簡易檢索 / 詳目顯示

研究生: 楊才賢
Tsai-Hsien Yang
論文名稱: 基於卷積神經網絡之干涉條紋澤尼克係數之預測技術
Zernike Coefficient Prediction Techniques of Interference Fringe Based on Convolution Neural Network
指導教授: 黃忠偉
Allen Jong-Woei Whang
陳怡永
Yi-Yung Chen
口試委員: 黃忠偉
Allen Jong-Woei Whang
陳怡永
Yi-Yung Chen
王孔政
Kung-Jeng Wang
林瑞珠
Jui-Chu Lin
陳省三
Sheng-San Chen
徐巍峰
Wei-Feng Hsu
鄭超仁
Chau-Jern Cheng
學位類別: 博士
Doctor
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 79
中文關鍵詞: 預測技術卷積神經網絡生成對抗網絡干涉條紋澤尼克係數遷移式學習
外文關鍵詞: Prediction Techniques, Convolution Neural Network, Generation Adversarial Network, Interference Fringe, Zernike Coefficient, Transfer Learning
相關次數: 點閱:272下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 像差係數是用以評估光學元件性能,很重要的參考指標,因此,本論文提出三種由干涉條紋圖像預測像差係數的技術,使用卷積神經網絡(Convolution Neural Network, CNN)方式,取代傳統複雜的數學運算方式。在本文中,使用四種卷積神經網絡,IZ-GNet網絡、IP-GAN網絡、PZ-GNet網絡及IZ-GAN網絡,搭配三種不同方式,IZGNet method、IZ2Net method及IZGAN method,預測澤尼克係數,進行分析及比較。在第一種方法IZGNet method和第三種方法IZGAN method中,干涉條紋的圖像分別輸入至IZ-GNet網絡和IZ-GAN網絡中,直接預測得到澤尼克係數。在第二種方法IZ2Net method中,需要兩個步驟,才能將干涉條紋的圖像,預測得到澤尼克係數。第一步,使用干涉條紋圖像,輸入至IP-GAN網絡預測相位圖像。第二步,使用相位圖輸入至PZ-GNet網絡,進行預測澤尼克係數。使用均方根誤差(Root-Mean-Square Error, RMSE)的方式,做為標準值與預測係數的評估標準。
    使用理想的圖像(干涉條紋或相位圖)分別訓練IZ-GNet網絡、IP-GAN網絡、PZ-GNet網絡及IZ-GAN網絡。在完成網絡訓練後,分別使用理想的圖像和類真實圖像,分別輸入四個網絡中,進行評估三種方法預測的澤尼克係數能力。測試結果,在使用理想的圖像的情況下,均方根誤差(RMSE)均小於0.055λ;及在使用類真實圖像的情況下,配合使用遷移式學習的方法,使得均方根誤差(RMSE)從均小於0.101λ到0.0586λ。綜上所述,本論文提出預測的方法應可用於真實干涉條紋圖像,進行預測澤尼克像差係數,以及證明遷移式學習的方法,可以提升網絡的預測準確度。


    Aberration coefficients are used to estimate the optical performance and it’s an important reference indicator. The paper proposes three prediction techniques to predict Zernike coefficients using interference fringe. Using Convolutional Neural Networks (CNN) replaces traditional methods that require complex mathematical calculations. In the paper, there are four architectures of CNN, IZ-GNet, IP-GAN, PZ-GNet, and IZ-GAN, and three prediction techniques, IZGNet method, IZ2Net method, and IZGAN method, to predict Zernike coefficients. In the first prediction technique, IZGNet method, and third prediction technique, IZGAN method, IZ-GNet and IZ-GAN can directly predict Zernike coefficients using interference fringe, respectively. In the second prediction technique, IZ2Net method, the interference fringe requires two networks to predict Zernike coefficients. First, IP-GAN predicts the phase difference with interference fringe. Second, the result of IP-GAN is used to predict the Zernike coefficients by PZ-GNet. Root-Mean-Square-Error (RMSE) is our criterion for quantifying the ground truth and prediction coefficients.
    There are two kinds of the ideal images: interference fringe or phase difference based on formula to train IZ-GNet, IP-GAN, PZ-GNet, and IZ-GAN, respectively. After the training is done, we use two different ways: the formula, ideal images, and optics simulation, simulated images, to estimate the performance of three prediction techniques. As a result, RMSE are less than 0.055λ with ideal images case and RMSE are less than from 0.101λto 0.0586λwith simulated images case and transfer learning. According to the aforementioned, the predicted techniques can be applied to predict the Zernike coefficients through the actual images of interference fringe. Moreover, we prove that transfer learning method improves the prediction accuracy of the network.

    ABSTRACT (CHINESE) I ABSTRACT II ACKNOWLEDGEMENT III TABLE OF CONTENTS V LIST OF FIGURES VII LIST OF TABLES X 1 Introduction 1 1.1 Backgrounds 1 1.2 Motivations 3 1.3 Dissertation Organization 4 2 Fundamental Theories 7 2.1 Optical Details 7 2.2 Model Details 10 2.2.1 The Convolutional layer 10 2.2.2 The Pooling methods 11 2.2.3 The Activation functions 13 2.2.4 Loss function for GAN model 16 2.3 Datasets for the CNN models 17 2.3.1 IZGNet method 17 2.3.2 IZ2Net method 19 2.3.3 IZGAN method 22 2.4 The Architecture of Experimental 26 3 The Architecture of models 28 3.1 IZGNet method 28 3.1.1 IZ-GNet model 28 3.2 IZ2Net method 31 3.2.1 IP-GAN model 32 3.2.2 PZ-GNet model 36 3.3 IZGAN method 38 3.3.1 IZ-GAN model 39 4 Results 44 4.1 IZGNet method 44 4.1.1 The performance of IZ-GNet model 44 4.2 IZ2Net method 48 4.2.1 The performance of IP-GAN model 48 4.2.2 The performance of PZ-GNet model 57 4.3 IZGAN method 61 4.3.1 The performance of IZ-GAN model 61 5 Discussions and Conclusions 68 5.1 Discussions 68 5.2 Conclusions 71 5.3 Future Works 72 REFERENCES 73 APPENDIX 77 A. The index of Zernike coefficients in the paper 77 B. My published papers. 79

    [1] M. J. Kidger, "Importance of aberration theory in understanding lens design," International Society for Optics and Photonics, pp. 26-33, 1997.
    [2] V. Lakshminarayanan, and A. Fleck, "Zernike polynomials: a guide," Journal of Modern Optics, vol. 58, pp. 545-561, 2011.
    [3] I. Gurov, and M. Volynsky, "Interference fringe analysis based on recurrence computational algorithms," Optics and Lasers in Engineering, vol. 50, pp. 514-521, 2012.
    [4] D. Malacara-Hernandez, M. Carpio-Valadez, and J. J. Sanchez-Mondragon, "Wavefront fitting with discrete orthogonal polynomials in a unit radius circle," Optical engineering, vol. 29, pp. 672-676, 1990.
    [5] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for deep belief nets,” Neural computation, vol. 18, pp. 1527-1554, 2006.
    [6] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, et al., "Generative adversarial nets", Advances in neural information processing systems, arXiv:1406.2661v1, pp. 2672-2680, 2014.
    [7] Mehdi Mirza, Simon Osindero, “Conditional Generative Adversarial Nets”, Deep Learning and Representation Learning Workshop, arXiv:1411.1784v1, 2014.
    [8] Z. Yi, H. Zhang, P. Tan, M. Gong, “DualGAN: Unsupervised Dual Learning for Image-to-Image Translation,” International Conference on Computer Vision (ICCV), pp. 2849-2857, 2017.
    [9] M. Liu, T. Breuel and J. Kautz, “Unsupervised image-to-image translation networks,” CoRR, 2017.
    [10] J. Long, E. Shelhamer and T. Darrell, “Fully convolutional networks for semantic segmentation,” Computer Vision and Pattern Recognition(CVPR), pp. 3431-3440, 2015.
    [11] Z. Yu , Y. Zhong, R Hugh Gong, and H. Xie, “Filling the binary images of draped fabric with pix2pix convolutional neural network,” Journal of Engineered Fibers and Fabrics, vol. 15, issue 1, p1-6. 6p, 2020.
    [12] G. Barbastathis, A. Ozcan, and G. Situ, “On the use of deep learning for computational imaging,” Optica, vol. 6, no. 8, 2019.
    [13] M. Wang, W. Guo, and X. Yuan , “Single-shot wavefront sensing with deep neural,” Optics Express, vol. 29, no. 3, pp. 3467-3478, 2021.
    [14] F. Yu, L. Wang , X. Fang, and Y. Zhang, “The Defense of Adversarial Example with Conditional Generative Adversarial Networks,” Security and Communication Networks, vol. 2020, Article ID 3932584, 12 pages, 2020.
    [15] A. J.-W. Whang, Y.-Y. Chen, C.-M. Chang, Y.-C. Liang, T.-H. Yang, C.-T. Lin, and C.-H. Chou, “Prediction technique of aberration coefficients of interference fringes and phase diagrams based on convolutional neural network,” Optics Express, vol. 28, issue 25, pp. 37601-37611, 2020.
    [16] Y.-C. Liang, “Evaluation the aberration coefficients of interference fringes and phase diagrams using convolutional neural network,” Master’s Dissertation, Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, https://hdl.handle.net/11296/rpj26x, 2020.
    [17] C.-T. Lin, “Using Generative Adversarial Network to convert interference fringes to wavefront for aberration prediction,” Master’s Dissertation, Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, 2021.
    [18] A. J.-W. Whang, Y.-Y. Chen, T.-H. Yang, , C.-T. Lin, Z.-J. Jian, and C.-H. Chou, “Zernike Coefficients Prediction Technique of Interference Based on Generation Adversarial Network,” Applied Sciences, vol. 11, no. 15, pp. 6933, 2021.
    [19] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Transactions on knowledge and data engineering, vol. 22, issue 10, pp.1345-1359, 2010.
    [20] J. Schwiegerling, “Review of Zernike polynomials and their use in describing the impact of misalignment in optical systems,” Optical System Alignment, Tolerancing, and Verification XI; 103770D (2017), vol. 10377, 2017.
    [21] K. Yan, Y. Yu, C. Huang, L. Sui, K. Qian, and A. Asundi, “Fringe pattern denoising based on deep learning," Optics Communications, vol. 437, pp. 148-152 2019.
    [22] D. Yu, H. Wang, P. Chen, and Z. Wei, “Mixed pooling for convolutional neural networks,” International conference on rough sets and knowledge technology(Springer2014), pp. 364-375, 2014.
    [23] B. Graham, "Fractional max-pooling,” arXiv:1412.6071, 2014.
    [24] B. Karlik, and A. V. Olgac, "Performance analysis of various activation functions in generalized MLP architectures of neural networks," International Journal of Artificial Intelligence and Expert Systems, vol. 1, pp. 111-122, 2011.
    [25] B. Kimbrough, J. Millerd, J. Wyant, and J. Hayes, “Low-coherence vibration insensitive Fizeau interferometer,” Interferometry XIII: Techniques and Analysis(International Society for Optics and Photonics2006), vol. 6292, p. 62920F, 2006.
    [26] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the inception architecture for computer vision,” Proceedings of the IEEE conference on computer vision and pattern recognition(2016), pp. 2818-2826, 2016.
    [27] Y. Nishizaki, M. Valdivia, R. Horisaki, K. Kitaguchi, M. Saito, J. Tanida, and E. Vera, “Deep learning wavefront sensing,” Optics express, vol. 27, pp. 240-251, 2019.
    [28] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation with conditional adversarial networks,” Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1125-1134, 2017.
    [29] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 7132-7141, 2018.
    [30] T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida, “Spectral normalization for generative adversarial networks,” arXiv:1802.05957, 2018.
    [31] D. Ulyanov, A. Vedaldi, and V. Lempitsky, “Instance normalization: The missing ingredient for fast stylization,” arXiv:1607.08022, 2016.
    [32] L. Luo, Y. Xiong, Y. Liu, and X. Sun, “Adaptive gradient methods with dynamic bound of learning rate,” arXiv:1902.09843, 2019.

    無法下載圖示 全文公開日期 2023/08/18 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE