簡易檢索 / 詳目顯示

研究生: 吳汶凱
Wun-Kai Wu
論文名稱: 螺旋傘齒輪之五軸工具機線雷射輪廓感測器非接觸式量測
Non- Contact Measurement of Spiral Bevel Gears Using the Laser Profiler On The Five-Axis Machine
指導教授: 石伊蓓
Yi-Pei Shih
口試委員: 吳育仁
Yu-Ren Wu
陳羽薰
Yu-Hsun Chen
黃金龍
Chin-Lung Huang
徐冠倫
Kuan-Lun Hsu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 131
中文關鍵詞: 螺旋傘齒輪非接觸式量測系統線雷射輪廓感測器節距誤差齒面拓樸誤差五軸工具機
外文關鍵詞: spiral bevel gear, non-contact measurement system, laser profile sensor, pitch errors, tooth flank errors, five-axis machine tool
相關次數: 點閱:233下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今的齒輪量測專用機,如克林貝格公司的P系列和格里森公司的GMS系列,皆為四軸架構,它們皆配備接觸式掃描探頭系統,測量精度非常高。但接觸式量測有兩個主要缺點:(1) 耗時長,(2) 難以量測模數小於0.5 mm的小齒輪。由於上述缺點,使非接觸式量測成為近年來主要研究方向。
    本研究旨在開發螺旋傘齒輪之線雷射輪廓感測器非接觸式量測系統。我們建立了測量機的座標系統,此機台有五個軸,四個用於測量運動(X、Y、Z、C),一個用於線雷射輪廓感測器的投射角度定位(A)。首先根據理論齒輪的齒面點推導節距和齒面量測的五軸座標位置;再使用這些座標位置來編程NC路徑以量測傘齒輪的節距和齒面拓樸誤差;之後,我們提出了一種基於德國標準 DIN 3965-2 的方法來評估節距和齒面拓樸誤差。本研究採用雙轉台式的五軸工具機作為量測實驗機,並將量測結果與克林貝格公司的 P40齒輪量測中心機的量測報告進行比較,兩者的節距與齒面最大誤差在 4 μm 和 0.02 mm 之內。此結果驗證了本研究提出之方法的正確性。


    Nowadays, the measuring machines for gears, such as the P series of Klingelnberg and the GMS series of Gleason, are all four-axis structures. They are equipped with a contact scanning probe system and have high measurement accuracy. The contact measurement has two main disadvantages: (1) it takes a long time, and (2) it is difficult to measure small gears with less than a 0.5 mm module. Due to the above drawbacks, non-contact measurement has become more popular recently.
    This research aims to develop a non-contact measurement system of spiral bevel gears using a laser profile sensor. We establish the coordinate systems of the measuring machine. This machine has five axes, four for measuring movement and one for projection angle positioning of the laser profile sensor. The five coordinates of pitch and flank measurements are derived firstly according to theoretical gear flank points. The NC codes are programmed for measuring pitch and flank deviations of bevel gears according to those coordinates. After that, we propose a method based on DIN 3965-2 to evaluate the pitch and tooth flank errors. Here, a double-rotary-table type five-axis machine is adopted as an experiment machine. The results are compared to the report of the Klingelnberg P40 gear measuring center. Their pitch and the maximum tooth flank deviations are within 4 μm and 0.02 mm of each other, respectively. Those results verify the correctness of the proposed method.

    指導教授推薦書 I 學位考試委員會審定書 II 中文摘要 III Abstract IV 謝 誌 V 目 錄 VI 符號定義 IX 圖索引 XIII 表索引 XVI 第 1 章 緒論 1 1.1 前言 1 1.2 文獻回顧 3 1.3 研究動機和目的 5 1.4 論文架構 6 第 2 章 線雷射輪廓掃描量測系統架構 7 2.1 前言 7 2.2 建構五軸工具機螺旋傘齒輪線雷射量測系統 7 2.3 量測實驗機台 9 2.4 線雷射輪廓感測器 9 2.4.1 線雷射量測系統硬體架構與量測原理 11 2.4.2 量測之環境設定 12 2.5 電腦端與西門子NCU控制器資料傳輸 16 2.6 電腦端與線雷射控制器資料傳輸 16 2.6.1 連線設定 17 2.6.2 線雷射量測點資料擷取 17 2.7 小結 18 第 3 章 螺旋傘齒輪之量測精度評估與誤差數學模式 19 3.1 前言 19 3.2 齒輪精度等級評估標準 19 3.3 螺旋傘齒輪檢測項目與數學模式 20 3.3.1 節距誤差評估 21 3.3.2 徑向跳動評估 22 3.3.3 齒面拓樸點誤差評估 23 3.3.4 壓力角與螺旋角誤差數學模式 25 3.4 精度等級評估 26 3.5 小結 26 第 4 章 五軸工具機之線雷射掃描量測螺旋傘齒輪數學模式 27 4.1 前言 27 4.2 線雷射感測器架設方式 27 4.3 線雷射量測座標系統 28 4.4 齒面量測座標值推導 31 4.5 節距和齒面量測位置數學模式 34 4.6 線雷射量測NC路徑程式規劃 36 4.7 數值範例 39 4.8 小結 42 第 5 章 線雷射量測系統校正 43 5.1 前言 43 5.2 量測基準校正 43 5.2.1 線雷射XZ平面校正 44 5.2.2 線雷射高度Z軸校正 44 5.2.3 基準面Z軸位置校正 45 5.2.4 旋轉軸中心校正 46 5.2.5 G54程式原點校正 47 5.2.6 工件旋轉軸角度C歸零校正 49 5.3 線雷射量測重複精度校驗 51 5.4 小結 54 第 6 章 線雷射量測傘齒輪節距誤差之評估方法及實驗結果 55 6.1前言 55 6.2 節距誤差評估方法 55 6.2.1 線雷射量測節距點資料擷取 56 6.2.2 雷射量測輪廓雜訊點過濾 57 6.2.3 以多項式曲線擬合輪廓點 59 6.2.4 輪廓擬合曲線轉換至工件齒輪座標系統 59 6.2.5 求解擬合曲線之節點 60 6.2.6 節距誤差計算 60 6.3螺旋傘齒輪線雷射節距量測實驗結果 60 6.3.1 節距之線雷射原始量測輪廓點 61 6.3.2 去除雜訊點後輪廓點和曲線擬合 62 6.3.3 凹凸齒面節點位置計算 65 6.3.4 節距誤差量測結果 67 6.4與P40齒輪量測中心機之節距誤差量測結果比較 68 6.5小結 74 第 7 章 線雷射掃描量測傘齒輪齒面誤差之評估方法及實驗結果 75 7.1前言 75 7.2 齒面拓樸誤差評估方法 75 7.2.1 線雷射量測齒面點資料擷取及曲線擬合 76 7.2.2 輪廓擬合曲線轉換至工件齒輪座標系統 77 7.2.3 量測齒面擬合資料點計算 77 7.2.4 B-Spline曲面擬合量測齒面拓樸點 78 7.2.5 齒面拓樸法向量計算 79 7.3螺旋傘齒輪齒面線雷射量測實驗結果 79 7.3.1 齒面拓樸之線雷射量測原始輪廓點 80 7.3.2 去除雜訊點後輪廓點和曲線擬合 81 7.3.3 齒面擬合資料點位置 83 7.3.4 B-Spline曲面擬合結果 85 7.3.5 齒面拓樸誤差量測結果 87 7.4與P40齒輪量測中心機之齒面誤差結果比較 87 7.5小結 91 第 8 章 結論與建議 92 8.1 結果與討論 92 8.2 建議與未來展望 93 參考文獻 95 附錄 A. 大齒輪齒面理論拓樸點座標值及其單位法向量 98 附錄 B. P40大齒輪量測資料 104

    [1] Klingelnberg, 2006, "P26/P40 Precision Measuring Centers,".
    [2] Gleason, 2014, "300GMS nano – Inspection at Submicron Level,".
    [3] Geartec, 2017, "GTB 300 Measuring of bevel gears with single flank rolling method,".
    [4] Tokyo Technical, 2018, "CNC Gear Mearsuring System TTi Series,".
    [5] Gleason, 2020, "GMSL Series – Multi Sensor Inspection Including Laser Technology,".
    [6] Klingelnberg, 2020, "Klingelnberg Optical Metrology,”.
    [7] Nikon, 2014, "High accuracy non-contact sensor 3D metrology system HN-C3030,”.
    [8] 和全豐光電,2022,光學非接觸式表面3D 輪廓量測儀AL-3AT 系列。
    [9] Fong, Z. H., 2000, "Mathematical Model of Universal Hypoid Generator with Supplemental Kinematic Flank Correction Motion," ASME J. Mech. Des., 122, pp. 136-142.
    [10] Shih, Y. P., Fong, Z. H., and Lin, G. C. Y., 2007, "Mathematical Model for a Universal Face Hobbing Hypoid Gear Generator," ASME J. Mech. Des., 129 (1), pp. 38–47.
    [11] ANSI/AGMA 2009-B01, 2009, "Bevel Gear Classification, Tolerances, and Measuring Methods," Alexandria, Virginia, USA.
    [12] DIN 3965-2, 1986, "Tolerancing of bevel gears; tolerances for individual parameters," Germany.
    [13] Klingelnberg, 2006, "P40 Operating Instructions, Bevel Gear Software, Version 03-000en, ".
    [14] Shunmugam, M. S., Rao, B. S., and Jayaprakash, V., 1998, "Establishing Gear Tooth Surface Geometry and Normal Deviation, Part II-Bevel Gears," Mech. Mach. Theory, 33 (5), pp. 525-534.
    [15] Litvin, F. L., and Fuentes, A., 2004, Gear Geometry and Applied Theory, 2nd edition, Cambridge University Press, New York.
    [16] Shih, Y. P., and Fong, Z. H., 2008, "Flank Correction for Spiral Bevel and Hypoid Gears on a Six-Axis CNC Hypoid Gear Generator," ASME J. Mech. Des., 130 (6) , 062604(11 pages).
    [17] Guenther A., 2011, "Interpretation of Bevel Gear Topography Measurements," CIRP Ann. Manuf. Technol., Vol. 60 No. 1 (2004)551-554.
    [18] 林彥宏,2004,五軸虛擬工具機模擬系統一般化建構研究,國立成功大學碩士論文。
    [19] 蔡佳宏,2011,五軸 CNC成形砂輪磨齒機線上掃描式量測 NC路徑規劃與齒輪 精度評估之研究,碩士,國立臺灣科技大學,台北市。
    [20] Wan, P., Guo, J. J. and Wang, J. D., 2012, "Research on the Method of Continuous Scanning Measurement on the Tooth Surface of the Spiral Bevel Gear Based on the Constant Measuring Force," Adv. Mat. Res., Vol. 468-471 pp. 1532-1540.
    [21] Shih, Y. P., and Lin, S. H., 2016, "Topographic Measurement for Bevel Gears Using a One-Dimensional Scanning Probe Based on a Five-Axis CNC Machine," J. CHIN. SOC. MECH. ENG., 37(5), pp. 471-478.
    [22] Shih, Y. P., and You, C. H., 2017, "On-machine quasi-3D scanning measurement of bevel gears on a five-axis CNC machine," J. CHIN. SOC. MECH. ENG., 40(3), pp. 207-218.
    [23] Tianxing Li, Yulong Li, Xiaozhong Deng and Jinfan Li, 2021, "A measurement method for tooth surface errors of straight bevel gears based on 3D model," Meas. Sci. Technol., Vol. 32 Issue 2 Pages 025011.
    [24] Abe, G., Aritoshi, M., Tomita, T., and Shirase, K., 2011, "Development of on-machine measurement system utilizing line laser displacement sensor," Int. J. Autom. Technol., 5(5), pp. 708-714.
    [25] Li, B., Li, F., Liu, H. Q., Cai, H., Mao, X. Y., and Peng, F. Y., 2013, "A measurement strategy and anerror-compensation model for theon-machine laser measurement oflarge-scale free-form surfaces," Meas. Sci. Technol., Pages 12.
    [26] Ibaraki, S., Kimura, Y., Nagai, Y., and Nishikawa, S., 2015, "Formulation of influence of machine geometric errors on five-axis on-machine scanning measurement by using a laser displacement sensor," J. Manuf. Sci. Eng., 137(2), p. 021013.
    [27] Liu, R., Zhong, D., Lyu, H., and Han, J., 2016, "A bevel gear quality inspection system based on multi-camera vision technology," Sensors (Switzerland), 16(9), p. 1364.
    [28] Luo, M., and Zhong, S., 2018, "Non-contact measurement of small-module gears using optical coherence tomography," Appl. Sci., 8(12), p. 2490.
    [29] Chen, Y. C., and Chen, J. Y., 2019, "Optical inspection system for gear tooth surfaces using a projection moiré method," Sensors (Switzerland), 19(6), p. 1450.
    [30] Okuyama, E., Kiyono, S., and Moritoki, H., 1994, "Investigation of an optical noncontact gear geometry measurement system: measurement of pitch errors and tooth profiles," Precis. Eng., 16(2), pp. 117-123.
    [31] Smith, K. B., and Zheng, Y. F., 2001, "Optimal path planning for helical gear profile inspection with point laser triangulation probes," J. Manuf. Sci. Eng., 123(1), pp. 90-98.
    [32] Song, L. M., Qin, M. C., Li, Z. Y., Yang, Y. G., and Li, D. P., 2014, "A non-contact gear measurement method based on laser vision," Optoelectron. Lett., Vol. 10 Issue 3 Pages 237-240.
    [33] Budzik, G. and Dziubek, T., 2015, "Methodology of measurement aeronautical bevel gears utilizing an optical 3D scanner using white and blue light," Diagnostyka, Vol. 16 Issue 1 Pages 51-56.
    [34] Zhu, X. D., Fang, S. P., Yang, P. C., Wang, X., and Masaharu, K., 2018, "Construction of virtual measurement datum in measuring gear tooth flank by laser interferometry," Opt. Eng., Vol. 57 Issue 09.
    [35] Auerswald, M. M., von Freyberg, A., and Fischer, A., 2019, "Laser line triangulation for fast 3D measurements on large gears," Int. J. Adv. Manuf. Technol., 100(9-12), pp. 2423-2433.
    [36] Pei, Y. C., Xie, H. L., and Tan, Q. C., 2020, "A non-contact high precision measuring method for the radial runout of cylindrical gear tooth profile," Mech. Syst. Signal. Process., 138, p. 106543.
    [37] Urbas, U., Zorko, D., Černe, B., Tavčar, J., and Vukašinović, N., 2020, "A method for enhanced polymer spur gear inspection based on 3D optical metrology," Measurement., 169, p. 108584.
    [38] Guo, X., Shi, Z., Yu, B., Zhao, B., Li, K., and Sun, Y., 2020, "3D measurement of gears based on a line structured light sensor," Precis. Eng., 61, pp. 160-169.
    [39] Mei, N., Song, A., Yu, C. W. and Pan, J. Z. M, 2021, "An Offset Laser Measurement Method for the Deviation Analysis of Cylindrical Gears," Machines, Vol. 9 Issue 6.
    [40] Chai, Z., Lu, Y., Li, X., Cai, G., Tan, J., and Ye, Z., 2021, "Non-contact measurement method of coaxiality for the compound gear shaft composed of bevel gear and spline," Measurement., 168, p. 108453.
    [41] 翁浚哲,2021,圓柱齒輪之線雷射輪廓感測器非接觸式掃描量測,碩士,國立臺灣科技大學,台北市。
    [42] SINUMERIK, 2010, 840D/840Di/810D編程手冊,Version 2.6 SP1, Germany.
    [43] 何承舫、黃鼎名、張勝聰,2006,光學系統中的雜散光與抑制,科儀新知第27卷第4期,p.81-p.88。

    無法下載圖示 全文公開日期 2027/09/08 (校內網路)
    全文公開日期 2027/09/08 (校外網路)
    全文公開日期 2027/09/08 (國家圖書館:臺灣博碩士論文系統)
    QR CODE