簡易檢索 / 詳目顯示

研究生: 吳潤節
Jun-chieh Wu
論文名稱: 氧化銦錫層應用於非晶矽/結晶矽異質接面太陽能電池之研究
Investigation of ITO Layers for Applications in a-Si/c-Si Heterojunction Solar Cells
指導教授: 洪儒生
Lu-Sheng Hong
口試委員: 戴龑
Yian Tai
周賢鎧
Shyankay Jou
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 81
中文關鍵詞: 氫化非晶矽太陽能電池氧化銦鍚濺鍍電漿輔助化學氣相沉積
外文關鍵詞: amorphous hydrogenated Si, plasma enhanced chemical vapor deposition (PECVD
相關次數: 點閱:336下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氧化銦鍚(indium tin oxide, ITO)在可見光範圍具有量好的導電性及透光性,因此在光學元件上常利用ITO來增加載子的傳導與收集。以單晶矽太陽能電池為例,除了可以做為透明導電層之外,還有抗反射之用途。我們使用射極-濺鍍沉積ITO薄膜,應用於異質接面之太陽能電池(a-Si/c-Si),電極間距3.5 cm,反應壓力15 mtorr,電漿功率密度0.5 W/cm2,基材溫度230℃,沉積出厚度約為110 nm時其電阻率為3.34 × 10-4 Ω-cm,在可見光平均穿透率可高達92 %,figure of merit值為1.53 × 10-2 Ω-1。
    為在單晶矽異質接合的太陽能電池製程中以低溫、低電漿密度的PECVD來製作本質的非晶層及摻雜層,形成異質接合組合p-type a-Si/a-Si/C-Si/n+ a-Si的結構,以Sinton公司的有效載子生命週期量測儀量得該元件的載子有效生命週期為87 μs,理論最高電壓可達到620 mV。在進一步的元件製作後得到Rsh = 60 Ω-cm2,Rs = 15 Ω-cm2,由於我們的Rsh太小和Rs太大,在I-V curve的量測中電池的Voc降為0.44 V,Jsc為25 mA/cm2,η為3.27 %。


    Indium tin oxide (ITO) layers are usually used for a-Si/c-Si heterojunction solar cells, because of their high conductivity and high transparency in the visible region of the spectrum. ITO layers also can be used for antireflecting to reduce the reflectance losses. ITO films were deposited by RF-sputtering in this thesis. In our experiment, the lowest resitivity of ITO layer was 3.34 × 10-4 Ωcm at the thickness of 110 nm. The average transmittance in the visible region can higher than 92% and the figure of merit value was 1.53 × 10-2 Ω-1.

    We can reduce cost by producing thin silicon wafer, but the thin silicon wafer can not treat by traditional high temperature diffusion process. So we deposit a-Si by PECVD to reduce the temperature of process. For the Si-heterojunction solar cells, We measured the carrier lifetime and implied Voc by mic-PCD (Sinton, WCT-120). The highest implied Voc was 620 mV. In I-V measurement, Voc was reduced to 0.44 V, Jsc was 25 mA/cm2. The efficiency of solar cell was 3.27 %, We can attribute to higher series resistance and lower shunt resistance.

    摘 要 I Abstract.......................................................................................................II 誌 謝 III 目 錄 IV 圖 索 引 VII 表 索 引 XI 第一章 緒論 1 1.1 導言 1 1.2 異質介面(Si-Heterojunction,SHJ)之單晶矽太陽能電池 4 1.3 研究理論與方向 7 1.3-1本質層 7 1.3-2 透明導電層之研究 8 第二章 實驗相關部分 13 2.1 實驗氣體及藥品 13 2.2 實驗設備及操作方式 15 2.2-1 超高真空電漿輔助化學氣相沉積系統 15 2.2-2 射頻濺鍍(RF-Sputtering) 17 2.3 實驗程序 18 2.3-1 以UHV-PECVD成長a-Si 18 2.3-2 以RF-sputtering成長ITO 19 2.4 分析儀器 21 第三章 實驗結果與討論 34 3.1 ITO透明導電層之光電性質與結構探討 34 3.1-1 溫度對ITO透明導電層長膜的結構及光電特性效應 35 3.1-2 電漿功率瓦數對ITO透明導電層長膜的結構及光電特性效應 42 3.1-3 壓力對ITO透明導電層長膜的結構及光電特性效應 48 3.2 SHJ太陽能電池元件製作及光電特性量測 55 3.2-1 在矽晶上以不同氫氣稀釋比成長i層a-Si:H膜並觀察其結晶的 55 情形 55 3.2-2 p型非晶矽薄膜的摻雜 58 3.2-3 太陽能電池元件完整製作流程及光電特性量測 61 3.3成長氫化非晶矽於自組裝有機層之討論 69 3.3-1利用不同自組裝(SAM)有機層控制結晶及效率評估 69 第四章 結論 75 參考文獻 77 作者簡介 81

    參考文獻
    [1] 國際能源總署(International Energy Agency, IEA),
    http://www.iea.org/
    [2] 來源: 茂迪科技,http://www.motechind.com/
    大億光能,http://www.kenmos-pv.com.tw/
    SunPower.Co,http://www.sunpowercorp.com/
    Sanyo.Co,http://ca.sanyo.com/en-CA/industrial/Solar/
    2007 歐洲太陽能光電會議(EU-PVSEC),etc。
    http://www.photovoltaic-conference.com/
    http://www.wretch.cc/blog/joseph555/12779902
    [3] 來源: Photonic Industry and Technology Development Association,
    PIDA,http://www.pida.org.tw/welcome.asp
    [4] J. Zhao, Sol. Energy Mater. Sol. Cells, 82, p. 53 (2004).
    [5] S. Taira, Y. Yoshimine, T. Baba, M. Taguchi, H. Kanno, T. Kinoshita, H. Sakata, E. Maruyama and M. Tanaka, 22nd EU-PVSEC, Milano, Italy ,2007, in print.
    [6] M. Tanaka, M. Taguchi, T. Matsuyama, Jpn. J. Appl. Phys. Part 1, 31, p. 3518 (1992).
    [7] M. Taguchi, K. Kawamoto, S. Tsuge, T. Baba, H. Sakata, M. Morizane, K. Uchihashi, N. Nakamura, S. Kiyama and O. Oota, Prog. Photovolt: Res. Appl. 8, p. 503 (2000).
    [8] T. H. Wang, M. R. Page, E. Lwaniczko, D. H. Levi, Y. Yan, H. M.
    Branz, and Q. Wang, 14th Workshop on Crystalline Silicon Solar
    Cells and Modules, Winter Park, Colorado, 2004.
    [9] H. Fujiwara and M. Kondo, Appl. Phys. Lett. 90, p. 013503
    (2007).
    [10] H. Fujiwara, T. Kaneko and M. Kondo, Appl. Phys. Lett. 91,
    p. 133508 (2007).
    [11] K. Nakayashiki, A. Rohatgi, S. Ostapenko, and I. Tarasov, J. Appl.
    Phys. 97, p. 024504 (2005).
    [12] S.O. Kasap, Optoelectronics and Photonics Principles and
    Practices, Prentice Hall, 2001
    [13] K. R. McIntosh, M. J. Cudzinovic, D. D. Smith, W. P. Mulligan , and
    R. M. Swanson, 3rd World Conference on Photovoltaic Energy
    Conversion, p. 971, Osaka, Japan, 2003.
    [14] M. Nisha, S. Anusha, Aldrin Antony, R. Manoj and M.K. Jayaraj
    Appl. Surf. Sci. 252, p. 1430 (2005).
    [15] P.V. Zant,, Microchip Fabrication, 3rd, McGraw-Hill, New York,
    1996.
    [16] R.C. Jaeger. Introduction to Microelectronic Fabrication, Prentice
    Hall, New Jersey, 2001.
    [17] B.D. Cullity and S.R. Stock, Elements of X-ray diffraction, 3rd,
    Prentice Hall, New Jersey, 2001.
    [18] P.N. Prasad, Nanophotonics, Wiley Interscience, New Jersey,
    2004.
    [19] E.F. Schubert, Light-Emitting Diodes, 2nd, Cambridge university
    press, New York, 2006.
    [20] 施敏,半導體元件物理與製作技術,第二版, 國立交通大學出版
    社,1980.
    [21] G. Haacke, J. Appl. Phys. 47, p. 4086 (1976).
    [22] D.C. Paine, T. Whitson, D. Janiac, R. Beresford, C.O. Yang and B.
    Lewis, J. Appl. Phys. 85, p. 8445 (1999).
    [23] F. El Akkad, M. Marafi, A. Poonnose and G. Prabu, Phys. Status
    Solidi. (a) 177, p. 445(2000).
    [24] L.J. Meng, M.P. dos Santos, Thin Solid Films, 322, p. 56 (1998).
    [25] H. Kim, J.S. Horwitz, G. Kushto, A. Pique, Z.H. Kafafi and C.M.
    Gilmoreet, J. Appl. Phys. 88, p. 6021 (2000).
    [26] J.H. Lee, J Electroceram, doi: 10.1007/s10832-008-9539-6
    [27] E.Burstein, Phys. Rev. 93, p. 455 (1954).
    [28] T.Smoss , Proc.phys.Soc.London Ser. B67, p. 755 (1954).
    [29] E. Terzini, G. Nobile, S. Loreti, C. Minarini, T. Polichetti, P.
    Thilakan, Jpn. J. Appl. Phys. 38, p. 3448 (1999).
    [30] E. Terzini, P. Thilakan, C. Minarini, Mater. Sci. Eng. B77, p. 110
    (2000).
    [31] C.V.R. Vasanth Kumar, A. Mansingh, J. Appl. Phys. 65, p. 1270
    (1989).
    [32] M.P.R. Panicker, W.F. Essinger, J. Electrochem. Soc. 128, p.
    1943 (1981).
    [33] O.P. Agnihotri, A.K. Sharma, B.K. Gupta and R. Thangaraj, J.
    Phys. D Appl. Phys. 12, p. 643 (1978).
    [34] C.H. Yi, I. Yasui, Y. Shigesato, Jpn. J. Appl. Phys. 34, p. 1638
    (1995).
    [35] J. Pla, M. Tamasi, R. Rizzoli, M. Losurdo, E. Centurioni, C.
    Summonte , F. Rubinelli´, Thin Solid Films, 425, p. 185 (2003).
    [36] J.F. Moulder, W.F. Stickle, P.E. Sobol and D.B. Kenneth,
    handbook of X-ray photoelectron spectroscopy,
    [37] S.K. Kim, J.C. Lee, S.J. Park, Y.J. Kim and K.H. Yoon, Sol.
    Energy Mater. Sol. Cells, 92, p. 298 (2008).
    [38] A. Matsuda, J. Non-Cryst. Solids, 767, p. 59 (1983).
    [39] A. Lloret, Z.Y. Wu,M.L. Thbye,I.El Zawawi,J.M. Siefert 3 and B.
    Equer, Appl. Phys. A55, p 573 (1992)
    [40] 朱炳勳,”以射頻電漿輔助化學氣相沉積法製備p型矽薄膜及
    其光電性質之研究”,國立台灣科技大學97年化學工程所碩士論文
    [41] M.R. Page, E. Iwaniczko, Q. Wang, D.H. Levi, Y. Yan, H.M.
    Branz, V. Yelundur, A. Rohatgi, and T.H. Wang. 14th Workshop
    on Crystalline Silicon Solar Cells & Modules: Materials and
    Processes, 2004, Winter Park, Colorado.
    [42] S.W. Chen, C.H. Koo, Materials Letters, 61, p. 4097 (2007)

    無法下載圖示 全文公開日期 2014/07/31 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE