簡易檢索 / 詳目顯示

研究生: 李家銘
Jia-Ming Li
論文名稱: 封裝基板之電源平面佈局分割及優化
Package Substrate Power Plane Layout Partitioning and Optimization
指導教授: 劉一宇
Yi-Yu Liu
口試委員: 方劭云
Shao-Yun Fang
陳勇志
Yung-Chih Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 資訊工程系
Department of Computer Science and Information Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 61
中文關鍵詞: 封裝電源供應網沃羅諾伊圖德勞內三角化
外文關鍵詞: Packaging, Power Delivery Network, Voronoi Diagram, Delaunay Triangulation
相關次數: 點閱:330下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著晶片封裝的接腳數愈來愈多、多電源域的廣泛使用使得封裝設計的複雜度和成本也逐漸提升。因此在封裝設計階段的電源供應網設計自動化也就更加重要了。由於晶片和基板製程的不同,封裝的電源供應網設計中可以使用大面積的鋪銅來保證電源完整性。然而,現今的鋪銅工作還是以工程師人工完成,耗費時間以及成本。我們提出電源層分割的自動化演算法來幫助完成封裝的電源供應網設計。更進一步提出兩個優化方法,使我們得到更符合需求的電源層分割結果。實驗結果顯示我們提出來之演算法可以成功產生電源層分割結果。


    With the increasing pin number of chip packages and the widespread use of multiple power domains, the complexity and package design cost have gradually increased.
    Therefore, the automation of power delivery network design in the package design stage is even more important.
    Owing to the differences in chip and substrate manufacturing processes, a large copper area can be plated in the package-level power delivery network design to ensure power integrity.
    However, these layout shapes are manually designed by engineers.
    In this thesis, we propose an automated framework for power plane partitioning to help complete the initial package-level power delivery network design.
    The framework consists of Steiner trees extraction, compatibility checking, and polygon generation algorithms to generate compatible power delivery layout partitioning.
    Furthermore, two refinement methods are proposed, so that we can optimize power plane partitioning results in terms of layout shapes and source to target resistance.
    The experimental results show that the proposed algorithm can successfully generate the power layer partitioning results.

    TABLE OF CONTENTS ABSTRACT v List of Tables viii List of Figures ix CHAPTER 1. Introduction 1 1.1 Power Delivery Network 1 1.2 IC Substrate Fabrication 2 1.3 Motivation 2 CHAPTER 2. Preliminaries 4 2.1 Related Works 4 2.2 Voronoi Diagram and Delaunay Triangulation 5 2.3 Steiner Tree 6 2.4 Problem Formulation 7 CHAPTER 3. Proposed Methodology 9 3.1 Algorithm Flow 9 3.2 Steiner Trees Extraction 12 3.3 Compatibility Checking 15 3.4 Polygon Generation 23 3.5 Post Refinement 26 CHAPTER 4. Experimental Results 32 4.1 Experimental Setup 32 4.2 Partitioning Results 32 CHAPTER 5. Conclusion 59 Bibliography 60

    1] E. Bogatin, Signal and Power Integrity—Simplified, 2nd ed. Englewood Cliffs,
    NJ, USA: Prentice-Hall, 2009.
    [2] Chin-chung Hsieh, ”The study of delaminating at interface between molding
    compound and gold substrate bond pad in bga(ball grid array) package,” M.
    S. thesis, National University of Kaohsiung, Kaohsiung, Taiwan, 2010
    [3] H. Chen, C.-K. Cheng, A. B. Kahng, M. Mori, and Q. Wang, ”Optimal planning
    for mesh-based power distribution,” in Proc. ASP-DAC, 2004, pp. 444–449.
    [4] S. S.-Y. Liu, C.-J. Lee, C.-C. Huang, H.-M. Chen, C.-T. Lin, and C.-H.
    Lee,”Effective power network prototyping via statistical-based clustering and
    sequential linear programming,” in Proc. DATE, 2013, pp. 1701–1706.
    [5] J. Lienig and G. Jerke, ”Current-driven wire planning for electromigration
    avoidance in analog circuits,” in Proc. ASP-DAC, 2003, pp. 783–788.
    [6] N. E. Evmorfopoulos, D. P. Karampatzakis, and G. I. Stamoulis, ”Voltagedrop constrained optimization of power distribution network based on reliable
    maximum current estimates,” in Proc. ICCAD, 2004, pp. 479–484.
    [7] R. L. Graham, ”An efficient algorithm for determining the convex hull of a
    finite planar set”, Inf. Process. Lett., vol. 1, no. 4, pp. 132-133, 1972.
    [8] Mark de Berg, Marc van Kreveld, Mark Overmars, and Otfried Cheong
    Schwarzkopf,” Computational Geometry: Algorithms and Applications,”
    Springer, Heidelberg, 2008
    [9] Chopra, S. and Rao, M. R. ”The Steiner Tree Problem 1: Formulations, Compositions, and Extension of Facets.” Mathematical Programming 64, 209-229,
    1994.
    [10] S.E. Dreyfus and R.A. Wagner, “The Steiner problem in graph,” Networks 1,
    195–207, 1972.
    [11] A.V. Aho, M.R. Garey and F.K. Hwang, “Rectilinear Steiner trees: Efficient
    special case algorithms,” Networks 7, 37–58, 1977.
    [12] layouteditor https://layouteditor.com/

    QR CODE