簡易檢索 / 詳目顯示

研究生: 林楷翔
Kai-Siang Lin
論文名稱: 低溫鋁誘發及自組裝單分子膜輔助成長多晶矽薄膜-3-胺基丙基三乙氧基矽烷效應之研究
Study of Low Temperature Alumiminum-induced and Self-assembled Monolayer-assisted Fabrication of Polycrystalline Silicon – the Effect of 3-aminopropyltriethoxysilane
指導教授: 戴龑
Yian Tai
口試委員: 周賢鎧
Shyan-Kay Jou
溫政彥
Cheng-Yen Wen
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 92
中文關鍵詞: 低溫鋁誘發自組裝單分子膜氫化非晶矽
外文關鍵詞: low temperature aluminum induced crystallization, self-assembles momolayer, hydrogenated amorphous silicon
相關次數: 點閱:284下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究為在低溫製程下試圖將非晶矽轉換成多晶矽,多晶矽薄膜的形成方式眾多,直接沉積型的有化學氣相沉積法,或是再結晶型的包含固相結晶法、準分子雷射在結晶法、鋁誘發法等等,但大多都需要搭配高溫的製程。為了能在軟板上做應用勢必要降低製程溫度,本實驗使用鋁誘發結晶法於非晶矽薄膜中,經過200℃的加熱退火後使非晶矽轉換成多晶矽,透過不同氫化程度的氫化非晶矽、自組裝單分子薄膜在基板上的改質來達到在低溫誘發的目標。
在詳細的實驗過程中,發現了經過聚集APTES-SAM修飾的基板再濺鍍完矽薄膜後即可以從拉曼光譜儀偵測到多晶矽的結晶訊號,沒有經過鋁誘發的轉化即產生效果,觀察到了不一樣的轉化途徑。雖然此法效果可能不如鋁誘發結晶法好,本研究會試圖探討出合邏輯的機制以解釋此現象。


In this research, we focus on how to transfer amorphous silicon (a-Si) to poly-crystalline Si (poly-Si). There are many methods to fabricate poly-Si on glass substrate. Chemical vapor depostition can directly deposit poly-Si on heterogeneous substrate. Solid phase crystallization (SPC), Excimer laser crystallization (LC), Metal induced crystallization (MIC) can recrystallize a-Si film to poly Si film by giving secondary energy. These methods usually need much high process temperature. In this decades, application on soft materials has already been a big issue. In order to fabricate poly-Si film on soft board, it is necessary to decrease the process temperature. In our approach, we use aluminum induced crystallization method. By improving the quality of a-Si film with hydrogen or using self-assembles momolayers with different functional group to modify the surface tention and polarity of the substrate prior to the deposition of silicon, the process temperature may decrease to the temperature which soft board can endure.
In this study, we find that the substrate modified by aggregate APTES-SAM has some effects. After Si atoms deposite on the modified substrate by RF-sputterin, there comes some covalent bonding like Si-O-Si or Si-N-N-Si. And the follow up Si atoms will grow near these seed crystal sites. Without capped with aluminum and annealing process, it can grow up poly-Si in partial region. Although this kind of Si film can not called a poly-Si film because there still exists some amorphous regions in the film, we try to figure out this phenomenon and give a reasonable explains.

中文摘要 I Abstract II 圖目錄 V 表目錄 IX 名詞縮寫表 X 第一章 緒論 1 1.1 前言 1 1.2 多晶矽薄膜介紹 4 1.2-1 固相結晶法(solid phase crystallization) 6 1.2-2 準分子雷射再結晶法(excimer laser crystallization) 7 1.2-3 金屬誘發法(metal induced crystallization,MIC) 8 1.2-4 低溫多晶矽(low temperature poly-silicon,LTPS) 10 1.3研究動機 11 第二章 基本理論 13 2.1文獻回顧 13 2.2 自組裝單分子層薄膜(Self-assembled monolayer,SAM) 14 2.3 氫化非晶矽薄膜(hydrogenated amorphous silicon,a-Si:H) 17 2.4電漿原理 20 2.5濺鍍原理 22 2.5-1直流濺鍍(DC-sputter) 23 2.5-2射頻濺鍍(RF-sputter) 24 2.5-3 熱蒸鍍(Thermal evaporation) 25 2.6 薄膜成長機制 26 第三章 實驗 30 3.1 實驗藥品與耗材 30 (1) 基板 30 (2) 氣體 30 (3) 藥品 30 3.2 實驗儀器與分析設備 32 3.3實驗步驟 33 3.3-1實驗流程 33 3.3-2清洗基材 34 3.3-3自組裝單分子薄膜(SAMs)之成長 34 3.3-4利用射頻濺鍍(RF Sputtering)系統沉積矽薄膜 36 3.3-5利用熱蒸鍍系統(thermal evaporation system)沉積鋁薄膜 37 3.3-6利用金屬誘發結晶法形成多晶矽薄膜 38 3.3-7蝕刻 38 3.4分析量測儀器之簡介 39 3.4-1 接觸角測量儀(contact angle) 39 3.4-2表面形態輪廓儀(α-step) 39 3.4-3 拉曼震動光譜儀(Raman spectrum) 39 3.4-4 霍爾量測儀(Hall measurement) 41 3.4-5 X 射線光電子能譜儀(x-ray photoelectron spectroscopy,XPS) 44 3.4-6 高功率X 光繞射儀(high power x-ray diffractometer,D8) 45 3.4-7 場發射掃描式電子顯微鏡(field-emission scanning electron microscope,FE-SEM) 46 3.4-8 穿透式電子顯微鏡(transmission electron microscope,TEM) 47 第四章 結果與討論 49 4.1利用a-NH_2-SAM將非晶矽轉化成多晶矽 49 4.1-1 無鍍鋁下比較Pristine、n-NH_2-SAM和a-NH_2-SAM 49 4.1-2 a-NH_2-SAM之接觸角分析 51 4.1-3 a-NH_2-SAM之X射線電子能譜分析 52 4.1-4 a-NH_2-SAM將非晶矽轉化成多晶矽 54 4.1-5 a-NH_2-SAM將非晶矽轉化成多晶矽之機制探討 60 4.2利用鋁金屬誘導法將非晶矽轉化成多晶矽 61 4.2-1探討非晶矽品質的影響 62 4.2-2背景壓力為3*〖10〗^(-6)torr鍍矽腔體下鋁誘發後多晶矽品質 65 4.2-3背景壓力為3*〖10〗^(-7)torr鍍矽腔體下鋁誘發後多晶矽品質 70 4.2-4其他分析儀器驗證多晶矽品質 77 第五章結果與未來展望 85 參考文獻 86

[1] “Renewables 2014 Global Status Report,” Renew. Energy Policy Netw.
21st Century, Jun. 2014.
[2] M. Yu, Y.-Z. Long, B. Sun, and Z. Fan, “Recent advances in solar cells based on one-dimensional nanostructure arrays,” Nanoscale, vol. 4, no. 9, pp. 2783–2796, Apr. 2012.
[3] 顧鴻濤, 太陽能電池元件導論: 材料、元件、製程、系統, 二版修
訂. 新北市[五股區]: 全威, 101AD.
[4]黃惠良, 太陽電池: 太陽能轉換成電能的最佳裝置. 臺北市: 五南, 2008.
[5] D. M. Chapin, C. S. Fuller, and G. L. Pearson, “A New Silicon p‐n
Junction Photocell for Converting Solar Radiation into Electrical Power,” J. Appl. Phys., vol. 25, no. 5, pp. 676–677, May 1954.
[6] J. I. Pankove and D. E. Carlson, “Electrical and Optical Properties of Hydrogenated Amorphous Silicon,” Annu. Rev. Mater. Sci., vol. 10, no. 1, pp. 43–63, 1980.
[7] 翁敏航, 太陽能電池: 原理、元件、材料、製程與檢測技術. 臺北
市: 臺灣東華, 99.
[8] D. Fischer, S. Dubail, J. A. Anna Selvan, N. P. Vaucher, R. Platz, C. Hof, U. Kroll, J. Meier, P. Torres, H. Keppner, N. Wyrsch, M. Goetz, A. Shah, and K.-D. Ufert, “The ‘micromorph’ solar cell: extending a-Si:H technology towards thin film crystalline silicon,” in , Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference, 1996, 1996, pp. 1053–1056.
[9] M. Y. Yeh, C. C. Lee, G. Y. Tzeng, and Y. F. Luo, “Characteristics of N-Type Polycrystalline Silicon Thin Films on Glass Substrates Deposited at Room Temperature by Direct Current Magnetron Sputtering under Substrate Biases,” Jpn. J. Appl. Phys., vol. 48, no. 5R, p. 056505, May 2009.
[10]S.-I. Jun, P. D. Rack, T. E. McKnight, A. V. Melechko, and M. L. Simpson, “Low-temperature solid-phase crystallization of amorphous silicon thin films deposited by rf magnetron sputtering with substrate bias,” Appl. Phys. Lett., vol. 89, no. 2, p. 022104, Jul. 2006.
[11]D. Raha and D. Das, “Controlling the growth of nanocrystalline silicon by tuning negative substrate bias,” Sol. Energy Mater. Sol. Cells, vol. 95, no. 12, pp. 3181–3188, Dec. 2011.
[12]N. A. Bakr, A. M. Funde, V. S. Waman, M. M. Kamble, R. R. Hawaldar,
D. P. Amalnerkar, V. G. Sathe, S. W. Gosavi, and S. R. Jadkar, “Influence of deposition pressure on structural, optical and electrical
properties of nc-Si:H films deposited by HW-CVD,” J. Phys. Chem. Solids, vol. 72, no. 6, pp. 685–691, Jun. 2011.
[13]D. Toet, B. Koopmans, P. V. Santos, R. B. Bergmann, and B. Richards, “Growth of polycrystalline silicon on glass by selective laser‐induced
nucleation,” Appl. Phys. Lett., vol. 69, no. 24, pp. 3719–3721, Dec. 1996.
[14]P. I. Widenborg and A. G. Aberle, “Surface morphology of poly-Si films made by aluminium-induced crystallisation on glass substrates,” J. Cryst. Growth, vol. 242, no. 3–4, pp. 270–282, Jul. 2002.
[15]T. Matsuyama, N. Terada, T. Baba, T. Sawada, S. Tsuge, K. Wakisaka, and S. Tsuda, “High-quality polycrystalline silicon thin film prepared by a solid phase crystallization method,” J. Non-Cryst. Solids, vol. 198– 200, Part 2, pp. 940–944, May 1996.
[16]R. B. Bergmann, G. Oswald, M. Albrecht, and V. Gross, “Solid-phase crystallized Si films on glass substrates for thin film solar cells,” Sol. Energy Mater. Sol. Cells, vol. 46, no. 2, pp. 147–155, May 1997.
[17]M. A. Crowder, A. T. Voutsas, S. R. Droes, M. Moriguchi, and Y. Mitani, “Sequential lateral solidification processing for polycrystalline Si TFTs,” IEEE Trans. Electron Devices, vol. 51, no. 4, pp. 560–568, Apr. 2004.
[18]K. Ishikawa, M. Ozawa, C.-H. Oh, and M. Matsumura, “Excimer- Laser-Induced Lateral-Growth of Silicon Thin-Films,” Jpn. J. Appl. Phys., vol. 37, no. 3R, p. 731, Mar. 1998.
[19]D. Dimova-Malinovska, O. Angelov, M. Sendova-Vassileva, M. Kamenova, and J.-C. Pivin, “Polycrystalline silicon thin films on glass substrate,” Thin Solid Films, vol. 451–452, pp. 303–307, Mar. 2004.
[20]O. Nast, T. Puzzer, L. M. Koschier, A. B. Sproul, and S. R. Wenham, “Aluminum-induced crystallization of amorphous silicon on glass substrates above and below the eutectic temperature,” Appl. Phys. Lett., vol. 73, no. 22, pp. 3214–3216, Nov. 1998.
[21]H. Kuraseko, N. Orita, H. Koaizawa, and M. Kondo, “Inverted Aluminum-Induced Layer Exchange Method for Thin Film Polycrystalline Silicon Solar Cells on Insulating Substrates,” Appl. Phys. Express, vol. 2, no. 1, p. 015501, Jan. 2009.
[22]C. C. Peng, C. K. Chung, and J. F. Lin, “Effects of Al film thickness and annealing temperature on the aluminum-induced crystallization of amorphous silicon and carrier mobility,” Acta Mater., vol. 59, no. 15, pp. 6093–6102, Sep. 2011.
[23]M. Hosssain, H. M. Meyer III, H. H. Abu-Safe, H. A. Naseem, and W.
D. Brown, “The effect of hydrogen in the mechanism of aluminum- induced crystallization of sputtered amorphous silicon using scanning Auger microanalysis,” Thin Solid Films, vol. 510, no. 1–2, pp. 184–190, Jul. 2006.
[24]J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, “Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology,” Chem. Rev., vol. 105, no. 4, pp. 1103–1170, Apr. 2005.
[25]A. Ulman, “Formation and Structure of Self-Assembled Monolayers,”
Chem. Rev., vol. 96, no. 4, pp. 1533–1554, Jan. 1996.
[26]A. Rajca, “An Introduction To Ultrathin Organic Films: From Langmuirblodgett To Self-Assembly, By Abraham Ulman, Academic Press, London 1991, Xxiii, 442Pp., $65, ISBN 0-12-708230-1,” Adv.
Mater., vol. 4, no. 4, pp. 309–309, Apr. 1992.
[27]S. Khodabakhsh, B. M. Sanderson, J. Nelson, and T. S. Jones, “Using Self-Assembling Dipole Molecules to Improve Charge Collection in Molecular Solar Cells,” Adv. Funct. Mater., vol. 16, no. 1, pp. 95–100, Jan. 2006.
[28]J. S. Kim, J. H. Park, J. H. Lee, J. Jo, D.-Y. Kim, and K. Cho, “Control of the electrode work function and active layer morphology via surface modification of indium tin oxide for high efficiency organic photovoltaics,” Appl. Phys. Lett., vol. 91, no. 11, p. 112111, Sep. 2007.
[29]M. Stutzmann, D. K. Biegelsen, and R. A. Street, “Detailed investigation of doping in hydrogenated amorphous silicon and
germanium,” Phys. Rev. B, vol. 35, no. 11, pp. 5666–5701, Apr. 1987. [30]M. H. Cohen, H. Fritzsche, and S. R. Ovshinsky, “Simple Band Model
for Amorphous Semiconducting Alloys,” Phys. Rev. Lett., vol. 22, no. 20, pp. 1065–1068, May 1969.
[31]D. E. Carlson and C. R. Wronski, “Amorphous silicon solar cell,” Appl.
Phys. Lett., vol. 28, no. 11, pp. 671–673, Jun. 1976.
[32]高正雄, 超 LSI 時代: 電漿化學. 臺南市: 復漢, 88.
[33]W. T. Y. Y. C. Lin, “Effect of Substrate Temperature on the Characterization of Molybdenum Contacts Deposited by DC Magnetron Sputtering,” Chin. J. Phys., vol. 50, no. 1, 2012.
[34]R. A. Mickelsen and W. S. Chen, “High photocurrent polycrystalline thin‐film CdS/CuInSe2 solar cella,” Appl. Phys. Lett., vol. 36, no. 5, pp.
371–373, Mar. 1980.
[35]M. Ohring, The materials science of thin films. Boston: Academic Press, 1992.
[36]A. Anders, “A structure zone diagram including plasma-based deposition and ion etching,” Thin Solid Films, vol. 518, no. 15, pp. 4087–4090, May 2010.
[37]M. Konuma, Plasma techniques for film deposition. Harrow: Alpha Science, 2005.
[38]施敏, 李明逵, and 曾俊元, 半導體元件物理與製作技術: 第三版,
初版. 新竹市: 國立交通大學出版社, 102AD.
[39]“施敏,半導體元件物理與製作技術,第二版, 國立交通大學出版 ,1980.” .
[40]周安琪, 薄膜材料. 徐氏基金會.
[41]B. D. Cullity and S. R. Stock, Elements of X-Ray Diffraction, 3 edition.
Upper Saddle River, NJ: Prentice Hall, 2001.
[42]J. F. Moulder, Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data. Physical Electronics, 1995.
[43]H.-Y. Kim, K.-Y. Lee, and J.-Y. Lee, “The influence of hydrogen dilution ratio on the crystallization of hydrogenated amorphous silicon films prepared by plasma-enhanced chemical vapor deposition,” Thin Solid Films, vol. 302, no. 1–2, pp. 17–24, Jun. 1997.
[44]L. Cai, H. Wang, W. Brown, and M. Zou, “Large Grain Polycrystalline Silicon Film Produced by Nano-Aluminum-Enhanced Crystallization of Amorphous Silicon,” Electrochem. Solid-State Lett., vol. 8, no. 7, p. G179, 2005.
[45]M. Kurosawa, N. Kawabata, T. Sadoh, and M. Miyao, “Orientation- controlled Si thin films on insulating substrates by Al-induced crystallization combined with interfacial-oxide layer modulation,” Appl. Phys. Lett., vol. 95, no. 13, p. 132103, 2009.
[46]J. L. Lenhart and W. Wu, “Influence of Cross-Link Density on the Thermal Properties of Thin Polymer Network Films,” Langmuir, vol. 19, no. 11, pp. 4863–4865, May 2003.
[47]H.-L. Yip, S. K. Hau, N. S. Baek, H. Ma, and A. K.-Y. Jen, “Polymer Solar Cells That Use Self-Assembled-Monolayer- Modified ZnO/Metals as Cathodes,” Adv. Mater., vol. 20, no. 12, pp. 2376–2382, Jun. 2008.
[48]J. Park and H. Lee, “Effect of surface functional groups on nanostructure fabrication using AFM lithography,” Mater. Sci. Eng. C, vol. 24, no. 1–2, pp. 311–314, Jan. 2004.
[49]S. Flink, F. C. J. M. van Veggel, and D. N. Reinhoudt, “Functionalization of self-assembled monolayers on glass and oxidized silicon wafers by surface reactions,” J. Phys. Org. Chem., vol. 14, no. 7, pp. 407–415, Jul. 2001.
[50]H. Sugimura, A. Hozumi, T. Kameyama, and O. Takai, “Organosilane self-assembled monolayers formed at the vapour/solid interface,” Surf. Interface Anal., vol. 34, no. 1, pp. 550–554, Aug. 2002.
[51]Elaine T.Vandenberg, Lars Bertilsson, Bo Liedberg, and Kajsa Uvdal,“Structure of 3-Aminopropyl Triethoxy Silane on Silicon Oxide,”Laboratory of Applied physic, Department of Physisc and Measurement Technology, May 9, 1991.
[52]Yingying Sun , Masahiro Yanagisawa , Masahiro Kunimoto , Masatoshi Nakamura , Takayuki Homma, “Depth profiling of APTES self-assembled monolayers using surface-enhanced confocal Raman microspectroscopy”ELSEVIER. , April, 2017.
[53]Q.Y. Tong, G. Fontain and P. Enquist,“Room temperature SiO2 SiO2 covalent bonding,”Applied Physics Letters 89,042110,2006.
[54] Mark S. Gordon,' Marshall T. Carroll, and Jan H. Jensen, “Nature of the SI-N Bond in Silatranes,” Organometallics 1991, 10, 2657-2660, January 17, 1991.
[55] Aydin Tankut, Mehmet Karaman, Engin Ozkol, Sedat Canli, and Rasit Turan, “Structural properties of a-Si films and their effect on aluminum induced crystallization,” AIP Advances 5, 107114, 2015.
[56] R. L. C. Vink,' G. T. Barkema, and W. F. van der Weg, “Raman spectra and structure of amorphous Si,” PHYSICAL REVIEW B, VOLUME 63, 115210, 2 March 2001.
[57] G. Morell,'R. S. Katiyar, S. Z. Weisz, H. Jia, J. Shinar,and I. Balberg, “Raman study of the network disorder in sputtered and glow discharge aSi:H films,” Journal of Applied Physics 78, 5120, 1995.
[58] Weiyuan Duan, Fanying Meng, Jiantao Bian, Jian Yu, Liping Zhang, and Zhengxin Liu, “Role of Al2O3intermediate layer for improving the quality ofpolycrystalline-silicon film in inverted aluminum-induced layerexchang,” Applied Surface Science 327 (2015) 37–42
[59] K. Toko, R. Numata, N. Saitoh, N. Yoshizawa, N. Usami, and T. Suemasu, “Selective formation of large-grained, (100)- or (111)-oriented Si on glass by Al-induced layer exchange,” Journal of Applied Physics 115, 094301 (2014)
[60] Jun-Dar Hwang, Lee-chi Luo, Sanjaya Braham and Kuang-Yao Lo, “The effect of high concemtration of phosphorous in aluminum induced crystallization of amourphous silicon films,” Thin solid films 618(2016)50-54.

QR CODE