簡易檢索 / 詳目顯示

研究生: 劉靜茹
Ching-Ju Liu
論文名稱: 以開環歧化聚合法合成含有咔唑乙烯和對苯乙烯的嵌段共聚物及其性質及鑑定
Synthesis of Block Copolymers Containing Carbazolevinylenes and Phenylenevinylenes by Ring-Opening Metathesis Polymerization and Their Properties and Characterization
指導教授: 游進陽
Chin-Yang Yu
口試委員: 堀江正樹
Masaki Horie
陳志堅
Jyh-Chien Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 104
中文關鍵詞: 咔唑乙烯對苯乙烯開環歧化聚合嵌段共聚物形態學
外文關鍵詞: Carbazolevinylenes, Phenylenevinylenes, Ring-Opening Metathesis Polymerization, Block Copolymers, Morphology
相關次數: 點閱:261下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究為探討含有咔唑乙烯及對苯乙烯重複單元之嵌段共聚物的合成與性質鑑定。固定咔唑乙烯重複單元之莫爾數比並改變對苯乙烯重複單元之莫爾數比,設計出莫爾體積比為16:1,6:1及2:1等三種比例之嵌段共聚物,其中,進一步探討莫爾體積比2:1之無規共聚物。為了精準地控制聚合物之分子量、重複單元數以及降低其多分散性,選用聚有較佳之起始及成長反應的第三代格拉布催化劑作為聚合反應之起始劑。
    透過凝膠滲透層析法測定聚合物之分子量和多分散性,並且使用核磁共振光譜來鑑定聚合物含有咔唑乙烯及對苯乙烯之重複單元。根據紫外–可見光吸收光譜、光致發光光譜、熱重分析、差式掃描熱分析儀以及循環伏安法探討聚合物之光學、熱性質與電化學性質。透過原子力顯微鏡來探討高分子的形態學,其中最為重要的現象是嵌段聚合物的奈米聚集行為。


    This thesis described the synthesis and characterization of homopolymers, block copolymers and random copolymer containing carbazolevinylenes and phenylenevinylenes by ring-opening metathesis polymerization of the corresponding cyclic monomers using the third-generation Grubbs catalyst. The molar ratio of carbazolevinylenes is fixed and changed the molar ratio of phenylenevinylenes. Three kinds of the block copolymers with different molar ratios are prepared via sequential ring-opening metathesis polymerization. In order to control the molecular weight and the narrow polydispersity, the third-generation Grubbs catalyst with high activity and cyclic monomer with high ring strain were chosen.
    The polymers molecular weight and polydispersity were determined by gel permeation chromatography. The characterization of the individual blocks including carbazolevinylenes and phenylenevinylenes were confirmed by 1H nuclear magnetic resonance spectroscopy. The optical, thermal and electrochemical properties of the polymers were investigated by UV-Vis absorption spectroscopy, photoluminescence spectroscopy, thermogravimetric analysis, differential scanning calorimeter and cyclic voltammetry, respectively. The morphology of polymer thin films was experimented by atomic force microscopy.

    Abstract IV Chapter 1. Introduction and Aims 1.1 Conjugated polymers 1 1.2 Synthesis of PPVs 3 1.2.1 Synthetic routes to PPV 4 1.2.2 Precursor routes to PPVs 5 1.3 Ring-opening metathesis polymerization 8 1.3.1 Mechanism of ring-opening metathesis polymerization 8 1.3.2 Catalyst for ROMP 9 1.4 Copolymers 12 1.4.1 Random copolymer 13 1.4.2 Alternating copolymer 13 1.4.3 Block copolymer 13 1.4.4 Graft copolymer 14 1.5 Self-assembled behavior of polymers 15 1.5.1 In situ nanoparticlization of conjugated copolymers 16 1.5.2 Polymerization-induced self-assembly 17 1.6 Aim of the project 19 1.7 References 21 Chapter 2. Results and Discussion 2.1 Synthesis and characterization of monomers 25 2.1.1 Synthesis and characterization of carbazolephanediene 25 2.1.2 Synthesis and characterization of 4,7-dimethoxy-[2.2]paracyclophane-1,9-diene 31 2.2 Synthesis and characterization of polymers 38 2.2.1 Synthesis of homopolymers 38 2.2.2 Synthesis of copolymers 39 2.2.3 Molecular weight and structure characterization of polymers 41 2.3 Properties of polymers 48 2.3.1 Optical properties 48 2.3.2 Solvatochromic studies of the polymers P1-P6 52 2.3.3 Thermal properties 57 2.3.4 Electrochemical properties 59 2.3.5 Morphology study of the polymer films 62 2.4 References 66 Chapter 3. Conclusion 3.1 Conclusion 68 Chapter 4. Experimental Section 4.1 General procedures 69 4.2 Synthesis of precursors and monomers 70 4.2.1 Synthesis of 9-octyl-9H-carbazole (1) 70 4.2.2 Synthesis of 3,6-dibromo-9-octyl-9H-carbazole (2) 70 4.2.3 Synthesis of 9-octyl-9H-carbazole-3,6-dicarbaldehyde (3) 71 4.2.4 Synthesis of carbazolephanediene (M1) 72 4.2.5 Synthesis of 1,4-bis(bromomethyl)-2,5-dimethoxybenzene (4) 73 4.2.6 Synthesis of 1,4-bis(bromomethyl)benzene 1,4-phenylenedimethanethiol (5) 73 4.2.7 Synthesis of 1,4-phenylenedimethanethiol (6) 73 4.2.8 Synthesis of dimethoxy-3,7-dithia-1,5(1,4)-dibenzenacyclooctaphane (7) 74 4.2.9 Synthesis of dimethoxy-1,4(1,4)-dibenzenacyclohexaphane compound with methyl(phenyl)sulfane (1:2) (8) 75 4.2.10 Synthesis of (methylsulfinyl)benzene compound with 12,15-dimethoxy-1,4(1,4)-dibenzenacyclohexaphane (2:1) (9) 75 4.2.11 Synthesis of dimethoxy-1,4(1,4)-dibenzenacyclohexaphane-2,5-diene (M2) 76 4.3 Synthesis of polymers 76 4.3.1 Synthesis of homopolymer P1 76 4.3.2 Synthesis of homopolymer P2 77 4.3.3 Synthesis of block copolymers of P3 78 4.3.4 Synthesis of block copolymers of P4 79 4.3.5 Synthesis of block copolymers of P5 79 4.3.6 Synthesis of one-shot random copolymers of P6 80 Appendix

    [1] L. Dai, B. Winkler, L. Dong, A.W. H. Mau, Adv. Mater. 2001, 13, 12-13.
    [2] N. K. Guimard, N. Gomez, C. E. Schmidt, Prog. Polym. Sci. 2007, 32, 876-921.
    [3] H. A. M. van Mullekom, J. A. J. M. Vekemans, E.E. Havinga, E. W. Meijer, Mater. Sci. Eng., R. 2001, 32, 1-40.
    [4] J. G. Speight, K. Singh, Doping in Conjugated Polymers.
    [5] A. Banerji, A. K. Schönbein, L. Halbrügge, World Journal of Chemical Education, 2018, 6, 54-62.
    [6] A. C. Grimsdale, K. L. Chan, R. E. Martin, P. G. Jokisz, A. B. Holmes, Chem. Rev. 2009, 897-1091.
    [7] X. Y. Deng, Int. J. Mol. Sci. 2011, 12, 1575-1594.
    [8] A. Facchetti, Chem. Mater. 2011, 23, 733-758.
    [9] Z. Yang, H. J. Geise, J. Nouwen, P. Adriaensens, D. Franco, D. Vanderzande, H. Martens, J. Gelan, M. Mehbod, Synth. Met. 1992, 47, 111-132.
    [10] A. J. Blayney, I. F. Perepichka, F. Wudl, D. F. Perepichka, Isr. J. Chem. 2014, 54, 674-688.
    [11] D. D. C. Bradley, Y. Q. Shen, H. Bleier, S. Roth, J. Phys. C: Solid State Phys. 1988, 21, 515-522.
    [12] T. Junkers, J. Vandenbergh, P. Adriaensens, L. Lutsen, D. Vanderzande, Polym. Chem. 2012, 3, 275-285.
    [13] D. Vanderzande. (2004). Synthesis and characterization of polar PPV derivatives through the sulfinyl precursor routes. Diepenbeek : University Hasselt.
    [14] T. Schwalm, J. Wiesecke, S. Immel, M. Rehahn, Macromolecules 2007, 40, 8842-8854.
    [15] P. L. Burn, D. D. C. Bradley, R. H. Friend, D. A. Halliday, A. B. Holmes, R. W. Jackson, A. Kraft, J. Chem. Soc., Perkin Trans. 1. 1992, 3225-3231.
    [16] A. Ethirajan, L. D’Olieslager, J. Vandenbergh, L. Lusten, M. D’Olieslager, D. Vanderzande, T. Junkers, Macromol. Chem. Phys. 2013, 214, 1859-1864.
    [17] I. Cosemans, J. Vandenbergh, V. S. D. Voet, K. Loos, L. Lusten, D, Vanderzande, T, Junker, Polym. J. 2013, 54, 1298-1304.
    [18] E. Kesters, S. Gillissen, F. Motmans, L. Lutsen, D. Vanderzande, Macromolecules 2002, 35, 7902-7910.
    [19] A. Hejl, O. A. Scherman, R. H. Grubbs, Macromolecules 2005, 38, 7214-7218.
    [20] C. W. Bielawski, R. H. Grubbs, Angew. Chem. Int. Ed. 2000, 39, 2903-2906.
    [21] R. R. Schrock, K. B. Yap, D. C Yang, H. Sitzmann, L. R. Sita, G. C. Bazan, Macromolecules. 1989, 22, 3191-3200.
    [22] S. Sutthasupa, M. Shiotsuki, F. Sanda, Polym. J. 2010, 42, 905-915.
    [23] C. W. Bielawski, R. H. Grubbs, Prog. Polym. Sci. 2007, 32, 1-29.
    [24] C. Lexer, R. Saf, C. Slugovc, J. Polym. Sci., Part A: Polym. Chem. 2009, 47, 299-305.
    [25] R. H. Lambeth, M. Baranoski, J. Macromol. Sci., Pure Appl. Chem. 2014, 51, 962-965.
    [26] P. Chen, Acc. Chem. Res. 2016, 49, 1052-1060.
    [27] T. M. Trnka, R. H. Grubbs, Acc. Chem. Res. 2001, 34, 18-29
    [28] Y. Schrodi, R. L. Pederson, Aldrichimica ACTA. 2007, 40, 45-52.
    [29] S. H. Hong, A. G. Wenzel, T. T. Salguero, A. W. Day, R. H. Grubbs, J. Am. Chem. Soc. 2007, 129, 7961-7968.
    [30] J. A. Love, J. P. Morgan, T. M. Trnka, R. H. Grubbs, Angew. Chem. Int. Ed. 2002, 41, 4035-4037
    [31] H. Zhang, Y. Yao, R. Sun, C. Sun, F. Liu, Y. Liu, M. Guo, S. Wang, K. You, Catal. Commun. 2014, 49, 43-46.
    [32] D. J. Walsh, S. H. Lau, M. G. Hyatt, D. Guironnet, J. Am. Chem. Soc. 2017, 139, 13644-13647.
    [33] F. W. Harris, J. Chem. Educ. 1981, 58, 837-843.
    [34] A. Leitgeb, J. Wappel, C. Slugovc, Polymer 2010, 51, 2927-2946.
    [35] L. Li, K. Raghupathi, C. Song, P. Prasad, S. Thayumanavan, Chem. Commun. 2014, 14, 13417-13432.
    [36] B. W. Swift, M. O. D. L. Cruz, J. Chem. Phys. 1994, 100, 7744-7748.
    [37] J. Huang, S. R. Turner, Polymer. 2017, 116, 572-586.
    [38] D. Gedefaw, Z. Ma, E. Mulugeta, Y. Zhao, F. Zhang, M. R. Andresson, W. Mammo, Polym. Bull. 2016, 73, 1167-1183.
    [39] J. Ding, M. Day, G. Robertson, J. Roovers, Macromolecules 2002, 35, 3474-3483.
    [40] T. B. Halima, W. Zhang, I. Yalaoui, X. Hong, Y. F. Yang, K. N. Houk, S. G. Newman, J. Am. Chem. Soc. 2017, 139, 1311-1318.
    [41] F. S. Bates, G. H. Fredrickson, Annu. Rev. Phys. Chem. 1990, 41, 525-557.
    [42] H. Feng, W. Wang, N. G. Kang, J. W. Mays, Polymers. 2017, 9, 494.
    [43] A. V. Ruzette, L. Leibler, Nat. Mater. 2005, 4 19-31.
    [44] A. Holmberg, L. Piculell, B. Wesslen, J. Phys. Chem. 1996, 100, 462-464.
    [45] J. E. McGrath, J. Chem. Educ. 1981, 58, 914-921.
    [46] M. D. Wild, S. Berner, H. Suzuki, L. Ramoino, A. Baratoff, T. A. Jung, Chimia. 2002, 56, 500-505.
    [47] U. Tritschler, S. Pearce, J. Gwyther, G. R. Whittell, I. Manners, Macromolecules 2017, 50, 3439-3463.
    [48] Y. Mai, A. Eisenberg, Chem. Soc. Rev. 2012, 41, 5969-5985.
    [49] J. M. G. Swann, P. D. Topham, Polymers. 2010, 2, 454-469.
    [50] G. M. Whitesides, M. Boncheva, PNAS. 2002, 99, 4769-4774.

    [51] A. Blanazs, S. P. Armes, A. J. Ryan, Macromol. Rapid Commun. 2009, 30, 267-277.
    [52] S. Shin, K. Y. Yoon, T. L. Choi, Macromolecules 2015, 48, 1390-1397.
    [53] F. Menk, S. Shin, K. O. Kim, M. Scherer, D. Gehrig, F. Laquai, T. L. Choi, R. Zentel, Macromolecules 2016, 49, 2085-2095.
    [54] K. Y. Yoon, S. Shin, Y. J. Kim, I. Kim, E. Lee, T. L. Choi, Macromol. Rapid Commun. 2015, 36, 1069-1074.
    [55] S. Shin, M. L. Gu, C. Y. Yu, J. Jeon, E. Lee, T. L. Choi, J. Am. Chem. Soc. 2018, 140, 475-482.
    [56] S. Yang, S. Shin, I. Choi, J. Lee, T. L. Choi, J. Am. Chem. Soc. 2017, 139, 3082-3088.
    [57] E. H. Kang, S. Yang, S. Y. Yu, J. Kim, T. L. Choi, J. Polym. Sci., Part A: Polym. Chem. 2017, 55, 3058-3066.
    [58] S. Shin, F. Menk, Y. Kim, J. Lim, K. Char, R. Zentel, T. L. Choi, J. Am. Chem. Soc. 2018, 140, 6088-6094.
    [59] A. J. Neel, M. J. Hilton, M. S. Sigman, F. D. Toste, Nature. 2017, 543, 637-646.
    [60] N. J. Warren, S. P. Armes, J. Am. Chem. Soc. 2014, 136, 10174-10185.
    [61] B. Charleux, G. Delaittre, J. Rieger, F. D’. Agosto, Macromolecules 2012, 45, 6753-6765.
    [62] J. Rieger, F. Stoffelbach, C. Bui, D. Alaimo, C. Jerome, B. Charleux, Macromolecules 2008, 41, 4065-4068.
    [63] M. Huo, D. Li. G. Song, J. Zhang, D. Wu, Y. Wei, J. Yuan, Macromol. Rapid Commun. 2018, 39, 1700840.
    [64] A. B. Lowe, Polym. J. 2016, 106, 161-181.

    無法下載圖示 全文公開日期 2024/01/28 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE