簡易檢索 / 詳目顯示

研究生: 吳承祐
Cheng-You Wu
論文名稱: 改良型無限制條件之多目標函數拓樸最佳化方法
An Advanced Unconstrained Multicriterion Topology Optimization Method
指導教授: 林其禹
Chyi-Yeu Lin
口試委員: 黃育熙
Yu-Hsi Huang
史建中
Chien-Jong Shih
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 93
中文關鍵詞: 結構最佳設計拓樸最佳化多目標函數無限制條件
外文關鍵詞: structural optimization, topology optimization, multicriterion, Unconstrained
相關次數: 點閱:228下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文提出一個簡單而且穩健之改良型無限制條件之多目標函數拓樸最佳化方法,於實施拓樸最佳化之迭代過程中,以結構順從度及材料重量作為多目標函數,搭配加權係數的組合,除以獲得最小順從度與材料使用率之結構為目標之外,在迭代過程中經由加權係數之適當調整,亦可獲得滿足應力限制值之結構最佳化設計。
    這種創新建構的無限制條件拓樸最佳化問題,除可擴大最佳化過程中可能搜尋的範圍,亦可減少最佳化求解所需之電腦運算次數,提升執行效率外,對不同的初始值相對不敏感,具高度穩健性。
    本文提供三個二維例子,二個懸臂樑及一個L型懸臂樑之結構設計問題,同時進行實例驗證與比較,證實本文提出多目標無限制條件之迭代式加權係數調整技術,具有簡單、穩健且有效率之優點。


    This paper provides a simple but robust algorithm, the Advanced Unconstrained Multicriterion Topology Optimization method (AUMTO), which can obtain the minimum-compliance optimal structure that simultaneously meets the additional stress and/or displacement limits.
    This innovative unconstrained multicriterion function approach can expand the searching domain to increase the probability of getting the global optimum, reduce the computation time, and be robust to the variations of different initial design selections.
    The robustness, simplicity and high efficiency of the AUMTO algorithm are fully demonstrated by the three illustrative problems including two cantilever beams and one L-shaped cantilever beam.

    中文摘要……………………………………………………………I 英文摘要……………………………………………………………II 謝誌…………………………………………………………………III 目錄…………………………………………………………………IV 符號索引……………………………………………………………VII 圖索引………………………………………………………………IX 表索引………………………………………………………………XI 第一章 緒論………………………………………………………1 1.1前言……………………………………………………………1 1.2研究動機………………………………………………………2 1.3文獻回顧………………………………………………………3 1.4論文架構………………………………………………………9 第二章 結構設計最佳化…………………………………………10 2.1尺寸最佳化……………………………………………………10 2.2形狀最佳化……………………………………………………10 2.3拓璞最佳化……………………………………………………11 2.4最佳化問題定義………………………………………………12 2.5最佳化方法……………………………………………………13 2.5.1最佳材料分佈法……………………………………………13 2.5.2進化式結構最佳化…………………………………………19 2.5.3雙方向之進化式結構最佳化………………………………19 2.5.4全應力方法…………………………………………………21 2.5.5迭代式材料限制調整技術…………………………………21 2.5.6最佳化方法小結……………………………………………22 第三章 多目標函數拓樸最佳化方法……………………………24 3.1無限制條件之多目標函數拓樸最佳化方法…………………24 3.2改良型無限制條件之多目標函數拓樸最佳化方法…………27 3.3處罰函數拓樸最佳化…………………………………………31 3.4二值結構門檻值技術…………………………………………33 第四章 實例驗證…………………………………………………35 4.1懸臂樑(A)……………………………………………………35 4.1.1應力限制750 psi之分析…………………………………36 4.1.2應力限制1,000 psi之分析………………………………41 4.2懸臂樑(B)……………………………………………………46 4.2.1應力限制750 psi之分析…………………………………46 4.2.2應力限制1,000 psi之分析………………………………51 4.3 L型懸臂樑……………………………………………………55 4.3.1應力限制600 MPa 之分析…………………………………56 4.3.2應力限制800 MPa 之分析…………………………………60 4.4不同初始設計對最佳化結果之差異分析……………………64 4.4.1懸臂樑(B)應力限制750 psi之差異分析…………………64 4.4.2 L型懸臂樑應力限制600 MPa 之差異分析………………67 第五章 結論與展望………………………………………………71 5.1結論……………………………………………………………71 5.2展望……………………………………………………………72 參考文獻…………………………………………………………73

    [1] Rozvany, G. I. N., 1989, “Structural Design via Optimal Criteria,” Kluwer, Dordrecht.
    [2] Fleury, C. and Braibant, V., 1986, “Structural Optimization: A New Dual Method Using Mixed Variables,” Int. J. Num. Methods Eng. Vol. 23, pp. 409-428.
    [3] Hassani, B. and Hinton, E., 1998, “A Review of Homogenization and Topology Optimization III – Topology Optimization Using Optimal Criteria,” Computer and Structures, Vol. 69, pp. 739-756.
    [4] Zhou, M. and Rozvany, G. I. N., 1991, “The COC Algorithm, Part I: Cross-section Optimization or Sizing,” Computer Methods in Applied Mechanics and Engineering, Vol. 89, pp. 281-308.
    [5] Zhou, M. and Rozvany, G. I. N., 1991, “The COC Algorithm, Part II: Topological Geometrical and Generalized Shape Optimization,” Computer Methods in Applied Mechanics and Engineering, Vol. 89, pp. 309-336.
    [6] Zhou, M., 1992, “A New Discretized Optimality Criteria Method in Structural Optimization,” Doctoral Dissertation, University of Essen, Germany.
    [7] Zhou, M. and Rozvany, G. I. N., 1992, “DCOC: An Optimality Criteria Method for Large Systems Part I: Theory,” Structural Optimization, Vol. 5, pp. 12-25.
    [8] Michell, A. G. M., 1904, “The Limits of Economy of Frame Structure,” Philosophical Magazine, Series 6, No. 8-47, pp. 589-597.
    [9] Schmit, L. A., 1960, “Structural Design by Systematic Synthesis,” Proceedings of the 2nd Conference on Electronic Computation, ASCE, New York, pp. 105-122.
    [10] Kincaid, R. K. and Padula, S. L., 1990, “Minimizing Distortion and Internal Forces in Truss Structure by Simulated Annealing,” Proceedings of the 30th AIAA/ASME/ASCE/ASHS/ASC Structures, Structural Material and Dynamics Conference, pp. 327-333.
    [11] May, S. A. and Balling, R. J., 1992, “A Filtered Simulated Annealing Strategy for Discrete Optimization of 3D Steel Frameworks,” Structural Optimization, Vol. 4, pp. 142-148.
    [12] Nielsen, R. and Sandvig, J., 1993, “Optimization of Energy Systems by Simulated Annealing,” ASNE Conference, New York, USA, pp. 321-326.
    [13] Lin, C. Y. and Jiang, J. F., 1997, “Nonconvex and Discrete Optimal Design Using Multiple State Simulated Annealing,” Structural Optimization, Vol. 14, pp. 121-128.
    [14] Hajela, P., 1989, “Genetic Search – An Approach to the Nonconvex Optimization Problems,” Proceedings of the 30th AIAA/ASME/ASCE/ASHS/ASC Structures, Structural Material and Dynamics Conference, Mobile, Alabama, pp. 165-175.
    [15] Lin, C. Y. and Hajela, P., 1992, “Genetic Algorithms in Optimization Problems with Discrete and Integer Design Variables,” Engineering Optimization, Vol. 19, pp. 309-327.
    [16] Grieson, D. E. and Pak, W. H., 1993, “Optimal Sizing, Geometrical and Topological Design Using a Genetic Algorithm,” Structural Optimization, Vol. 6, pp. 151-159.
    [17] Ohsaki, M., 1995, “Genetic Algorithm for Topology Optimization of Trusses, Computers & Structures,” Vol. 57, No. 2, pp. 219-225.
    [18] Rajan, S. D., 1995, “Sizing, Shape, and Topology Design Optimization of Truss Using Genetic Algorithm,” Journal of Structural Engineering, Vol. 121, No. 10, pp. 1480-1487.
    [19] Bendse, M. P. and Kikuchi, N., 1988, “Generating Optimal Topologies in Structural Design Using a Homogenization Method,” Computer Method in Applied Mechanics and Engineering, Vol. 71, pp. 197-224.
    [20] Suzuki, K. and Kikuchi, N., 1991, “A Homogenization Method for Shape and Topology Optimization,” Computer Methods in Applied Mechanics and Engineering, Vol. 93, No. 3, pp. 291-318.
    [21] Mlejenk, H. P., 1992, “Some Aspects of the Genesis of Structures,” Structural Optimization, Vol. 5, pp. 64-69.
    [22] Thomsen, J., 1992, “Topology Optimization of Structures Composed of One or Two Materials,” Structural Optimization, Vol. 5, pp. 108-115.
    [23] Mlejnek, H. P. and Schirrmacher, R., 1993, “An Engineer’s Approach to Optimal Material Distribution and Shape Finding,” Computer Methods in Applied Mechanics and Engineering, Vol. 106, No. 1-2, pp. 1-26.
    [24] Bendse, M. P. and Haber, R. B., 1993, “The Michell Layout Problem as a Low Volume Fraction Limit of the Perforated Plate Topology Optimization Problem: an Asymptotic Study,” Structural Optimization, Vol. 6, pp. 263-267.
    [25] Diaz, A. R. and Kikuchi, N., 1992, “Solutions to Shape and Topology Eigenvalue Optimization Problem Using Homogenization Method,” International Journal for Numerical Methods in Engineering, Vol. 35, No. 7, pp. 1487-1502.
    [26] Gea, H. C., 1994, “Topology Optimization: A New Micro-structure Based Design Domain Method,” ASME Advances in Design Automation, Vol. 2, pp. 283-290.
    [27] Jog, C. S., Harber, R. B. and Bends e, M. P., 1994, “Topology Design with Optimized Self-adaptive Materials, Int. J. Num. Methods Eng., Vol. 37, pp. 1323-1350.
    [28] Park, Y. K., 1995, “Extensions of Optimal Layout Design Using the Homogenization Method,” Ph.D. Thesis, University of Michigan, Ann Arbor, USA
    [29] Rozvany, G. I. N., Zhou, M. and Birker, T., 1992, “Generalized Shape Optimization without Homogenization,” Structural Optimization, Vol. 4, pp. 250-252.
    [30] Rozvany, G. I. N., Bends e, M. P. and Kirsch, U., 1995, “Layout Optimization of Structure,” Applied Mechanics Review, Vol. 48, pp. 41-118.
    [31] Baumgartner, A., Harzheim, L. and Mattheck, C., 1992, “SKO: the Biological Way to Find Optimum Structure Topology,” International Journal of Fatigue, Vol. 14, No. 6, pp. 387-393.
    [32] Steven, G. P. and Xie, Y. M., 1993, “A Simple Evolutionary Procedure for Structural Optimization,” Computers and Structures, Vol.49, No. 5, pp. 885-896.
    [33] Chu, D. N., Xie, Y. M., Hira, A. and Steven, G. P., 1996, “Evolutionary Structural Optimization for Problems with Stiffness Constraints,” Finite Elements in Analysis and Design, Vol. 21, pp. 239-251.
    [34] Chu, D. N., Xie, Y. M., Hira, A. and Steven, G. P., 1997, “On Various Aspects of Evolutionary Structural Optimization for Problems with Stiffness Constraints,” Finite Elements in Analysis and Design, Vol. 24, pp. 197-212,
    [35] Chu, D. N., Xie, Y. M. and Steven, G. P., 1998, “An Evolutionary Structural Optimization Method for Sizing Problems with Discrete Design Variable,” Computers & Structures, Vol. 68, pp. 419-431.
    [36] Chu, D. N., Xie, Y. M. and Steven, G. P., 1999, “An Evolutionary Method for Optimal Design with Discrete Variable Thickness Subject to Constant Weight,” Structural Optimization, Vol. 17, pp. 55-64.
    [37] Young, V., Querin, O. M., Steven, G. P. and Xie, Y. M., 1999, “3D and Multiple Load Case Bi-directional Evolutionary Structural Optimization (BESO),” Structural Optimization, Vol. 18, pp. 183-192.
    [38] Yang, R. J. and Chen, C. J., 1996, “Stress-Based Topology Optimization,” Structural Optimization, Vol. 12, pp. 98-105.
    [39] Duysinx, P. and Bendse, M. P., 1998, “Topology Optimization of Continuum Structures with Local Stress Constraints,” International Journal for Numerical Methods in Engineering, Vol. 43, No. 8, pp. 1453-1478.
    [40] Payten, W. M. and Law, M., 1998, “Generalized Shape Optimization Using Stress Constraints under Multiple Load Cases,” Structural Optimization, Vol. 15, No. 3-4, pp. 269-274.
    [41] Yang, D., Sui, Y., Liu, Z. and Sum, H., 2000, “Topology Optimization Design of Continuum Structures under Stress and Displacement Constraints,” Applied Mathematics and Mechanics, Vol. 21, No. 1, pp. 19-26.
    [42] Liang, Q. Q., Xie, Y. M. and G. P. Steven, 2000, “Optimal Topology Selection of Continuum Structures with Displacement Constraints,” Computers and Structures, Vol. 77, No. 6, pp. 635-644.
    [43] Liang, Q. Q., Xie, Y. M. and Steven, G. P., 2001, “A Performance Index for Topology and Shape Optimization of Plate Bending Problems with Displacement Constraints,“ Structural and Multidisciplinary Optimization, Vol. 21, No. 5, pp. 393-399.
    [44] Liang, Q. Q. and Steven, G. P., 2002, “A Performance-Based Optimization Method for Topology Design of Continuum Structures with Mean Compliance Constraints,” Computer Methods in Applied Mechanics and Engineering, Vol. 191, No. 13-14, pp. 1471-1489.
    [45] Guan, H., Q. Q., Stevens, G. P. and Xie, Y. M., 2003, “Bridge Topology Optimization with Stress, Displacement and Frequency Constraints,” Computers and Structures, Vol. 81, pp. 131-145.
    [46] Yang, R. J. and Chuang, C. H., 1994, “Optimal Topology Design Using Linear Programming,” Computers and Structures, Vol. 52, No. 2, pp. 265-275.
    [47] Yang, R. J., 1997, “Multidiscipline Topology Optimization,” Computers and Structures, Vol. 63, No.6, pp. 1205-1212.
    [48] Paris, J., Navarrina, F., Colominas, I. and Casteleiro, M., 2010, “Block aggregation of stress constraints in topology optimization of structures,” Advances in Engineering Software, Vol. 41, pp. 433-441.
    [49] Luo, Y., Wang, Y. and Kang, Z., 2013, “An enhanced aggregation method for topology optimization with local stress constraints,” Computer Methods in Applied Mechanics and Engineering, Vol. 254, pp. 31-41.
    [50] Vanderplaats, G. N., 1993, “Numerical Optimization Techniques for Engineering Design, ” McGraw-Hill.
    [51] Vanderplaats, G. N., 1993, “DOT User’s Manual Version 4.0,” Miura & Associates, Inc.
    [52] Querin, O. M., Steven, G.. P. and Xie, Y. M., 2000, “Evolutionary Structural Optimisation using an Additive Algorithm,” Finite elements in analysis and design, Vol. 34, pp. 291-308.
    [53] Hinton, E., and Sienz, J., 1995, “Fully Stressed Topological Design of Structures Using an Evolutionary Procedure”, Engineering Computations, Vol. 12, pp. 229-244.
    [54] Lin, C. Y., and Hsu, F. M., 2004, “Adaptive Volume Constraint Algorithm for Stress-Limit Based Topology Optimization,” Computer Method in Applied Mechanics and Engineering, Vol. 63, No.6, pp. 1205-1212.
    [55] 鄒宇新,多目標函數拓樸最佳化方法與全自動結構最佳設計系統之研究,博士論文,台灣科技大學,2009。
    [56] 許芳明,拓樸最佳化之迭代式材料限制調整技術,博士論文,台灣科技大學,2008。
    [57] Reddy, J. N., 1993, “An Introduction of the Finite Element Method,” 2nd edition, McGraw-Hill.

    QR CODE