簡易檢索 / 詳目顯示

研究生: 賴廷寰
Ting-Huan Lai
論文名稱: 單晶碳化矽晶圓於複線式鑽石線鋸切割製程之導輪磨耗研究
Study on Guide Roller Wear on Multi-Diamond Wire Sawing for Single Crystal Silicon Carbide Wafer Processing
指導教授: 陳炤彰
Chao-Chang Chen
口試委員: 周大鑫
Ta-Shin Chou
蔡明義
Ming-Yi Tsai
鄭逸琳
Yi-Lin Cheng
莊程媐
Cheng-Hsi Chuang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 215
中文關鍵詞: 鑽石線鋸單晶碳化矽導輪磨耗電泳沉積搖擺模式
外文關鍵詞: Diamond wire sawing, Single crystal silicon carbide, Guide roller wear, Electrophoretic deposition, Rocking mode
相關次數: 點閱:316下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   單晶碳化矽(SiC)為第三代半導體材料之一,其在材料特性上擁有許多項優點,如:「低漏電流特性、較高熱傳導率、耐化學性及寬能隙等」,而其高硬度及耐化學性質造成碳化矽基板製造困難,且在複線式鑽石線鋸製程中也常因此導致導引鑽石線的導輪受力過大,進而使導輪側向及縱向磨耗速度加快並間接影響切片後之晶圓幾何形狀(TTV, Bow, Warp),導輪磨耗對於未來發展大尺寸及薄化的碳化矽晶圓有著至關重要的影響。本研究將研究導輪磨耗對於切割後晶圓品質之影響,並探討結合芬頓反應於四吋4H-SiC晶圓之複線式鑽石線鋸切割製程中,使鑽石線之切削阻力下降並間接降低導輪所承受之應力,同時探討聚氨酯(PU)、超高分子聚乙烯(UPE)兩種導輪材質對於鑽石線鋸製程之抗磨耗能力比較,進而改善鑽石線加工單晶碳化矽時因受力過大造成之導輪磨耗情形,使切片後之晶圓品質大幅提升。經過三道製程之切片後進行分析,利用磨耗試驗機以鑽石線切割材料試片後,得出導輪材料方面聚氨酯(PU)為較佳之導輪材料,其能夠提供鑽石線較好之穩定能力,並且再利用小型線鋸切割機進行實驗,將單線式加工改裝為複線式加工並成功切割200 m之小型晶片,之後再利用大型複線式線鋸切割機進行四吋4H-SiC晶圓切割實驗,並成功驗證電泳沉積輔助線鋸製程能夠有效使晶圓表面粗糙度(Sa)改善43.24%,並且可使線弓角大幅降低使導輪磨耗深度改善29.22 %,在總磨耗面積方面則是改善了29.12%,並使切割後之晶圓TTV改善49.1 %、Bow改善59.14 %、Warp改善74.4 %,並且首次於本論文中提出以切割片序與晶圓厚度之關係,判斷鑽石線之不同切割片序之磨耗情形,之後再以導輪溝槽間距重新驗證比對,得出能夠以此為依據設計不同間距之導輪溝槽,以獲得更加平均之晶圓厚度,並降低人力成本及時間成本,達到改善整體製程之目的。


      Single-crystal silicon carbide (SiC) is a third-generation semiconductor material that has numerous advantages in terms of its material properties. However, its higher hardness and chemical resistance poses challenges in wafer manufacturing, and leads to excessive stress on guide roller during the wire sawing process, resulting in accelerated wear of guide roller in both lateral and longitudinal directions. The wear of guide roller indirectly affects the geometry (TTV, Bow, Warp) of as-cut wafer and has a significant impact during slicing large-size and thinner SiC wafers. Therefore, this study focuses on the influence of guide roller wear on the quality of as-cut wafers, and discusses the integration of Fenton reaction in diamond wire sawing (DWS) process of 4" 4H-SiC wafers to reduce the sawing resistance of the diamond wire and decrease the stress on guide roller. It also compares wear resistance of two guide roller materials, polyurethane (PU), and ultra-high molecular polyethylene (UPE) in DWS process. Experiment was conducted on 4” SiC under different cooling media through the multi-diamond wire sawing machine the result revealed that the electrophoretic deposition-assisted diamond wire sawing process (EPA-DWS) effectively improves the wafer surface roughness (Sa) by 43.24%, significantly reduces the wire bow angle, resulting in a 29.22% improvement in guide roller wear depth, and enhances the overall wear area by 29.12%. This process also significantly improves the wafer geometry of TTV by 49.1%, Bow by 59.14%, and Warp by 74.4%, and the relationship between the slicing sequence and wafer thickness to determine the wear conditions of different slicing sequences for the diamond wire. The guide roller groove pitch was then used for validation and it was found that designing different pitches for guide roller grooves based on this relationship can achieve a more uniform as-cut wafer thickness, consequently reducing labor and time costs for improving the overall wafer manufacturing process.

    摘要 Abstract 致謝 目錄 圖目錄 表目錄 符號索引 第一章 緒論 1.1 研究背景 1.2 研究目的與方法 1.3 論文架構 第二章 文獻回顧 2.1 單晶碳化矽材料介紹 2.2 晶圓切割製程介紹 2.2.1 內圓鋸切割製程 2.2.2 複線式線鋸製程 2.2.3 雷射切片製程介紹 2.3 雷射切片製程相關文獻 2.4 線鋸切割製程相關文獻 2.5 線鋸切割製程之導輪相關文獻 2.5.1 高分子材料抗磨耗性相關文獻 2.6 線鋸機台與導輪研發相關文獻與專利檢索 2.7 歷屆PML線鋸切割製程相關文獻 2.8 文獻回顧總結 第三章 線鋸製程分析及導輪磨耗機制介紹 3.1 複線式線鋸製程分析 3.1.1 比切削能 3.1.2 材料移除率之估算 3.1.3 線鋸製程之耗線量估算 3.1.4 搖擺模式鋸切模型 3.2 選擇性電泳沉積輔助線鋸切割製程理論介紹 3.2.1 固相化學反應機制介紹 3.2.2 過氧化氫(H2O2)與四氧化三鐵(Fe3O4)化學反應式 3.2.3 選擇性電泳沉積機制介紹 3.2.4 選擇性電泳沉積溶液之調配 3.3 晶圓幾何形狀定義 3.3.1 晶圓幾何形狀TTV介紹 3.3.2 晶圓幾何形狀Bow介紹 3.3.3 晶圓幾何形狀Warp介紹 3.3.4 晶圓幾何形狀SBIR介紹 3.3.5 晶圓幾何形狀Sori介紹 3.4 導輪相關機制介紹 3.4.1 導輪磨耗機制介紹 3.4.2 導輪溝槽外型設計及定義 3.5 導輪受力模型推導 3.5.1 鑽石線受力推導 3.5.2 導輪之軸向受力 3.5.3 導輪之側向受力 3.5.4 導輪因鑽石線跨溝慣性所承受之衝擊 3.6 導輪磨耗量估算 3.6.1 鑽石線導輪磨耗分析 3.6.2 導輪磨耗移除率估算 3.7 導輪磨耗樣態介紹 3.8 製程分析與理論介紹總結 第四章 實驗耗材與設備 4.1 實驗耗材 4.1.1 單晶碳化矽晶棒 4.1.2 單晶碳化矽晶碇 4.1.3 聚氨酯、超高分子聚乙烯試片 4.1.4 聚氨酯小型線鋸機用導輪 4.1.5 導輪翻印之印模材 4.1.6 切削冷卻液 4.1.7 過氧化氫(H2O2) 4.1.8 四氧化三鐵(Fe3O4) 4.1.9 雙氧水安定劑 4.1.10 界面活性劑 (ABLUMINE TMC) 4.1.11 鑽石切割線 4.1.12 混合型環氧化合物接著劑 4.2 量測儀器 第五章 小型線鋸機線鋸加工實驗 5.1 導輪材質選用實驗 5.1.1 實驗規劃及方法 5.1.2 磨耗試驗機 5.1.3 PU及UPE試片磨耗率分析 5.1.4 刮痕面形貌分析 5.1.5 導輪材質選用實驗小結 5.2 小型單晶碳化矽晶碇切割實驗 5.2.1 實驗規劃及方法 5.2.2 小型線鋸切割機台(SWSM) 5.2.3 切口損失(Kerf loss) 5.2.4 切片後之線材耗損及拉伸強度 5.2.5 表面粗糙度分析(Surface Roughness Analysis) 5.2.6 表面形貌與鋸痕(Surface Topography & Saw Mark) 5.2.7 厚度變異量及均勻度分析(TTV and N.U Analysis) 5.2.8 切割片序厚度分析(Sequence Thickness Analysis) 5.3 導輪溝槽磨耗分析 5.3.1 導輪溝槽磨耗量測結果 5.3.2 導輪溝槽磨耗樣態分析 5.3.3 導輪溝槽深度變異量分析 5.3.4 溝槽間距與切片厚度之關係 5.4 小型線鋸機線鋸加工實驗結果綜合討論 第六章 大型線鋸機線鋸加工實驗 6.1 實驗規劃及方法 6.2 大型複線式鑽石線鋸切割機(DWS-150) 6.3 切口損失及材料移除率計算 6.3.1 理論材料移除率估算 6.3.2 實際材料移除率估算 6.4 切片後之鑽石線耗損 6.5 晶圓幾何形狀分析(Wafer Geometric Analysis) 6.5.1 晶圓均勻度分析(Non-uniformity Analysis) 6.5.2 晶圓翹曲分析(Bow, Warp Analysis) 6.5.3 晶圓LSori分析(LSori Analysis) 6.5.4 切割片序厚度分析(Sequence Thickness Analysis) 6.6 晶圓表面品質分析(Surface Quality Analysis) 6.6.1 三維及二維表面粗糙度與線痕分析 6.6.2 切割線痕形貌分析 6.7 導輪溝槽磨耗分析 6.7.1 導輪溝槽磨耗量測結果 6.7.2 導輪溝槽磨耗樣態分析 6.7.3 導輪溝槽磨耗樣態與晶圓幾何形狀之關係 6.7.4 導輪磨耗於線鋸切割製程之影響分析 6.7.5 導輪溝槽深度變異量分析 6.7.6 導輪溝槽間距與切片厚度之關係 6.7.7 導輪溝槽磨耗面積分析 6.8 大型線鋸機線鋸加工實驗結果綜合討論 第七章 結論與建議 7.1 結論 7.2 建議 參考文獻 附錄A小型線鋸切割機規格與複線式改裝設計 附錄B DWS-150複線式線鋸切割機規格 附錄C量測設備照片

    [1]ROHM semiconductor. "Application Benefits of Using 4th Generation SiC MOSFETs " 2022, from https://se.farnell.com/application-benefits-of-using-4th-generation-sic-mosfets-trc-etjar
    [2]Akagi, Hirofumi. "The next‐generation medium‐voltage power conversion systems." Journal of the Chinese Institute of Engineers 30.7 (2007): 1117-1135.
    [3]Yole Développement. "Power Electronics for E-Mobility 2021" 2021, from https://www.semiconductor-today.com/news_items/2021/mar/yole-180321.shtml
    [4]張士宸, "氣液輔助化學機械拋光應用於單晶碳化矽基板之平坦化製程分析研究",國立台灣科技大學,機械工程研究所碩士論文, 2016.
    [5]趙培勛, "導輪磨耗於線鋸切削影響研究",國立台灣科技大學,機械工程研究所碩士論文,2011.
    [6]楊竣凱, "複合式能量化學機械拋光於單晶碳化矽基板平坦化製程之研究",國立台灣科技大學,機械工程研究所碩士論文,2014.
    [7]ROHM semiconductor. "SiC: More Valuable than Diamonds?" 2018, from https://www.rohm.com/blog/sic_more_valuable_than_diamonds
    [8]Wellmann, Peter J. "Review of SiC crystal growth technology." Semiconductor Science and Technology 33.10 (2018): 103001.
    [9]陳鼎鈞, "單晶碳化矽基板之鑽石研光與化學機械拋光平坦化製程研究 ,",國立台灣科技大學,機械工程研究所碩士論文,2015.
    [10]Carter, C. Barry, and M. Grant Norton. Ceramic materials: science and engineering. Vol. 716. New York: springer, 2007.
    [11]黃浩維, "單晶碳化矽晶圓之鑽石線鋸加工模式分析研究",國立台灣科技大學,機械工程研究所碩士論文,2015.
    [12]陳冠諭, "選擇性電泳沉積之反應式輔助複線式鑽石線鋸於單晶矽晶圓加工研究",國立台灣科技大學,機械工程研究所碩士論文,2021.
    [13]黃鼎軒, "選擇性電泳沉積輔助複線式鑽石線鋸加工於單晶碳化矽晶圓製程分析研究",國立台灣科技大學,機械工程研究所碩士論文,2022.
    [14]Möller, Hans Joachim. "Basic mechanisms and models of multi‐wire sawing." Advanced engineering materials 6.7 (2004): 501-513.
    [15]Wu, Hao. "Wire sawing technology: A state-of-the-art review." Precision engineering 43 (2016): 1-9.
    [16]DISCO Corporation. "Development of a KABRA Process Optimized for the Production of GaN Wafers" 2023, from https://www.disco.co.jp/eg/news/corp/kabra_gan.html
    [17]DISCO Corporation. "The New Generation of SiC Wafer Production High-Speed Ingot Slicing with a Greatly Increased Number of Wafers Produced KABRA Process Debut." 2018, from https://www.disco.co.jp/kabra/index_eg.html
    [18]西野曜子, 平田和也, and 高橋邦充. "新しい加工原理による SiC のレーザースライシング 2 加工性評価." 精密工学会学術講演会講演論文集 2016 年度精密工学会秋季大会. 公益社団法人 精密工学会, 2016.
    [19]Hirata, Kazuya. "New laser slicing technology named KABRA process enables high speed and high efficiency SiC slicing." Laser-based Micro-and Nanoprocessing XII. Vol. 10520. SPIE, 2018.
    [20]H. Wang, Q. Chen, Y. Yao, L. Che, B. Zhang, H. Nie, R. Wang. "Influence of Surface Preprocessing on 4H-SiC Wafer Slicing by Using Ultrafast Laser." Crystals 13.1 (2022): 15.
    [21]Chen, Chao Chang Arthur, and Pei Hsiun Chao. "Surface texture analysis of fixed and free abrasive machining of silicon substrates for solar cells." Advanced Materials Research. Vol. 126. Trans Tech Publications Ltd, 2010.
    [22]林鼎將, "矽基板線鋸加工之表面形貌分析研究",國立台灣科技大學,機械工程研究所碩士論文,2013.
    [23]詹明賢, "單晶與多晶矽基板鑽石線鋸加工之切屑分析研究",國立台灣科技大學,機械工程研究所碩士論文,2014.
    [24]A Kumar, S Kaminski, SN Melkote, C Arcona. "Effect of wear of diamond wire on surface morphology, roughness and subsurface damage of silicon wafers." Wear 364 (2016): 163-168.
    [25]Y Gao, P Ge, L Zhang, W Bi. "Material removal and surface generation mechanisms in diamond wire sawing of silicon crystal." Materials Science in Semiconductor Processing 103 (2019): 104642.
    [26]林建宏, "奈米粉末強化高分子導輪應用於線鋸製程之研究",國立台灣科技大學,機械工程研究所碩士論文,2015.
    [27]Jia, Xian, and Ruofei Ling. "Two-body free-abrasive wear of polyethylene, nylon1010, expoxy and polyurethane coatings." Tribology International 40.8 (2007): 1276-1283.
    [28]A Boubakri, N Guermazi, K Elleuch. "Study of UV-aging of thermoplastic polyurethane material." Materials Science and Engineering: A 527.7-8 (2010): 1649-1654.
    [29]Ashrafizadeh, H., P. Mertiny, and A. McDonald. "Evaluation of the effect of temperature on mechanical properties and wear resistance of polyurethane elastomers." Wear 368 (2016): 26-38.
    [30]曹永華, "一種用於切割矽晶片的導輪",大陸專利 CN201456254U,2009.
    [31]馬偉, "導輪及導輪的生產方法",大陸專利 CN103182759A,2011.
    [32]吉鑫, "多線切割機導輪線槽及其加工方法",大陸專利 CN103395131A,2013.
    [33]林鴻良, "Sapphire screen processing technique",大 陸 專 利CN103895114A,2014.
    [34]Hanbo Zhu, "Wire sawing machine", United States Patent, Number: 0184908 A1, 2016.
    [35]陳正昌, "線鋸製程用線材之複捲機研製",國立台灣科技大學,機械工程研究所碩士論文,2017.
    [36]李奕德, "複線式電泳反應式鑽石線鋸加工製程於單晶氧化鋁基板之研究",國立台灣科技大學,機械工程研究所碩士論文,2018.
    [37]M Zhang, Z Xia, C Shan, M Luo. "Analytical model of grinding force for ultrasonic-assisted grinding of Cf/SiC composites." The International Journal of Advanced Manufacturing Technology (2023): 1-16.
    [38]陳冠霖, "電泳反應式鑽石線鋸製程應用於太陽能矽基板加工之研究",國立台灣科技大學,機械工程研究所碩士論文,2015.
    [39]X Wang, J Chen, Z Bu, H Wang, W Wang, W Li, T Sun. "Accelerated C-face polishing of silicon carbide by alkaline polishing slurries with Fe3O4 catalysts." Journal of Environmental Chemical Engineering 9.6 (2021): 106863.
    [40]J Deng, J Pan, Q Zhang, Q Yan, J Lu. "The mechanism of Fenton reaction of hydrogen peroxide with single crystal 6H-SiC substrate." Surfaces and Interfaces 21 (2020): 100730.
    [41]FC Moreira, RAR Boaventura, E Brillas, VJP Vilar. "Electrochemical advanced oxidation processes: a review on their application to synthetic and real wastewaters." Applied Catalysis B: Environmental 202 (2017): 217-261.
    [42]黃堯弘, "電泳沉積輔助線鋸切割於矽基板加工之永續性分析之研究",國立台灣科技大學,機械工程研究所碩士論文,2012.
    [43]許仙薇, "搖擺運動於單晶氧化鋁基板鑽石線鋸切割影響之研究",國立台灣科技大學,機械工程研究所碩士論文,2013.
    [44]Airaksinen, Veli-Matti. "Silicon Wafer and Thin Film Measurements." Handbook of Silicon Based MEMS Materials and Technologies. William Andrew Publishing, 2015. 381-390.

    無法下載圖示 全文公開日期 2026/08/29 (校內網路)
    全文公開日期 2026/08/29 (校外網路)
    全文公開日期 2026/08/29 (國家圖書館:臺灣博碩士論文系統)
    QR CODE