簡易檢索 / 詳目顯示

研究生: 洪文傑
Wen-chieh Hung
論文名稱: 瞬間啟動方柱的拓樸流場演化:質點軌跡視流法與PIV的應用
Topological Flow Evolution around an Impulsively Started Square Cylinder
指導教授: 黃榮芳
Rong Fung Huang
口試委員: 林怡均
Lin, Yi-Jiun
孫珍理
Chen-li Sun
張家和
Chir-Ho Chang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 194
中文關鍵詞: 拓樸
外文關鍵詞: topology
相關次數: 點閱:217下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究探討一個方形截面柱體在不同旋轉角時,瞬間啟動,其表面動態流場結構之演化過程以及尾流區非穩態渦漩的行為與起源。方柱模型放置於拖曳式水槽中,採用質點影像軌跡流場觀察法及質點影像速度儀,偵測瞬間啟動方柱表面的動態流場結構以及尾流區非穩態渦漩的演化。質點影像軌跡流場可視化的結果顯示,方柱在不同旋轉角的流場行為可分為四種演化過程,這些演化過程包含了複雜的物理現象,諸如方柱表面的主要渦漩、次要渦漩以及在方柱後方產生的迴流。將尾流區渦漩逸放的頻率作無因次化分析,可獲得渦漩逸放頻率與史卓數、洛斯柯數、雷諾數及旋轉角之間的關係。最後,以PIV技術,得到量化的流場結構,使得拓樸結果更清晰顯現。重要貢獻有三點:(1)瞭解瞬間啟動方柱表面動態流場結構的演化過程及複雜的模態;(2)將尾流渦漩逸放的建構回溯至啟動後表面非穩態流場的演化;(3)使用拓樸法則分析流場的動態現象,增進對流場結構與演化過程的瞭解。


The evolution processes of the surface flow and wake vortical structure of an impulsively started square cylinder at different incidence angles had been studied experimentally in a water towing tank. Particle tracking flow visualization method (PTFV) and the particle image velocimetry (PIV) were used to obtain clear flow images for Reynolds numbers between 103 and 104 as the incidence angles varied from 0o to 45o. The cross-section profile of the square cylinder is 6 cm × 6 cm and the aspect ratio of the finite square cylinder is about 9. Four categories of flow patterns were found by particle tracking flow visualization method (PTFV). They were closely related to the inclination angle of the square cylinder. The functional relationships among the Strouhal, Roshko, and Reynolds numbers in the inertial effect-dominated regimes were obtained. Topological critical points, separatrices, and alleyways were identified and discussed to elucidate the unsteady structure of the instantaneous streamline patterns. Further more, the effects of topological flow patterns on the wake properties were presented and discussed together with the vortex evolution of an impulsively started square cylinder. Stable vortex shedding in the wake was established after the initial period of complex vortex evolution around the square cylinder.

摘要 i Abstract ii 誌謝 iii 目錄 iv 符號索引 vii 表圖索引 viii 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 2 1.2.1 圓柱的流場特性 2 1.2.2 機翼的流場特性 3 1.2.3 方柱的流場特性 5 1.3 研究目標 6 第二章 實驗設備、儀器與方法 7 2.1 實驗設備 7 2.1.1 拖曳式水槽 7 2.1.2 方柱模型 7 2.2 實驗儀器與方法 8 2.2.1 雷射光頁 8 2.2.2 數位攝影機 8 2.2.3 質點特性分析 8 2.2.4質點軌跡流場觀察法(PTFV) 9 2.2.5 質點影像速度儀(Particle Image Velocimetry, PIV) 9 第三章 小攻角時的流場 17 3.1 可視化 17 3.1.1 低雷諾數下流場演化 17 3.1.2 高雷諾數下流場演化 19 3.2 拓樸演化 21 3.2.1 低雷諾數下拓樸分析 21 3.2.2 高雷諾數下拓樸分析 25 第四章 中等攻角時的流場 28 4.1 可視化 28 4.1.1 低雷諾數下流場演化 28 4.1.2 高雷諾數下流場演化 30 4.2 拓樸演化 32 4.2.1 低雷諾數下拓樸分析 32 4.2.2 高雷諾數下拓樸分析 35 4.3 質點影像速度儀量測結果 38 4.3.1 低雷諾數下瞬間流場演化 38 第五章 高攻角時的流場 41 5.1 可視化 41 5.1.1 低雷諾數下流場演化 41 5.1.2 高雷諾數下流場演化 44 5.2 拓樸演化 47 5.2.1 低雷諾數下拓樸分析 47 5.2.2 高雷諾數下拓樸分析 53 第六章 特徵區域與渦漩逸放特性 59 6.1 流場特徵模態的區域分佈 59 6.2方柱D面啟動渦漩流逸演化時間 60 6.3尾流區渦漩逸放之頻率特性 61 第七章 結論 64 參考文獻 65

[1]Nakayama, Y., and Boucher, R. F., Introduction to Fluid Mechanics, Arnold, Great Britain, 1999.
[2]Sumner, D., Price, S. J., and Paicloussis, M. P., “Tandem Cylinders in Impulsively Started Flow,” Journal of Fluids and Structures, Vol. 13, No. 7-8, 1999, pp. 955-965.
[3]Sumner D., Price, S. J., and Paicloussis, M. P., “Investigation of Impulsively-Started Flow around Side-by-Side Circular Cylinders: Application of Particle Image Velocimetry,” Journal of Fluids and Structures, Vol. 11, No. 6, 1997, pp. 597-615.
[4]Williamson, C. H. K., “Vortex Dynamics in the Cylinder Wake,” Annular Review of Fluids Mechanics, Vol. 28, 1996, pp. 477-539.
[5]Chu, C.-C. and Liao, Y.-Y., “A Quantitative Study of the Flow around an Impulsively Started Circular Cylinder,” Experiments in Fluids, Vol. 13, No. 2-3, 1992, pp. 137-146.
[6]Lienhard, J. H., Synopsis of Lift, Drag and Vortex Frequency Data for Rigid Circular Cylinders, Research Division Bulletion 300, Washington State University, 1966.
[7]Huang, R. F., Chen, J. M., and Hsu C. M., “Modulation of Surface Flow and Vortex Shedding of a Circular Cylinder in the Subcritical Regime by Self-Excited Vibration Rod,” Journal of Fluid Mechanics, Vol. 555, 2006, pp. 321-352.
[8]Zdravkovich, M. M., “Different modes of vortex shedding: an overview,” Journal of Fluids and Structures, Vol. 10, No. 5, 1996, pp. 427-437.
[9]Huang, R. F., and Lin, C. L., “Vortex Shedding and Shear-layer Instability of Wing at Low-Reynolds Numbers,” AIAA Journal, Vol. 33, 1995, pp. 1398-1430.
[10]Huang, R. F., Wu, J. Y., Jeng, J. H., and Chen, R. C., “Surface Flow and Vortex Shedding of an Impulsively Started Wing,” Journal of Fluid Mechanics, Vol. 441, 2001, pp. 265-292.
[11]Huang, R. F., Lin, B. H., and Yen, S. C., “Time-average Topological Flow Patterns and Their Influence on Vortex Shedding of a Square Cylinder in Crossflow at Incidence,” Journal of Fluids and Structures, Vol. 26, No. 3, 2010, pp. 406-429.
[12]Kwok, K. C. S., “Effects of turbulence on the pressure distribution around a square cylinder and possibility of reduction,” Journal of Fluids Engineering, Vol. 105, No. 2, 1983, pp. 140-145.
[13]Chen, J. M., and Liu, C. H., “Vortex shedding and surface pressures on a square cylinder at incidence to a uniform air stream,” International Journal of Heat and Fluid Flow, Vol. 20, No. 6, 1999, pp. 592-597.
[14]Richard, C. F. and John, H. S., “Fundamentals of Air Pollution Engineering,” Prentice Hall, 1988, pp. 290-357.
[15]Lighthill, M. J., Laminar Boundary Layers, Ed. Rosenhead, L., Oxford University, College of Engr, 1963, pp. 48-88.
[16]Perry, A. E., Chong, M. S., and Lim, T.T., “The Vortex-Shedding Process behind Two-Dimensional Bluff Bodies,” Journal of Fluid Mechanics, Vol. 116, March 1982, pp. 77-90.
[17]Perry, A. E. and Fairlie, B. D., “Critical Points in Flow Patterns,” Advances in Geophysics B, Vol. 18, 1974, pp. 299-315.
[18]Perry, A. E. and Steiner, T. R., “Large-Scale Vortex Structures in Turbulent Wakes behind Bluff Bodies. Part 1. Vortex Formation,” Journal of Fluid Mechanics, Vol. 174, January 1987, pp. 233-270.
[19]Steiner, T. R. and Perry, A. E., “Large-Scale Vortex Structure in Turbulent Wakes behind Bluff Bodies. Part2. Far-Wake Structure,” Journal of Fluid Mechanics, Vol. 174, 1987, pp. 271-298.
[20]Hunt, J. C. R., Abell, C. J., Peterka, J. A., and Woo, H., “Kinematical Studies of the Flow around Free or Surface-mounted Obstacles; Applying Topology to Flow Visualization,” Journal of Fluid Mechanics, Vol. 86, 1978, pp. 179-200.
[21]Coutanceau, M. and Pineau, G., Some Typical Mechanisms in The Early Phase of The Vortex-shedding Process From Particle-streak Visualization. Atlas of Visualization III, Eds. Nakayama, Y. and Tanida, Y., CRC Press, Boca Raton, 1997, pp. 43-68.
[22]Huang , R. F., and Lee, H. W., “Characteristics of Frequency Selection in Wake of a NACA 0012 Wing Model,” Proceeding of Second Ankara International Aerospace Conference (AIA’98), Ankara, Turkey, September 9-11, 1998.
[23]Roshko, A., “On the Wake and Drag of Bluff Bodies,” Journal of the Aerospace Science, Vol. 22, 1955, pp. 124-135.
[24]Simons, J. E. L., “Similarities between Two-Dimensional and Axisymmetric Vortex Wake,” Aero. Quarterly, Vol. 26, 1977, pp. 15-20.

無法下載圖示 全文公開日期 2015/06/17 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE