簡易檢索 / 詳目顯示

研究生: 楊宗融
Tsung-Jung Yang
論文名稱: 可撓式顆粒輔助化學機械拋光製程研究
Research of Compliant Pellets Assisted Chemical Mechanical Planarization Process
指導教授: 陳炤彰
Chao-Chang Chen
口試委員: 林榮慶
Jung-Ching Lin
劉顯光
Hsien-Kuang Liu
鄭裕隆
Yu-Lung Cheng
陳盈同
Ying-Tung Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 185
中文關鍵詞: 化學機械平坦化可撓曲顆粒矽晶圓拋光
外文關鍵詞: Chemical mechanical planarization, Compliant pellets, Si wafer polishing
相關次數: 點閱:316下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究主要是將化學機械拋光(Chemical Mechanical Planarization Process,CMP)拋光墊(Pad)與晶圓接觸之拋光墊粗度峰(Asperity)的彈性變形,由聚氨酯微球(PU Pellets)搭配拋光板(Plate)取代,成為可撓式顆粒輔助化學機械拋光製程(Compliant Pellets Assisted Chemical Mechanical Planarization Process,CPACMP)。此製程優點為使用過之二氧化矽磨粒會與聚氨酯微球被拋光刷帶離盤面,因此拋光板上粗度峰機制會隨著拋光液輸送不斷更新,也更加穩定控制拋光盤面上之表面粗糙度機制。實驗方法之矽晶圓拋光製程使用無微孔洞聚碳酸酯(Polycarbonate, PC)拋光板,其可視為剛性平面,搭配拋光液添入0.5 wt %粒徑15μm聚氨酯(Polyurethane, PU)球為核心層,外圍即環繞拋光液之二氧化矽粒子進行拋光。實驗結果得知聚碳酸酯拋光板和拋光液中添入聚氨酯微球(SP製程Silica+PU Pellets),拋光後兩吋單晶矽晶圓降低表面粗糙度85%,材料移除率約82.72 nm/min。SP製程進行四吋單晶矽晶圓拋光,可降低表面粗糙度65%,材料移除率約87.56 nm/min。最後驗證CPACMP可使晶圓表面粗糙度、厚度變異量和非均勻性均有明顯改善。


This research aims to use compliant pellets assisted chemical mechanical polishing (CPACMP) in a wafer planarization process without pad dressing. In CPACMP method, a soft polishing pad with asperities has been replaced by combinational using a polycarbonate (PC) plate and polyurethane (PU) pellets. During CPACMP process, the PU pellets are supplied continuously on the plate surface to replace the residual PU pellets to maintain the asperities of the plate. In this study, CPACMP is applied to polish the 2” single crystal Si wafers by polishing slurry along with 0.5 wt% of PU (15 μm) pellets is mixed in. The PU pellets are covered by silica particles in the polishing process. The PC plate and the polishing slurry with PU pellets are named as SP (Silica+PU pellets) process for polishing Si wafer. The experiment results showed that CPACMP has reduced more than 85% of wafer surface roughness in comparison with CMP using PC plate without PU pellets. Moreover, material removal rate (MRR) of Si wafer is 82.72 nm/min. As well as using SP for polishing of 4” single crystal Si wafer, the surface roughness reduces 65% and MRR of wafer is 87.56 nm/min. Thus, it can be concluded that CPACMP can reduce the wafer surface roughness, thickness variation, and non-uniformity effectively.

摘要 II Abstract III 誌謝 IV 圖目錄 VIII 表目錄 XI 符號表 XII 第一章 導論 1 1.1 研究背景 1 1.2 研究目的 5 1.3 研究方法 6 1.4 研究架構 7 第二章 文獻回顧 9 2.1 複合式磨粒相關文獻回顧 9 2.2 複合式磨粒相關專利分析 25 2.2.1 專利整理 25 2.2.2 專利分析 29 2.3 文獻回顧總結 30 第三章 可撓式顆粒輔助化學機械拋光製程 31 3.1 CMP移除機制討論 31 3.2 CPACMP材料移除模式建立 34 3.2.1 聚氨酯微球與矽晶圓之接觸模式建立 34 3.2.2 磨粒與矽晶圓及聚氨酯微球之接觸模式建立 37 3.2.3 有效磨粒數建立 40 3.2.4 CPACMP材料移除理論模式整合 46 3.2.5 CPACMP應用 49 第四章 實驗設備與規劃 52 4.1 實驗設備 52 4.2 量測設備 53 4.3 實驗耗材 54 4.3.1 拋光板 54 4.3.2 拋光液 65 4.3.3 晶圓 73 4.3.4 晶圓夾治具 74 4.3.5 毛刷 74 4.4 實驗規劃 75 4.4.1 聚碳酸酯拋光板平坦化_添入PU效益驗證 (實驗A) 76 4.4.2 CPACMP_PC Plate_2"Si Wafer_機械參數 (實驗B1) 77 4.4.3 CPACMP_PC Plate_4" Si Wafer (實驗B2) 78 4.4.4 CPACMP效率探討_PC Plate_4" Si Wafer (實驗C) 79 第五章 結果與討論 80 5.1 聚碳酸酯拋光板平坦化_添入PU效益驗證 (實驗A) 80 5.1.1 PC Plate拋光製程添入PU效益對矽晶圓表面粗糙度 81 5.1.2 PC Plate拋光製程添入PU效益矽晶圓材料移除率 83 5.1.3 PC Plate拋光製程添入PU效益對矽晶TTV&N.U. 84 5.1.4 拋光墊/板磨擦係數實驗 86 5.1.5 綜合分析 86 5.2 CPACMP_PC Plate_2"Si Wafer_機械參數 (實驗B1) 89 5.2.1 SP製程_PC Plate_2" Si Wafer_晶圓表面粗糙度 90 5.2.2 SP製程_PC Plate_2" Si Wafer_晶圓材料移除率 91 5.2.3 SP製程_PC Plate_2" Si Wafer_ TTV&N.U. 92 5.2.4 SP製程_PC Plate_2" Si Wafer_材料移除方程式 93 5.2.5 CPACMP材料移除模式分析 97 5.2.6 綜合分析 99 5.3 CPACMP_PC Plate_4" Si Wafer(實驗B2) 100 5.3.1 SP製程_PC Plate_4" Si Wafer_晶圓表面粗糙度 100 5.3.2 SP製程_PC Plate_4 " Wafer_晶圓材料移除率 101 5.3.3 SP製程_PC Plate_4" Si Wafer_ TTV&N.U. 102 5.3.4 SP製程_PC Plate_複合磨料微觀探討 103 5.3.5 綜合分析 104 5.4 CPACMP製程效率探討 (實驗C) 104 5.4.1 CPACMP製程效率對晶圓表面粗糙度影響探討 105 5.4.2 CPACMP製程效率對晶圓材料移除率影響探討 106 5.4.3 CPACMP製程效率對晶圓TTV&N.U.影響探討 106 5.4.4 CPACMP製程效率對拋光板表面粗糙度影響探討 107 5.4.5 綜合分析 109 第六章 結論與建議 110 6.1 結論 110 6.2 建議 111 參考文獻 113 附錄 116 附錄 A、 使用設備 116 附錄 B、 實驗A_晶圓表面粗糙度 120 附錄 C、 實驗B1_晶圓表面粗糙度 140 附錄 D、 實驗B2_晶圓表面粗糙度 149 附錄 E、 實驗C_晶圓表面粗糙度 152 附錄 F、 實驗A 、B1 _二吋單晶矽晶圓物料與 Bow/Warp 155 附錄 G、 實驗B2_四吋單晶矽晶圓物料與 Bow/Warp 164 附錄 H、 實驗C_四吋單晶矽晶圓物料與 Bow/Warp 165 附錄 I、 實驗C_四吋單晶矽晶圓表面觀察 168

[1]W. Fan, "Advanced Modeling of Planarization Processes for Integrated Circuit Fabrication", 2012.
[2]Hong Xiao 著, 半導體製程技術導論,"Introduction to Semiconductor Manufacturing Technology",台北培生出版, 2001.
[3]J.-Y. Lai, "Mechanics, mechanisms, and modeling of the chemical mechanical polishing process", massachusetts institute of technology, 2001.
[4]英特爾CEO認為摩爾定律即將走入終結 Available: http://iknow.stpi.narl.org.tw/post/Read.aspx?PostID=11374
[5]Y. Lu, Y. Tani, and K. Kawata, "Proposal of New Polishing Technology without Using a Polishing Pad", CIRP Annals - Manufacturing Technology, vol. 51, pp. 255-258, 2002.
[6]Xu Xuefeng , Ma Bingxun , Hu Jiande , and P. Wei.,"無拋光墊化學機拋光技術研究",2008.
[7]ARMINI,S., WHELAN,C. M., et al., "Composite polymer-core silica-shell abrasive particles during oxide CMP : A defectivity study" vol. 154. Pennington, NJ, ETATS-UNIS: Electrochemical Society, 2007.
[8]J. J. Wei Fan and D. S. Boning, "Modeling of “Pad-in-a-Bottle”: A Novel Planarization Process Using Suspended Polymer Beads", 2013
[9]黃亦申,許雪峰,姚春燕,胡建德,彭偉,"靜電自組裝製備複合磨粒及其對銅的拋光特性研究",浙江工業大學特種裝備製造與先進加工技術教育部/浙江省重點實驗室,杭州,2012。
[10]K. L. Johnson, "Contact mechanics: Cambridge University Press", 1985.
[11]B. Vasilev, R. Rzehak, S. Bott, P. Kucher, and J. W. Bartha, "Greenwood;Williamson Model Combining Pattern-Density and Pattern-Size Effects in CMP," IEEE Transactions on Semiconductor Manufacturing, vol. 24, pp. 338-347, 2011.
[12]D. Boning, W. Fan, Z. Yun, Y. Sampurno, and A. Philipossian, "Planarization with suspended polyurethane beads and a stiff counterface: Pad-in-a-bottle experiments and simulation", in 2015 International Conference on Planarization/CMP Technology (ICPT), 2015
[13]http://www.pidc.org.tw/PlasticsPackage/Pages/default.aspx.
行政院衛生署食品藥物管理局-塑膠食品容器宣導網站。
[14]D. O. Ouma, D. S. Boning, J. E. Chung, W. G. Easter, V. Saxena, S. Misra, et al., "Characterization and modeling of oxide chemical-mechanical polishing using planarization length and pattern density concepts", IEEE Transactions on Semiconductor Manufacturing, vol. 15, pp. 232-244, 2002.
[15]L. J. Borucki, Y. A. SAMPURNO, and A. Philipossian, "Method and apparatus for chemical-mechanical planarization", Google Patents, 2011.
[16]B. G. Prevo, M. J. Hampden-Smith, D. Fomitchev, and Y. E. Kutsovsky, "Metal oxide-polymer composite particles for chemical mechanical planarization", Google Patents, 2015.
[17]V. Gupta, A. Kumar, C. Coutinho, and S. Mudhivarthi, "Polymeric microgels for chemical mechanical planarization (cmp) processing", Google Patents, 2008.
[18]H. Yano, G. Minamihaba, Y. Matsui, K. Okumura, M. Motonari, M. Hattori, et al., "Composite particles and production process thereof, aqueous dispersion, aqueous dispersion composition for chemical mechanical polishing, and process for manufacture of semiconductor device", Google Patents, 2002.
[19]C. C. A. Chen, "Lec5 Ultra Precision Polishing Process", 2011.
[20]姚昶劦,"連續複合電鍍磨盤式超精密拋光機之研發及矽晶圓拋光特性",國立中山大學論文機械與機電工程系論文,2002。
[21]許厲生,"矽晶圓薄化與平坦化加工研究",國立臺灣科技大學 機械工程系論文,2007。
[22]G. Zum, Karl, H., "Microstructure and Wear of Materials: Elsevier", 1987.
[23]C. F. C. Anthony, "Nanoindentation: Springer-Verlag" New York,Inc., 2002.
[24]ASTM, Standard Test Method for Rubber Property-Durometer Hardness D2240, 2010.
[25]ASTM, Standard Test Method for Compressibility and Recovery of Gasket Materials F36, 2009.

QR CODE