四章 同調檢測之相位靈敏光時域反射儀數值分析 47 4.1 濾波器設計 47 4.1.1 數位濾波器 48 4.1.2 數位訊號處理 54 4.2空間解析度量測 56 4.2.1入射光功率的選擇 56 4.2.2 1.5 km + 0.2 km單模光纖與單個擾動源 59 第五章 結論與未來展望 61 5.1 結論 61 5.2 未來展望 62 參考文獻 64

    [1] K. Kao and G. Hockham, “Dielectric-fibre surface waveguides for optical frequencies,” Proceedings of the Institution of Electrical Engineers, vol. 113, no. 7, pp. 1151–1158, Jan. 1966.
    [2] S. M. Nalawade, S. S. Harnol and H. V. Thakur, "Temperature and Strain Independent Modal Interferometric Torsion Sensor Using Photonic Crystal Fiber," IEEE Sensors Journal, vol. 12, no. 8, pp. 2614-2615, Aug. 2012
    [3] L. Ma, Y. Qi, Z. Kang and S. Jian, "All-Fiber Strain and Curvature Sensor Based on No-Core Fiber," IEEE Sensors Journal, vol. 14, no. 5, pp. 1514-1517, May 2014
    [4] X. Jin, C. Sun, S. Duan, W.Liu, G. Li, S. Zhang, X. Chen, L. Zhao, C. Lu, X. Yang, T. Geng, W. Sun, L. Yuan, "High Strain Sensitivity Temperature Sensor Based on a Secondary Modulated Tapered Long Period Fiber Grating," IEEE Photonics Journal, vol. 11, no. 1, pp. 1-8, Feb. 2019
    [5] L. Schenato et al., "Highly Sensitive FBG Pressure Sensor Based on a 3D-Printed Transducer," IEEE/OSA J. Lightw Technol., vol. 37, no. 18, pp. 4784-4790, Sept. 2019
    [6] Y. Gu, Y. Zhao, R. Lv and Y. Yang, "A Practical FBG Sensor Based on a Thin-Walled Cylinder for Hydraulic Pressure Measurement," IEEE Photonics Technology Letters, vol. 28, no. 22, pp. 2569-2572, Nov. 2016
    [7] C. Hong, Y. Zhang and L. Borana, "Design, Fabrication and Testing of a 3D Printed FBG Pressure Sensor," IEEE Access, vol. 7, pp. 38577-38583, March 2019
    [8] K. M. McCary, B. A. Wilson, A. Birri and T. E. Blue, "Response of Distributed Fiber Optic Temperature Sensors to High-Temperature Step Transients," IEEE Sensors Journal, vol. 18, no. 21, pp. 8755-8761, Nov. 2018
    [9] Y. Chen, Q. Han, W. Yan, Y. Yao and T. Liu, "Magnetic Field and Temperature Sensing Based on a Macro-Bending Fiber Structure and an FBG," IEEE Sensors Journal, vol. 16, no. 21, pp. 7659-7662, Nov. 2016
    [10] L. S. Yan, A. Yi, W. Pan and B. Luo, "A Simple Demodulation Method for FBG Temperature Sensors Using a Narrow Band Wavelength Tunable DFB Laser," IEEE Photonics Technology Letters, vol. 22, no. 18, pp. 1391-1393, Sept. 2010
    [11] J. Wang, Y. Zeng, C. Lin, Z. Hu, G. Peng and Y. Hu, "A Miniaturized FBG Accelerometer Based on a Thin Polyurethane Shell," IEEE Sensors Journal, vol. 16, no. 5, pp. 1210-1216, March, 2016
    [12] Q. Liu, X. Qiao, Z. Jia, H. Fu, H. Gao and D. Yu, "Large Frequency Range and High Sensitivity Fiber Bragg Grating Accelerometer Based on Double Diaphragms," IEEE Sensors Journal, vol. 14, no. 5, pp. 1499-1504, May, 2014
    [13] X. Wang, Y. Guo, L. Xiong and H. Wu, "High-Frequency Optical Fiber Bragg Grating Accelerometer," IEEE Sensors Journal, vol. 18, no. 12, pp. 4954-4960, June, 2018
    [14] N. Guo, L. Wang, J. Wang, C. Jin, H.-Y. Tam, A. Zhang, and C. Lu, “Bi-Directional Brillouin Optical Time Domain Analyzer System for Long Range Distributed Sensing,” Sensors, vol. 16, no. 12, p. 2156, Dec., 2016
    [15] Strutt, Hon. J.W., "On the light from the sky, its polarization and colour,", The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. vol. 41, no. 271, pp.107–120, 1871
    [16] H. Hsieh, K. Hsu, T. Jong and L. Wang, "Multi-Zone Fiber-Optic Intrusion Detection System With Active Unbalanced Michelson Interferometer Used for Security of Each Defended Zone," IEEE Sensors Journal, vol. 20, no. 3, pp. 1607-1618, Feb. 2020
    [17] Q. Rong and X. Qiao, "FBG for Oil and Gas Exploration," IEEE/OSA J. Lightw Technol., vol. 37, no. 11, pp. 2502-2515, June 2019
    [18] F. Peng, N. Duan, Y. Rao and J. Li, "Real-Time Position and Speed Monitoring of Trains Using Phase-Sensitive OTDR," IEEE Photonics Technology Letters, vol. 26, no. 20, pp. 2055-2057, Oct. 2014
    [19] Y. Lu, M. T. Wang, C. J. Hao, Z. Q. Zhao and J. Q. Yao, "Temperature Sensing Using Photonic Crystal Fiber Filled With Silver Nanowires and Liquid," IEEE Photonics Journal, vol. 6, no. 3, pp. 1-7, June 2014
    [20] F. Xiao, J.L. Hulsey, R. Balasubramanian, “Fiber optic health monitoring and temperature behavior of bridge in cold region”, Struct. Control Health Monit., Apr. 2017
    [21] V. Kaur, S. Singh, “Design approach of solid-core photonic crystal fiber sensor with sensing ring for blood component detection”, J. of Nanophotonics, vol. 13, no. 2, May 2019
    [22] J. Janting, Jens K. M. Pedersen, G. Woyessa, K. Nielsen, and O. Bang, “Small and Robust All-Polymer Fiber Bragg Grating Based pH Sensor”, IEEE/OSA J. Lightw Technol., vol. 37, no. 18, pp. 4480-4486, 2019
    [23] G. Allwood, G. Wild, and S. Hinckley, “Optical Fiber Sensors in Physical Intrusion Detection Systems: A Review”, IEEE Sensors Journal, vol. 16, no. 14, July 2016
    [24] 楊書銘, “布里淵光時域分析法之感測距離及靈敏度優化研究,” 台灣科技大學電子工程研究所碩士論文, 2019年7月
    [25] Smekal, A., “Zur Quantentheorie der Dispersion”, Naturwissenschaften vol. 11, pp. 873–875, 1923
    [26] A. H. Hill, B. Manifold, and D. Fu, “Tissue imaging depth limit of stimulated Raman scattering microscopy”, Biomedical Optics Express, vol. 11, no. 2, pp. 762-774, 2020
    [27] J. Xu, H. Tang, S. Su, J. Liu, H. Han, L. Zhang, K. Xu, Y. Wang, S. Hu, Y. Zhou, and J. Xiang, “Micro-Raman Spectroscopy Study of 32 Kinds of Chinese Coals: Second-Order Raman Spectrum and Its Correlations with Coal Properties,” Energy & Fuels, vol. 31, no. 8, pp. 7884-7893, June 2017
    [28] Das R. S., Agrawal Y. K., “Raman spectroscopy: recent advancements, techniques and applications,” Vibrational Spectroscopy, vol. 57, no. 2, pp. 163-176, Nov. 2011
    [29] J. Xiang, J. Liu, J. Xu, S. Su, H. Tang, Y. Hu, M. E. Mostafa, K. Xu, Y. Wang, S. Hu, “The fluorescence interference in Raman spectrum of raw coals and its application for evaluating coal property and combustion characteristics”, Proceedings of the Combustion Institute, vol. 37, no. 3, pp. 3053-3060, Jan. 2019
    [30] 陳冠宏, “布里淵光時域分析法的研究與建置,” 台灣科技大學電子工程研究所碩士論文, 2018年7月
    [31] H. Zhao, "chapter 6 Fuel and Mixture Composition Measurement by Raman and Rayleigh Scattering Techniques," Laser Diagnostics and Optical Measurement Techniques in Internal Combustion Engines , SAE, pp.165-197, 2012
    [32] R. W. Hellwarth, “Theory of Stimulated Raman Scattering”, Phys. Rev. 130, pp. 1850, June 1963
    [33] N. L. Rowell and G. I. Stegeman, “Theory of Brillouin scattering from opaque media,” Phys. Rev. B 18, no. 2, pp. 598, Sept. 1978
    [34] G. Rajan, “Optical Fiber Sensors: Advanced Techniques and Applications”, CRC Press, Florida, US, 2015
    [35] C. Aguergaray, A. Runge, M. Erkintalo, and N. G. R. Broderick, “Raman-driven destabilization of mode-locked long cavity fiber lasers: fundamental limitations to energy scalability”, Optics Letters, vol. 38, no. 15, pp. 2644-2646, Aug. 2013
    [36] M. O. van Deventer and A. J. Boot, “Polarization properties of stimulated Brillouin scattering in single-mode fibers”, IEEE/OSA J. Lightw. Technol., vol. 12, no. 4, pp. 585–590, Apr. 1994
    [37] R. Feced, M. Farhadiroushan and V. A. Handerek, "Zero dead-zone OTDR with high-spatial resolution for short haul applications," IEEE Photonics Technology Letters, vol. 9, no. 8, pp. 1140-1142, Aug. 1997
    [38] A. Hong, L. Peng, G. Shuai, “A research based on the temperature field of high precision temperature measuring method of ROTDR,” Proc. of the International Conference on Measurement, Information and Control (MIC), pp. 668-672, 2012
    [39] Imai M, Nakano R, Kono T, Ichinomiya T, Miura S, Masahito M, “Crack detection application for fiber reinforced concrete using BOCDA-based optical fiber strain sensor”, Struct Eng., vol. 136, no.8, pp.1001–1008, Jan. 2010
    [40] T. Horiguchi and M. Tateda, “BOTDA-Nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: Theory,” IEEE/OSA J. Lightw. Technol., vol. 7, no. 8, pp. 1170-1176, Aug. 1989
    [41] Y.Mizuno, W.Zou, Z.He, and K.Hotate, "Proposal of Brillouin optical correlation-domain reflectometry (BOCDR)," Opt. Express, vol. 16, pp. 12148-12153, Apr. 2008
    [42] F. Wang, W. Zhan, X. Zhang, Y. Lu, “Improvement of Spatial Resolution for BOTDR by Iterative Subdivision Method”, Lightwave Technol., vol. 31, pp. 3663-3667, Oct. 2013
    [43] K. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” IEEE/OSA J. Lightw. Technol., vol. 15, no. 8, pp. 1263–1276, Aug. 1997.
    [44] Y. Zhang, G. Yan, B. Zhou, E. Lee and S. He, "Reflective Optical Fiber Refractometer Based on Long-Period Grating Tailored Active Bragg Grating," IEEE Photonics Technology Letters, vol. 27, no. 11, pp. 1173-1176, June 2015
    [45] Y.-P. Wang, L. Xiao, D. N. Wang, and W. Jin, “Highly sensitive long-period fiber-grating strain sensor with low temperature sensitivity,” Optics Letters, vol. 31, no. 23, p. 3414, Jan. 2006
    [46] H. Chang, Y. Chang, H. Sheng, M. Fu, W. Liu and R. Kashyap, "An Ultra-Sensitive Liquid-Level Indicator Based on an Etched Chirped-Fiber Bragg Grating," IEEE Photonics Technology Letters, vol. 28, no. 3, pp. 268-271, Feb. 2016
    [47] 王凱民, “光纖光柵讀取機元組件之研製與性能優化,” 台灣科技大學電子工程研究所碩士論文, 2019年7月
    [48] D. Marcuse, “Rayleigh scattering and the impulse response of optical fibers”, Bell Syst. Tech. J., vol. 53, pp. 705–715, Apr. 1974
    [49] E. Brinkmeyer, “Analysis of the backscattering method for single-mode optical fibers”, J. Opt. Soc. Am. 70, 1010–1012, Aug. 1980
    [50] M. K. Barnoski and S. M. Jensen, "Fiber waveguides: a novel technique for investigating attenuation characteristics," Appl. Opt., vol. 15, pp. 2112-2115, Sept. 1976
    [51] M. K. Barnoski, M. D. Rourke, S. M. Jensen, and R. T. Melville, "Optical time domain reflectometer," Appl. Opt. 16, pp. 2375-2379, Sept. 1977
    [52] D. Anderson, L. Johnson, and F. G. Bell, “Troubleshooting Optical Fiber Networks: Understanding and Using Optical Time-Domain Reflectometers”, Academic Press, 2nd ed., Jan. 2004.
    [53] J. C. Juarez, E. W. Maier, Kyoo Nam Choi and H. F. Taylor, "Distributed fiber-optic intrusion sensor system," IEEE/OSA J. Lightw. Technol., vol. 23, no. 6, pp. 2081-2087, June 2005
    [54] J. King, D. Smith, K. Richards, P. Timson, R. Epworth and S. Wright, "Development of a coherent OTDR instrument," IEEE/OSA J. Lightw. Technol., vol. 5, no. 4, pp. 616-624, Apr. 1987
    [55] X. Fan, “Distributed Rayleigh Sensing”, Peng GD. (eds) Handbook of Optical Fibers,” Springer, Singapore, March 2018
    [56] C. Akcay, P. Parrein, and J. P. Rolland, "Estimation of longitudinal resolution in optical coherence imaging", Applied Optics, vol. 41, no. 25, pp. 5256-5262, Sept. 2002
    [57] Y. Lu, T. Zhu, L. Chen and X. Bao, "Distributed Vibration Sensor Based on Coherent Detection of Phase-OTDR," IEEE/OSA J. Lightw. Technol., vol. 28, no. 22, pp. 3243-3249, Nov. 2010
    [58] H. F. Martins, S. Martin-Lopez, P. Corredera, P. Salgado, O. Frazão, and M. González-Herráez, “Modulation instability-induced fading in phase-sensitive optical time-domain reflectometry,” Opt. Lett., vol. 38, no. 6, pp. 872–874, March 2013
    [59] Z. Qin, L. Chen, and X. Bao, “Wavelet denoising method for improving detection performance of distributed vibration sensor,” IEEE Photonics Technology Letters, vol. 24, no. 7, pp. 542–544, Jan. 2012
    [60] F. Peng, H. Wu, X. Jia, Y. Rao, Z. Wang, and Z. Peng, “Ultra-long high-sensitivity Φ-OTDR for high spatial resolution intrusion detection of pipelines”, Optics Express, vol. 22, no. 11, pp. 13804-13810, June 2014
    [61] P. Healey, "Fading in heterodyne OTDR," in Electronics Letters, vol. 20, no. 1, pp. 30-32, Jan. 1984
    [62] Y. Wu, Z. Wang, J. Xiong, J. Jiang, S. Lin and Y. Chen, "Interference Fading Elimination With Single Rectangular Pulse in φ-OTDR," IEEE/OSA J. Lightw. Technol., vol. 37, no. 13, pp. 3381-3387, July 2019
    [63] A. D. Kersey, M. J. Marrone, and A. Dandridge, “Polarization diversity detection for fiber interferometers using active feedback control of output polarization-mode selection”, Opt. Lett. vol. 15, no. 22, pp. 1315-1317, Nov. 1990
    [64] M. Ren, P. Lu, L. Chen and X. Bao, "Theoretical and Experimental Analysis of Φ-OTDR Based on Polarization Diversity Detection," IEEE Photonics Technology Letters, vol. 28, no. 6, pp. 697-700, March 2016
    [65] G. Yang, X. Fan, S. Wang, B. Wang, Q. Liu and Z. He, "Long-Range Distributed Vibration Sensing Based on Phase Extraction From Phase-Sensitive OTDR," IEEE Photonics Journal, vol. 8, no. 3, pp. 1-12, June 2016
    [66] Gerd Keiser, “Optical Fiber Communications”, 4th ed., Boston, U.S.A, 2010
    [67] 蔡孟軒, "布里淵光時域分析系統之解析度與雙參數量測優化",台灣科技大學電子工程研究所碩士論文, 2020年7月
    [68] F. Liu et al., "Acousto-Optic Modulation Induced Noises on Heterodyne-Interrogated Interferometric Fiber-Optic Sensors," IEEE/OSA J. Lightw. Technol., vol. 36, no. 16, pp. 3465-3471, Aug. 2018
    [69] S. O. Kasap, “Optoelectronics and Photonics Principles and Practices”, 2nd ed, England, U.K., 2013
    [70] 王彬, “MATLAB數位信號處理”, 出版商:五南圖書, 台北, 2012年8月
    [71] S. W. Smith, "The Scientist and Engineer's Guide to Digital Signal Processing”, 2nd ed., California Technical Publishing San Diego, California, pp.277-285, 1997

    無法下載圖示 全文公開日期 2026/01/27 (校內網路)
    全文公開日期 2051/01/27 (校外網路)
    全文公開日期 2051/01/27 (國家圖書館:臺灣博碩士論文系統)
    QR CODE