簡易檢索 / 詳目顯示

研究生: 潘尚鼎
Shang-Ding Pan
論文名稱: 利用拖車頭後輪轉向預防聯結車之鐮刀效應
Prevention of Articulated Vehicles Jackknife Effect by Steering the Rear Wheels of the Tractor
指導教授: 陳亮光
Liang-Kuang Chen
口試委員: 姜嘉瑞
Chia-Jui Chiang
林紀穎
Chi-Ying Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 82
中文關鍵詞: 鐮刀效應聯結車輛
外文關鍵詞: Jackknife effect, Articulated vehicle
相關次數: 點閱:321下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

聯結車輛因體積與重量較小型車來得大,發生意外的嚴重性也大大提升。聯結車常見的意外事故類型也與一般單車體車輛不同,常見的如翻覆、鐮刀效應、半拖車失控等等。因此,聯結車輛安全系統的開發日漸重要。本論文將設計拖車頭後輪轉向控制器來預防聯結車之鐮刀效應。為了觀察控制器性能,本論文利用線性化聯結車模型與TruckSim軟體來模擬不同轉向行為下,藉由控制拖車頭後輪轉向,使聯結車的第五輪角度響應追蹤到一理想化的第五輪角度,降低鐮刀效應發生機率。此外,本論文也將利用TruckSim軟體模擬鐮刀效應發生情況,並觀察在加入控制器後,是否能透過拖車頭後輪轉向有效抑制鐮刀效應發生。


Because of its huge size and weight, the accidents of articulated vehicles are usually more serious than compact cars. There are unique types of accidents that may occur in articulated vehicles, such as rollover, jackknife effect, trailer swing and so on. Therefore, development of the active safety systems on articulated vehicles becomes more important. In this research, a controller is designed to steer the rear wheels of the tractor to prevent the articulated vehicles jackknife effect. To investigate the effectiveness of the controller, simulations on linearized articulated vehicle model and the software called TruckSim are used to check whether the fifth wheel angle of the articulated vehicle can track the desired fifth wheel angle under different maneuver by steering the rear wheels of the tractor to prevent the occurrence of jackknife effect. Moreover, simulations of jackknife effect by TruckSim software are shown in this research. The designed controller will be added afterward to see whether the jackknife effect will be eliminated by steering the rear wheels of the tractor.

摘要 ABSTRACT 目錄 圖目錄 表目錄 第一章 緒論 1-1研究背景與動機 1-2文獻探討 1-2-1 鐮刀效應 1-2-2 聯結車輛安全系統 1-2-3 單車體四輪轉向系統7 1-3 論文目標 1-4 工作項目 第二章 聯結車車輛模型分析與驗證 2-1 聯結車車輛模型 2-2 縮小型聯結車之pi-Group維度分析 第三章 控制器設計 3-1 Linear Quadratic Regulator 3-2 Model Reference Adaptive Control 3-3 理想的第五輪角度 第四章 線性聯結車模型與TruckSim模型模擬 4-1 LQR與MRAC控制器性能模擬 4-2 不同負載重心水平位置對第五輪角度影響 4-3 加長拖車頭長度對鐮刀效應的影響 4-4 不同負載重心水平位置對鐮刀效應的影響 4-5 不同負載重心高度對鐮刀效應的影響 4-6 不同縱向速度對鐮刀效應的影響 第五章 結論與未來展望 5-1 結論 5-2 未來展望 參考文獻 附錄A 聯結車動態方程式[27] 附錄B 模型參數定義[27] 附錄C 資料擷取平台與控制 附錄D 縮小型聯結車實驗架設

[1]He, Y., Khajepour, A., McPhee, J., and Wang, X., “Dynamic modeling and stability analysis of articulated frame steer vehicles,” International Journal of Heavy Vehicle Systems, Vol.12, No. 1, pp.28-59 (2005).
[2]謝育安 “應用MRAC設計聯結車鐮刀效應預防控制器” 國立台灣科技大學機械工程系 (2009).
[3]許廖淵 “應用SOFC預防聯結車之鐮刀效應” 國立台灣科技大學機械工程系 (2011).
[4]Patil, C. B., Longoria, R. G., and Limroth, J., “Control prototyping for an anti-lock braking control system on a scaled vehicle,“ Decision and Control, Proceedings. 42nd IEEE Conference on IEEE, Vol. 5, pp. 4962-4967 (2003).
[5]Longoria, R. G., Al-Sharif, A., and Patil, C. B., “Scaled vehicle system dynamics and control: A case study in anti-lock braking,” International Journal of Vehicle Autonomous Systems, Vol. 2, No. 1-2, pp.18-39 (2004).
[6]Travis, W. E., Whitehead, R. J., Bevly, D. M., and Flowers, G. T., “Using scaled vehicles to investigate the influence of various properties on rollover propensity,” Proceedings of the American Control Conference, Vol. 4, pp. 3381-3386 (2004).
[7]Verma, R., Vecchio, D. D., and Fathy, H. K., “Development of a Scaled Vehicle with Longitudinal Dynamics of an HMMWV for an ITS Testbed,“ IEEE/ASME Transactions on Mechatronics ,Vol. 13, No. 1, pp. 46-57 (2008).
[8]Brennan, S., and Alleyne, A., “Scaled testbed for vehicle control: The IRS,” IEEE Conference on Control Applications - Proceedings, Vol. 1, pp. 327-332 (1999).
[9]Polley, M., Alleyne, A., and Vries, E. D., “Scaled vehicle tire characteristics: dimensionless analysis,” Vehicle System Dynamics, Vol. 44, No. 2, pp. 87-105 (2006).
[10]徐錦衍 “以縮小型車輛探討聯結車輛之鐮刀效應預防” 國立台灣科技大學機械工程系 (2007).
[11]Chen, L. K., and Shieh, Y. A., “Jackknife Prevention for Articulated Vehicles Using Model Reference Adaptive Control,“ Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, Vol. 225, No. 1, pp, 28-42 (2011).
[12]Stevenson, B., and Ridley, P., “An automated vehicle stability control system for heavy articulated vehicles,” Proceedings of the 2005 Australasian Conference on Robotics & Automation, Sydney, Australia, Dec. 5-7 (2005).
[13]Bouteldja, M., Koita, A., Dolcemascolo, V., and Cadiou, J. C., “Prediction and Detection of Jackknifing Problems for Tractor Semi-Trailer,” Vehicle Power and Propulsion Conference, 2006. VPPC '06. IEEE, Windsor, England, UK, pp.1-6, Sept. 6-8 (2006).
[14]Bouteldja, M., and Cerezo, V., “Jackknifing Warning for Articulated Vehicles Based on a Detection and Prediction System,“ 3rd International Conference on Road Safety and Simulation. pp. 14-16 (2011).
[15]Dahlberg, E., Wideberg, J., “Influence of the Fifth-wheel Location on Heavy Articulated Vehicle Handling,” 8th International Symposium on Heavy Vehicles Weights and Dimensions, Gauteng, South Africa, Mar. 14-18 (2004).
[16]Ma, W., and Peng, H., “Worst-case Manoeuvres for the Roll-over and Jackknife of Articulated Vehicles,” Proceedings of the American Control Conference, Philadelphia, PA, USA, Vol. 4, pp.2263-2267, Jun. 24-26 (1998).
[17]Ma, W., and Peng, H., “Worst-Case Vehicle Evaluation Methodology-Examples on Truck Rollover/Jackknifing And Active Yaw Control Systems,” Vehicle System Dynamics, Vol. 32, Issue 4 & 5, pp.389-408 (1999).
[18]Kaneko, T., and Kageyama, I., “A Study on the Braking Stability of Articulated Heavy Vehicles,” JSAE Review 24, pp.157-164 (2003).
[19]Tanaka, K., Taniguchi, T., and Wang, H. O., “Trajectory Control of an Articulated Vehicle with Triple Trailers,” Control Applications, 1999. Proceedings of the 1999 IEEE International Conference on, Kohala Coast, HI, Vol. 2, pp.1673-1678, Aug. 22-27 (1999).
[20]Tanaka, K., Tadanari, T., and Wang, H. O., ”Model-based Fuzzy Control for Two Trailers Problem: Stability Analysis and Design via Linear Matrix Inequalities,” Fuzzy Systems, Proceedings of the Sixth IEEE International Conference on IEEE, Vol. 1, (1997).
[21]“SAFE AS25,” http://www.safeeu.com/pdfs/prod_sheet.pdf
[22]“Anti-jackknifing apparatus for a semitrailer rig,” http://www.patentstorm.us/patents/4720118.html
[23]“Anti-jackknife apparatus for trailer trucks,” http://www.freepatentsonline.com/4991863.html
[24]Eisele, D. D., and Peng, H., “Vehicle Dynamics Control With Rollover Prevention for Articulated Heavy Trucks,” Proceedings of AVEC 2000 5th Int’l Symposium on Advanced Vehicle Control , Ann Arbor, Michigan, Aug. 22-24 (2000).
[25]Chen, C., and Tomizuka, M., “Lateral Control of Commercial Heavy Vehicle,” Vehicle System Dynamics, Vol. 33, No. 6, pp.391-420, June (2000).
[26]Chen, C., and Tomizuka, M., “Steering and Independent Braking Control for Tractor-Semitrailer Vehicle in Automated Highway Systems,” Decision and Control, 1995., Proceedings of the 34th IEEE Conference on, New Orleans, LA, USA, Vol. 2, pp.1561-1566, Dec. 13-15 (1995).
[27]Chen, C., and Tomizuka, M., “Modeling and Control of Articulated Vehicles,” California Partners for Advanced Transit and Highways (PATH), Research Reports: Paper UCB-ITS-PRR-97-42, Jan. 1 (1997).
[28]Lee, T. S., Chen, Y. H., and Chuang, C. H., “Regulating Performance for Tractor-Semitrailer Vehicle Systems: A Lyapunov Minimax Approach,” American Control Conference, 1997. Proceedings of the 1997, Albuquerque, NM, USA, Vol. 4, pp.2473-2477, Jun 4-6 (1997).
[29]MacAdam, C., and Hagan, M., “A Simple Differential Brake Control Algorithm for Attenuating Rearward Amplification in Doubles and Triples Combination Vehicles,” Vehicle System Dynamics, Vol. 37, n SUPPL., pp.234-245 (2003).
[30]McCann, R., and Le, A., “Electric motor based steering for jackknife avoidance in large trucks,” Vehicle Power and Propulsion, 2005 IEEE Conference, Chicago, Illinois, USA, pp.103-109, Sep. (2005).
[31]Zhu, T., and Zong, C., “Modelling and Active Safe Control of Heavy Tractor Semi-Trailer,” 2nd International Conference on Intelligent Computing Technology and Automation, vol. 2, pp.112-115 (2009).
[32]Zong, C., Zhu, T., Wang, C., and Liu, H., “Multi-objective Stability Control Algorithm of Heavy Tractor Semi-trailer Based on Differential Braking,“ Chinese Journal of Mechanical Engineering, vol. 25, No. 1, pp. 88-97 (2012).
[33]Zheng, H., and Wang, L., “Identification of Vehicle Mass and Braking Force Distribution Algorithm for Electronic Braking System of Heavy-Duty Vehicle,“ SAE International Journal of Commercial Vehicles, Vol. 7, pp. 520-523 (2014).
[34]Chiu, J., and Goswami, A., ”Driver Assist for Backing-up a Vehicle with a Long-wheelbase Dual-axle Trailer,” International Symposium on Advanced Vehicle Control (AVEC). Seoul, Korea: KSAE. (2012).
[35]Chiu, J., and Goswami, A., ”The Critical Hitch Angle for Jackknife Avoidance during Slow Backing up of Vehicle–trailer Systems,” Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility, pp. 992-1015 (2014).
[36]Odhams, A. M. C., Roebuck, R. L., Jujnovich, B. A., and Cebon, D., ”Active Steering of a Tractor–semi-trailer,” Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, Vol. 225, No. 7, pp. 847-869 (2011).
[37]Lin, X., Ding, N., Xu, G., and Gao, F., ”High Speed Optimal Yaw Stability of Tractor-Semitrailers with Active Trailer Steering,” SAE Technical Paper, vol. 1 (2014).
[38]Wang, Q., Zhu, S., and He, Y. P., ”Model Reference Adaptive Control for Active Trailer Steering of Articulated Heavy Vehicles,” SAE Technical Paper, No. 2015-01-1495 (2015).
[39]Irie, N., and Kuroki, J., ”4WS Technology and the Prospects for Improvement of Vehicle Dynamics,” SAE Technical Paper, No. 901167 (1990).
[40]Yin, G., Chen, N., and Li, P., ”Improving Handling Stability Performance of Four-wheel Steering Vehicle via μ-synthesis Robust Control,” Vehicular Technology, IEEE Transactions on Vehicular Technology, Vol. 56, No. 5, pp. 2432-2439 (2007).
[41]Zhang, J., Zhang, Y., Chen, L., and Yang, J., ”A Fuzzy Control Strategy and Optimization for Four Wheel Steering System,” Vehicular Electronics and Safety, ICVES. IEEE International Conference on IEEE, pp. 1-6 (2007).
[42]Zhang, R. H., Cheng, G. Y., Wang, G. Q., Jia, H. G., and Chen, T., ”Robust Optimal Control Technology for Four-wheel Steering Vehicle,” Mechatronics and Automation, ICMA 2007. International Conference on IEEE. pp. 1513-1517, August (2007).
[43]Madarás, J., Ferencey, V., Bugár, M., and Danko, J., ”Algorithms for Vehicle Control Stability System with 4WS,” Mechatronics Mechatronika (ME), 16th International Conference on IEEE. pp. 338-344, December (2014).
[44]Zhou, Q., Wang, F., and Li, L., ”Robust Sliding Mode Control of 4WS Vehicles for Automatic Path Tracking,” Intelligent Vehicles Symposium, 2005. Proceedings. IEEE, pp. 819-826, June, (2005).
[45]Akar, M., ”Yaw Rate and Sideslip Tracking for 4-wheel Steering Cars Using Sliding Mode Control,” Computer Aided Control System Design, 2006 IEEE International Conference on Control Applications, 2006 IEEE International Symposium on Intelligent Control, pp. 1300-1305, October (2006).
[46]Hamzah, N., Selamat, Y. M. S. H., Aripin, M. K., and Ismail, M. F., ”Yaw Stability Improvement for Four-wheel Active Steering Vehicle Using Sliding Mode Control,” Signal Processing and its Applications (CSPA), 2012 IEEE 8th International Colloquium on IEEE, pp. 127-132, March, (2012).
[47]Brennan, S. N., “On Size and Control : The Use of Dimension Analysis in Controller Design,” University of Illinois at Urbana-Champaign, Department of Mechanical and Industrial Engineering, Ph.D. Thesis (2002).
[48]Narendra, K. S., Annaswamy, A. M., “Stable Adaptive Systems,” Prentice-Hall, New Jersey (1989).
[49]Wang, Q., Oya, M., Okumura, K., and Kobayashi, T., “Adaptive Steering Controller to Improve Handling Stability of Combined Vehicles,” Innovative Computing, Information and Control, 2007. ICICIC '07. Second International Conference on, Kumamoto, Japan, Sep. 5-7, pp.428-428 (2007).

QR CODE