簡易檢索 / 詳目顯示

研究生: 徐靖翔
Ching-Hsiang Hsu
論文名稱: 聚二甲基矽氧烷基材表面接枝嵌段共聚甲基丙烯酸磺基甜菜鹼-甲基丙烯酸高分子在全血中鼠疫桿菌光學檢測研究
Poly (Sulfobetaine methacrylate -b- Methacrylic acid) Grafting to Poly(dimethylsiloxane) Substrate for Yersinia Pestis Optical Detection in Whole Blood
指導教授: 蘇舜恭
Shuenn-kung Su
口試委員: 陳建光
Jem-Kun Chen
王志逢
Chih-Feng Wang
許蕙玲
Hui-Ling Hsu
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 149
中文關鍵詞: 可逆加成-斷裂鏈轉移聚合嵌段高分子點擊化學鼠疫桿菌抗生物沾黏高分子繞射光柵微影製程
外文關鍵詞: Reversible Addition-Fragmentation Chain Transfer Polymerization (RAFT), Block Copolymer, Click Reaction, Yersinia pestis, Anti-biofouling, Diffraction grating, Photolithography
相關次數: 點閱:349下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究為設計一嵌段高分子材料以偵測全血中的鼠疫桿菌(Yersinia pestis),在檢測的同時屏除白血球的干擾。基材為柱/間距比率為1:1.5的透過翻模製備的圖案化聚二甲基矽氧烷(Poly(dimethylsiloxane), PDMS)表面接枝高分子,使之呈現柱型結構為500nm與1µm的一維光柵。利用可逆加成-斷裂鏈轉移聚合(Reversible Addition-Fragmentation Chain Transfer Polymerization, RAFT)製備甲基丙烯酸 (Poly(methacrylic acid),PMAA)與甲基丙烯酸磺基甜菜鹼(Poly(sulfobetaine methacrylate),SBMA)的高分子,而後以點擊反應接枝於基材上。接著利用PMAA末端有-COOH官能基,透過EDC/NHS的反應接上Protein G與鼠疫桿菌F1抗原之單株抗體(Anti-Yp F1 MoAb),進行鼠疫桿菌偵測,而PSBMA 的雙離子性可抵抗生物分子沾黏,達到抗沾黏且可專一抓取特定細胞的目的。
    檢驗方式利用雷射因光柵繞射產生的能量散失,對不同的層數高分子製備嵌段高分子刷,測試出在四種樣品中PMDS-PSBMA-b-PMAA對Yersinia pestis專一性抓取的雷射能量變化最大為32.69%及43.88%,且在白細胞沾黏導致的雷射能量變化量最小為4.31%及2.68%,故經過交叉綜合考量,選其作為後續實驗之基材。
    接著對於0 CFU/ml -10^6 CFU/ml做鼠疫桿菌檢體濃度靈敏度測試,並透過螢光顯微鏡觀察螢光佐證,結果顯示隨著鼠疫檢體濃度的上升,雷射繞射強度呈現下降的趨勢,其靈敏度可達到濃度7.5×10^1 CFU/ml,雷射變化值大約為10%,而螢光顯微鏡已無法發現鼠疫桿菌的螢光存在,說明利用雷射能量檢測鼠疫桿菌的靈敏度較螢光顯微鏡高。而柱型500nm的圖案化PDMS對於不同濃度的鼠疫桿菌所作出的線性回歸,可以看到斜率較高為0.828代表有較高的靈敏度,且r2值為0.9738代表鼠疫桿菌濃度有97.38%的概率能以雷射解釋,非常有潛力作為即時檢測鼠疫桿菌的技術。


    We successfully fabricated patterned PDMS sustrates with PMAA and PSBMA block copolymer brush which use RAFT then grafting to the surface by Click reaction in this experiment.

    The results show that we have the polymer brush grafts to patterned PDMS sustrates in an aspect ratio of 1:1.5 which one dimension pillar structure grating width is 500nm and 1µm . Use AFM to investigate the height relationship with other factors of polymer brush. XPS and FT-IR to analyze the constitution of the surface.

    Subsequently, we use surface modification techniques with anti-body in order to capture Yersinia pestis by means of applying EDC/NHS reaction to combined carboxylic acid functional group of PMMA with Protein G and Anti-Yp (F1-MoAb). Fulfilling all the vacancy with BSA to change the surface with anti-fouling property, and then fully washed and test with Yersinia pestis.

    The detection method theory utilizes laser energy loss due to grating diffraction. The sample concentration of 0 CFU/ml -106 CFU/ml is determined by using optical microscope to analysis fluorescence intensity of modified patterned polymer brush combined with Yersinia pestis.

    The block copolymer unit is prepared and graft to PDMS substrates. Polymer brushes tested that the sensitivity of PDMS-PSBMA-b-PMAA in the presence of the laser in human blood was superior to other substrates. It shows better sensitivity to Yersinia pestis and more than 99% anti-fouling ability of leukocytes.

    The results showed that higher concentration of Yersinia pestis, lower intensity the laser diffraction we get. The sensitivity could reach a maximum concentration of 7.5×10^1 CFU/ml which laser energy loss is approximately 10%. However, the fluorescence of the Yersinia pestis could not be detected by optical microscope, indicating the sensitivity of the laser detection is higher than optical microscope fluorescent detection method.

    The modificated PDMS with pillar width 500nm linear regression has the slope 0.828 meaning the better detection sensitivity for different concentrations of Yersinia pestis, and showed r2 0.9738. It will be considered a revolutionary tool for fast detection of Yersinia pestis.

    摘要 I ABSTRACT III 致謝 V 目錄 VI 圖目錄 XIII 表目錄 XX 1. 緒論 1 1.1. 研究背景 1 1.2. 研究目的 3 2. 理論與文獻回顧 4 2.1. 高分子刷簡介 4 2.2. 自組裝單分子層 8 2.3. 可逆加成斷裂鏈轉移聚合 10 2.4. 液態除氣法 12 2.5. 智能型高分子 14 2.6. 聚二甲基矽氧烷 17 2.7. 微影製程與翻模 18 2.8. 晶圓蝕刻 20 2.9. 聚甲基丙烯酸(PMAA) 23 2.10. 聚甲基丙烯酸磺基甜菜鹼(PSBMA) 24 2.11. 共價鍵固定法(EDC/NHS reaction) 25 2.12. 重組蛋白與抗體 27 2.13. 光柵效應 27 2.14. 點擊化學 30 3. 儀器簡介 33 3.1. 核磁共振儀 (Nuclear Magnetic Resonance, NMR) 33 3.2. 原子力顯微鏡 (Atomic Force Microscope, AFM) 34 3.3. 掃描式電子顯微鏡 (Scanning Electron Microscope, SEM) 39 3.4. X射線光電能譜儀 (X-ray Photoelectron Spectroscopy, XPS) 40 3.5. 膠體滲透層析儀 (Gel Permeation Chromatography, GPC) 43 3.6. 傅立葉轉換紅外線光譜儀 (Fourier-Transform Infrared Spectroscopy, FT-IR) 44 3.7. 陣列雷射光束分析儀(BeamMic) 48 3.8. 接觸角 (Contact Angle, CA) 52 4. 實驗流程與方法 55 4.1. 實驗流程圖 55 4.2. 實驗藥品 56 4.3. 實驗儀器 61 4.4. 實驗步驟 63 4.4.1. 微影製程製備圖案化光阻層 63 4.4.1.1. 表面預處理 63 4.4.1.2. 光阻塗佈 64 4.4.1.3. 軟烤 64 4.4.1.4. 曝光 64 4.4.1.5. 顯影 65 4.4.2. 圖案化轉印於PDMS薄膜 65 4.4.3. 製備表面改質之化合物及高分子 66 4.4.3.1. 硫醇-疊氮(Azido-disulfide)化合物的製備 66 4.4.3.2. 改質RAFT鏈轉移劑(CTA) 67 4.4.3.3. RAFT聚合PSBMA 67 4.4.3.4. RAFT聚合PMAA 68 4.4.3.5. 製備PEG-OTs 68 4.4.3.6. 製備PEG-Azide 69 4.4.4. PDMS表面改質 69 4.4.4.1. PDMS表面鍍金處理 69 4.4.4.2. 製備自組裝層 70 4.4.4.3. 利用點擊反應(Click Reaction)接枝第一層高分子 70 4.4.4.4. 利用點擊反應(Click Reaction)接枝第二層PEG 71 4.4.4.5. 利用點擊反應(Click Reaction)接枝第三層高分子 72 4.4.5. 表面改質ProtrinG與Anti-Yp F1M0Ab 72 4.5. 白血球抗沾黏實驗 73 4.5.1. 血液樣品處理 73 4.5.2. 白血球接種 73 4.5.3. 白血球固定與染色 73 4.6. 細菌抓取、標記 74 4.6.1. 鼠疫桿菌Yersinia pestis 74 4.6.2. 螢光標定 74 5. 結果與討論 75 5.1. 圖案化表面分析 75 5.1.1. 微影製程洞型光阻圖案 75 5.1.2. PDMS轉印圖案化 76 5.3. 表面改質之化合物及高分子分析 80 5.3.1. 硫醇-疊氮(Azido-disulfide)化合物之分析 80 5.3.1.1. 硫醇-疊氮(Azido-disulfide)化合物FT-IR光譜圖 81 5.3.1.2. 硫醇-疊氮(Azido-disulfide)化合物之NMR光譜圖 81 5.3.2. 改質RAFT鏈轉移劑(CTA)之定性分析 82 5.3.2.1. 改質RAFT鏈轉移劑之FT-IR光譜圖 83 5.3.2.2. 改質RAFT鏈轉移劑之NMR光譜圖 83 5.3.3. 以RAFT聚合PSBMA之定性分析 84 5.3.3.1. PSBMA之FT-IR光譜圖 85 5.3.3.2. PSBMA之NMR光譜圖 86 5.3.4. 以RAFT聚合PSBMA之定性分析 86 5.3.4.1. PMAA之FT-IR光譜圖 87 5.3.4.2. PMAA之NMR光譜圖 87 5.3.5. 改質PEG之定性分析 88 5.3.5.1. 改質PEG之FT-IR光譜圖 88 5.3.5.2. 改質PEG之NMR光譜圖 89 5.3.6. 以RAFT聚合之高分子GPC分析 90 5.4. PDMS表面接枝高分子分析 92 5.4.1. 高分子刷表面AFM圖 92 5.4.2. XPS光譜圖分析 94 5.4.2.1. PDMS 改質後之XPS Wide Scan分析 94 5.4.2.2. PDMS鍍金處理XPS分析 95 5.4.2.3. PDMS-N3之XPS分析 96 5.4.2.4. PDMS接枝高分子之XPS分析 96 5.4.3. 接觸角親疏水測定 97 5.5. 高分子雷射偵檢 99 5.6. 不同層數高分子共聚物抗沾黏表現 104 5.6.1. 白血球抗沾黏測定 104 5.6.2. 白血球對雷射偵檢之影響 106 5.7. 各比例高分子共聚物上專一性抓取之表現 108 5.7.1. 各比例高分子共聚物上之螢光表現 108 5.7.2. 各比例共聚高分子雷射偵檢之表現 110 5.8. 鼠疫桿菌與白血球貼附於PDMS之SEM圖 112 5.9. PDMS偵測Yersinia pestis之偵測極限分析 113 5.9.1. 全血下各濃度Yersinia pestis之螢光表現 113 5.9.2. 各濃度Yersinia Pestis之雷射偵檢之表現 116 6. 結論 118 參考文獻 119 保密同意書 126

    [1] N. Bunjes, S. Paul, J. Habicht, O. Prucker, J. Rühe, and W. Knoll, "On the swelling behavior of linear end-grafted polystyrene in methanol/toluene mixtures," Colloid and Polymer Science, vol. 282, pp. 939-945, 2004.
    [2] P. de Gennes, "Conformations of polymers attached to an interface," Macromolecules, vol. 13, pp. 1069-1075, 1980.
    [3] B. Zhao and W. J. Brittain, "Polymer brushes: surface-immobilized macromolecules," Progress in Polymer Science, vol. 25, pp. 677-710, 2000.
    [4] S. Milner, "Polymer brushes," Science, vol. 251, pp. 905-914, 1991.
    [5] Y. T. M. Ejaz, T. Fukuda, "Controlled grafting of a well-defined polymer on porous glass filter by surface-initiated atom transfer radical polymerization," polymer, vol. 42, pp. 6811-6815, 2001.
    [6] M. B. a. J. R. he, "Preparation and Characterization of a Polyelectrolyte Monolayer Covalently Attached to a Planar Solid Surface," Macromolecules, vol. 32, pp. 2309-2316, 1999.
    [7] W. J. B. B. Zhao, "Polymer brushes surface-immobilized macromolecules," Prog. Polym. Sci, vol. 25, pp. 677-710, 2000.
    [8] A. Kopf, J. Baschnagel, J. Wittmer, and K. Binder, "On the adsorption process in polymer brushes: a Monte Carlo study," Macromolecules, vol. 29, pp. 1433-1441, 1996.
    [9] R. Zajac and A. Chakrabarti, "Irreversible polymer adsorption from semidilute and moderately dense solutions," Physical Review E, vol. 52, p. 6536, 1995.
    [10] W.C. Bigelow, D.L. Pickett, W.A. Zisman, "Film adsorbed from solotion in non-polar liquids," Journal of Colloid Science, vol. 1, pp. 513-538, 1946.
    [11] R. G. Nuzzo and D. L. Allara, "Adsorption of bifunctional organic disulfides on gold surfaces," Journal of the American Chemical Society, vol. 105, pp. 4481-4483, 1983.
    [12] P. E. Laibinis, G. M. Whitesides, D. L. Allara, Y. T. Tao, A. N. Parikh, and R. G. Nuzzo, "Comparison of the structures and wetting properties of self-assembled monolayers of n-alkanethiols on the coinage metal surfaces, copper, silver, and gold," Journal of the American Chemical Society, vol. 113, pp. 7152-7167, 1991.
    [13] D. G. a. S. M. Husson, "Room Temperature Growth of Surface-Confined Poly(acrylamide) from Self-Assembled Monolayers Using Atom Transfer Radical Polymerization," Macromolecules, vol. 35, pp. 4218-4221, 2002.
    [14] D. Gopireddy and S. M. Husson, "Room temperature growth of surface-confined poly (acrylamide) from self-assembled monolayers using atom transfer radical polymerization". Macromolecules, vol. 35, pp. 4218-4221, 2002.
    [15] B. M. E. Delamarche, H. Kang, and Ch. Gerber, "Thermal Stability of Self-Assembled Monolayers," Langmuir, vol. 10, pp. 4103-4108, 1994.
    [16] J. A. H. a. J. P. Youngblood, "Optimization of Silica Silanization by 3-Aminopropyltriethoxysilane," Langmuir, vol. 22, pp. 11142-11147, 2006.
    [17] S. Link and M. A. El-Sayed, "Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles," The Journal of Physical Chemistry B, vol. 103, pp. 4212-4217, 1999.
    [18] J.-K. Chen, J.-H. Wang, C.-C. Cheng, J.-Y. Chang, and F.-C. Chang, "Polarity-indicative two-dimensional periodic relief gratings of tethered poly (methyl methacrylate) on silicon surfaces for visualization in volatile organic compound sensing," Applied Physics Letters, vol. 102, p. 151906, 2013.
    [19] G. Moad, E. Rizzardo, and S.H. Thang, " Living Radical Polymerization by the RAFT Process," Australian journal of chemistry, vol. 58, pp. 379-410, 2005.
    [20] G. Moad, J. Chiefari, Y.K. Chomg, J. Krstina, R. Mayadunne, A. Postma, E. Rizzardo, and S.H. Thang " Living free radical polymerization withreversible addition – fragmentation chaintransfer (the life of RAFT) " Polymer International, vol. 49, pp. 993-1001, 2000.
    [21] J. Chieefari, Y.K. Chong, F. Ercole, J. Krstina, T. Le, R. Mayadunne, G.f. Meijs, C.L. Moad, G. Moad, E. Rizzardo, and S.H. Thang " Living Free-Radical Polymerization by Reversible Addition-Fragmentation Chain Transfer: The RAFT Process," Macromolecules, vol. 31, pp. 5559-5562, 1998.
    [22] Y. Lu, G. L. Liu, and L. P. Lee, "High-density silver nanoparticle film with temperature-controllable interparticle spacing for a tunable surface enhanced Raman scattering substrate," Nano letters, vol. 5, pp. 5-9, 2005.
    [23] Y.-H. Ho, K.-H. Ting, K.-Y. Chen, S.-W. Liu, W.-C. Tian, and P.-K. Wei, "Omnidirectional antireflection polymer films nanoimprinted by density-graded nanoporous silicon and image improvement in display panel," Optics express, vol. 21, pp. 29827-29835, 2013.
    [24] E. Costa, M. Coelho, L. M. Ilharco, A. Aguiar-Ricardo, and P. T. Hammond, "Tannic Acid Mediated Suppression of PNIPAAm Microgels Thermoresponsive Behavior," Macromolecules, vol.44, pp. 612-621, 2011.
    [25] Q. Zhang, F. Xia, T. Sun, W. Song, T. Zhao, M. Liua, and L. Jiang, "Wettability switching between high hydrophilicity at low pH and high hydrophobicity at high pH on surface based on pH-responsive polymer," Chem. Commun. vol. 16, pp. 1199–1201, 2008.
    [26] H. Xiao, "半導體製程技術導論,羅正忠和張鼎張譯," ed:二版,臺灣培生教育出版,臺北市,民國九十三年, 2007.
    [27] D. Ke, et al. "Wafer-Scale pattern transfer of metal nanostructures on polydimethylsiloxane (PDMS) substrates via holographic nanopatterns". ACS applied materials & interfaces. vol. 4, pp. 5505-5514, 2010.
    [28] J. Xu, et al. "Room-temperature imprinting method for plastic microchannel fabrication". Analytical Chemistry. vol.72, pp. 1930-1933, 2000.
    [29] Y. S. F. J. Xu, Z. P. Cheng, X. L. Zhu, and E. T. K. C. X. Zhu, and K. G. Neoh, "Controlled Micropatterning of a Si(100) Surface by Combined Nitroxide-Mediated and Atom Transfer Radical Polymerizations," Macromolecules, vol. 38, pp. 6524-6528, 2005.
    [30] F. Zhou, L. Jiang, W. Liu, and Q. Xue, "Fabrication of Chemically Tethered Binary Polymer-Brush Pattern through Two-Step Surface-Initiated Atomic-Transfer Radical Polymerization," Macromolecular Rapid Communications, vol. 25, pp. 1979-1983, 2004.
    [31] R. Dong, S. Krishnan, B. A. Baird, M. Lindau, and C. K. Ober, "Patterned Biofunctional Poly(acrylic acid) Brushes on Silicon Surfaces," Biomaterials, vol. 8, pp. 3082-3092, 2007.
    [32] M. Zhu, G. Baffou, N. Meyerbröker, and J. Polleux, "Micropatterning thermoplasmonic gold nanoarrays to manipulate cell adhesion," ACS nano, vol. 6, pp. 7227-7233, 2012.
    [33] M. G. Santonicola, et al. "Reversible pH-controlled switching of poly (methacrylic acid) grafts for functional biointerfaces". Langmuir, vol. 26, pp. 17513-17519, 2010.
    [34] S. Sanjuan and Y. Tran. "Stimuli-responsive interfaces using random polyampholyte brushes". Macromolecules, vol. 41, pp 8721-8728, 2008.
    [35] T. E. Patten and K. "Matyjaszewski. Atom transfer radical polymerization and the synthesis of polymeric materials". Advanced Materials, vol.10, pp. 901-915, 1999.
    [36] T. Stefano, B. Raphaeel and H. Marc. "Synthesis of Poly(methacrylic acid) Brushes via Surface-Initiated Atom Transfer Radical Polymerization of Sodium Methacrylate and Their Use as Substrates for the Mineralization of Calcium Carbonate". Macromolecules, vol.40, pp. 168-177, 2007.
    [37] F. J. Xu, et al. "Functionalized polylactide film surfaces via surface-initiated ATRP". Macromolecules, vol.44.7, pp. 2371-2377, 2011.
    [38] F. J. Xu, Z. H. Wang and W. T. Yang. "Surface functionalization of polycaprolactone films via surface-initiated atom transfer radical polymerization for covalently coupling cell-adhesive biomolecules". Biomaterials, vol.31, pp. 3139-3147, 2010.
    [39] F. Costantini, et al. "Enzyme-functionalized polymer brush films on the inner wall of silicon–glass microreactors with tunable biocatalytic activity". Lab on a Chip, vol.10, pp. 3407-3412, 2010.
    [40] P. Vettiger, J. Brugger, M. Despont, U. Drechsler, U. Diirig, W. Hgberle, M. Lutwyche, H. Rothuizen, R. Stutz, R. Widmer and G. Binnig. "Ultrahigh density, high-data-rate NEMS-based AFM data storage system "P. Vettiger et al. / Microelectronic Engineering, vol. 46, pp.11-17, 1999.
    [41] J.S. Pieper, T. Hafmans, J.H. Veerkamp, T.H. Kuppevelt. "Development of tailor-made collagen–glycosaminoglycan matrices: EDC/NHS crosslinking, and ultrastructural aspects’’. Biomaterials, vol.21, pp. 581-93, 2000.
    [42] X.F. Hua, T.C. Liu, Y.C. Cao, B. Liu, H.Q. Wang, J.H. Wang, Z.L. Huang, Y.D. Zhao. ''Characterization of the coupling of quantum dots and immunoglobulin antibodies''. Anal Bioanal Chem, vol. 386, pp. 1665–1671, 2006.
    [43] Q. Feng, D. Tang, H.Lv, W. Zhang and W. Li. " Temperature-responsive zinc oxide nanorods arrays grafted with poly(N-isopropylacrylamide) via SI-ATRP " RSC Adv. Vol. 5, pp. 62024, 2006.
    [44] H. Surikumarana, S. Mohamada and N. M. Sarih. "Synthesis and evaluation of methacrylic acid functionalized β-cyclodextrin based molecular imprinted polymer for 2,4-dichlorophenol in water samples " Desalination and Water Treatment, pp. 254-267, 2015.
    [45]B. Yang, C. Wang, Y. Zhang, L. Ye, Y. Qian, Y. Shu, J. Wang, J. Li and F. Yao. " A thermoresponsive poly(N-vinylcaprolactam-co-sulfobetaine methacrylate) zwitterionic hydrogel exhibiting switchable anti-biofouling and cytocompatibility" Polym. Chem.vol. 6, pp. 3431-3442, 2015.
    [47] T. Kojima and S. Takayama Patchy. "Surfaces Stabilize Dextran–Polyethylene Glycol Aqueous Two-Phase System Liquid Patterns". Langmuir, vol.29, pp. 5508-5514, 2013.
    [67] L. Lei, H. Li, et al. "Diffraction Patterns of a Water-Submerged Superhydrophobic Grating under Pressure". Langmuir. vol. 26, pp 3666–3669, 2010.
    [68] H.Nandivada, X. Jiang, and J. Lahann. "Click Chemistry: Versatility and Control in the Hands of Materials Scientists". Adv. Mater. Vol. 19, pp. 2197~2208, 2007.
    [69] V.D. Bock, H. Hiemstra, and J. H. Maarseveen. "CuI-Catalyzed Alkyne–Azide “Click” Cycloadditions from a Mechanistic and Synthetic Perspective". Eur. J. Org. Chem. pp.51~68, 2006.
    [70] J. E. Moses and A.D. Moorhouse. "The growing applications of click chemistry". Chem. Soc. Rev. vol.36, pp.1249~1262, 2007.

    無法下載圖示 全文公開日期 2024/08/01 (校內網路)
    全文公開日期 2024/08/01 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE