簡易檢索 / 詳目顯示

研究生: 徐錦衍
Jin-yan Hsu
論文名稱: 以縮小型車輛探討聯結車輛之鐮刀效應預防
Investigation of Jack-knife Prevention for Articulated Vehicle using Scaled Vehicle
指導教授: 陳亮光
Liang-kuang Chen
口試委員: 黃緒哲
Shiuh-jer Huang
林秋豐
Chiu-feng Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 90
中文關鍵詞: 車輛安全系統聯結車輛動力學模型聯結車輛事故型態鐮刀效應獨立煞車縮小型車輛
外文關鍵詞: vehicle safety system, articulated vehicle model, jack-knife, independent braking
相關次數: 點閱:252下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今車輛安全系統之發展非常普及,但多數皆應用於小型車輛,就聯結車輛之車輛安全系統而言卻不是如此完善,但是相較來說,聯結車輛引發之車輛意外事故的嚴重性卻比其他車輛高達許多,且聯結車輛之意外事故具有其獨特性,這是因為雙車體聯結的關係。在此針對聯結車輛獨特意外事故之ㄧ現象”鐮刀效應”,發展一車輛安全系統來預防鐮刀效應現象之發生。本研究採用的策略是利用獨立煞車之技術。首先建立一組六個自由度之線性聯結車輛動力學模型,並根據Buckingham  theorem建立一臺與Hino聯結車輛之比例為1:14、且具有相似動態效應之縮小型車輛。接著,建立縮小型車輛實驗所需的控制與量測平台,並透過縮小型車輛進行特定駕駛動作之實驗,觀察縮小型車輛之第五輪運動效應,並輔以車輛動力學模擬之結果進行探討兩者之第五輪運動狀態。此外,由於大多車輛動力學模型並未考慮到第五輪之摩擦力之效應,故在聯結車輛動力學模型中額外考量一濕摩擦係數來使車輛動力學模型更接近真實聯結車輛。而後比較縮小型車輛實驗所得之第五輪效應是否與模型模擬結果相同,藉此成功地驗證縮小型車輛之動態效果與模擬結果具有相同之效果。完成上述動作後,套用一鐮刀效應預防控制器於縮小型車輛上並進行實驗,而後並與模擬進行比較,結果顯示控制器能夠有效的抑制第五輪之角度變化量,進而達到預防鐮刀效應現象之效果,且實驗所得之效果十分接近模擬所得之結果。


    Safety has always been the primary concern to the vehicle drivers, government, and the automobile industry. Articulated vehicles, due to their larger size, usually involve more severe damage to human body and property. In particular, several crashes types are unique to articulated vehicles, and the active safety systems for those accidents have received relatively less attention in the literature. Testing of active safety systems with full-size articulated vehicles is an expensive and hazardous endeavor. This fact motivates the use of a scaled vehicle as the evaluation test bed for vehicle control systems. In this paper, this idea is applied to articulated vehicles. The scaled articulated vehicle is designed and constructed based on a 1/14 reduction in length from a full-size Hino truck. The Buckingham Π theorem states that if the dimensionless parameters (the Π group) are matched between two structurally similar dynamical systems, the dynamic similitude between the two systems is ensured. The Π group is derived from the mathematic model of the articulated vehicle, and the parameters of the scaled vehicle are tuned to match the Π group of the full-size truck. And add a contact friction on the fifth wheel. The value of the fifth wheel contact friction is estimated from a series of off-line experiments. Preliminary experiments indicate that the dynamic responses of the scaled vehicle match the simulated results based on the vehicle model, thus supporting the validity of the scaled articulated vehicle. The scaled articulated vehicle is utilized in the development of a jack-knife prevention control system. Then use the jack-knife prevention controller, the experimental evaluations of the jack-knife prevention safety systems are good.

    摘要 目錄 圖表索引 第一章 緒論 1-1前言 1-2文獻探討 1-2-1 聯結車輛動力學模型 1-2-2 聯結車輛事故型態 1-2-3 鐮刀效應 1-2-4 聯結車輛安全系統 1-2-5 獨立煞車 1-2-6 縮小型車輛 1-3論文目標 1-4工作項目 1-5預期貢獻 第二章 理論基礎與控制器介紹 2-1維度分析(Dimensional Analysis)與Buckingham pi Theorem 2-2車輛模型介紹、模擬 2-2-1 聯結車輛之非線性車輛動力學模型 2-2-2 聯結車輛之線性車輛動力學模型 2-3縮小型聯結車輛之pi-group參數分析 2-4車輛模型模擬結果 2-5控制器的發展 第三章 硬體平台與實驗架構 3-1 縮小型車輛 3-2 縮小型車輛參數量測 3-2-1 縮小型車輛重心量測 3-2-2 縮小型車輛重心高度量測 3-3 轉向勁度量測平台 3-3-1 Cornering Stiffness量測 3-3-2 三軸負荷元(Load Cell) 3-3-3 Datalog (PCD-300A) 3-3-4 轉向勁度量測數據 3-4 資料擷取平台的建立 3-4-1 嵌入式電腦 3-4-2 I/O介面卡 3-4-3 RS-232無線模組 3-4-4 功率放大器 第四章 實驗規劃與結果 4-1 車輛動力學模型驗證 4-2 煞車控制器驗證 第五章 結論與未來展望 5-1 總結 5-2 結論 5-3 未來工作與展望 參考文獻 附錄A 附錄B

    [1] http://www.motc.gov.tw/hypage.cgi?HYPAGE=stat08.asp&catid=4
    [2] http://tw.knowledge.yahoo.com/question/?qid=1005021704005
    [3] K. Kin, O. Yano,and H. Urabe, “ Enhancements in vehicle stability with
    slip control,” JSAE Review, vol.24, 2003, pp71-79.
    [4] C. Chen and M. Tomizuka, “Lateral Control of Commercial Heavy Vehicle,”
    Vehicle System Dynamics, vol.33, 2000, pp.391-420.
    [5] http:www.safeeu.com/pdfs/prod_sheet.pdf
    [6] C. Chen and M. Tomizuka, “Modeling and Control of Articulated Vehicles,”
    California PATH Research Report UCB-ITS-PRR-97-42
    [7] C. Chen and M. Tomizuka, “Dynamic Modeling of Articulated Vehicles for
    Automated Highway Systems,” Proceedings of the American Control
    Conference Seattle, Washington, June 1995
    [8] T. Kaneko and I. Kageyama, “ A study on the braking stability of
    articulated heavy vehicles,” JSAE Review 24(2003) , pp.157-164
    [9] Y. He, A. Khajepour, J. McPhee and X. Wang, “Dynamic modeling and
    stability analysis of articulated frame steer vehicles,” Int. J. of
    Vehicle Systems, Vol.12, No. 1, 2005
    [10] W. Liang and J. Medanic, “Simulation of Intelligent Convoy with
    Autonomous Articulated Commercial Vehicles,” SAE International 2003-01-
    3419
    [11] C. Chen and M. Tomizuka, “Steering and Independent Braking Control for
    Tractor-Semitrailer Vehicle in Automated Highway Systems,” Proceedings of
    the 34th Conference on Decision & Control , New Orleans, LA – December
    1995
    [12] D. D.Eisele and H. Peng, “ Vehicle Dynamics Control With Rollover
    Prevention for Articulated Heavy Trucks,” Proceedings of AVEC 2000 5th
    Int’l Symposium on Advanced Vehicle Control, August 22-24,2000, Ann
    Arbor, Michigan
    [13] Anti-jackknifing mechanism, “US Patent Issued on July 6, 1993,”
    http://www.patentstorm.us/patents/5224727.html
    [14] Anti-jackknifing apparatus for a semitrailer rig , “US Patent Issued on
    January 19, 1988,” http://www.patentstorm.us/patents/4720118.html
    [15] Anti-jackknife apparatus for trailer trucks,
    http://www.stickebana.com/scitech/industrial_robot/anti-
    jackknife_trailer_trucks.html
    [16] T. S. Lee, Y. H. Chen and C. H. Chuang, “Regulating Performance for
    Tractor-Semitrailer Vehicle Systems: A Lyapunov Minimax Approach,”
    Proceeding of the American Control Conference, Albuquerque, New Mexico
    June 1997
    [17] Susemihl, E. Alfonso, Krauter and I . Allan, “Automatic Stabilization of
    Tractor Jackknifing in Tractor-Semitrailer Trucks,” SAE preprints, n
    740551, 1974, 8p
    [18] Anon, “Are Anti-jackknife Devices Feasible,” Automotive Engineering
    (Warrendale, Pennsulvania), v97 , n 11, Nov, 1989, pp.39-41
    [19] E. Mikulcik, “Dynamic of Tractor-Semitrailer Vehicle. The Jackknifing
    Problem,” SAE Pap 710045,1971, 15p, Jan 11-15 1971
    [20] A. Gonzalez-Cantos, J.I. Maza and A. Ollero, “Design of a Stable Backing
    Up Fuzzy Control of Autonomous Articulated Vehicles for Factory
    Automation,” Dept. of Systems Engineering and Automatic Control
    University of Seville, Camino de los Descubrimientos, s/n, 41092 Sevilla
    [21] E. A. Susemihl and A. I. Krauter, “Jackknifing of Tractor-Semitrailer
    Trucks Em Dash Detection and Corrective Action,” American Society of
    Mechanical Engineers(Paper), n 73-ICT-1, 1973 ,9p
    [22] B. Bhushan, “New Design Concepts in Safety of Tractor-Trailers,”
    American Socity of Mechanical Engineers(Paper), n78-DET-83, 1978 ,7p
    [23] A. T. Keller, “Jackknife Control for Tractor-Trailer,” SAE Preprints, n
    730643, 1973 ,5p
    [24] R. E. Walsh, G. E. Cicchetti , “Use of Simplified Jackknife Restraint
    Device Significantly Reduces The Hazard of Jackknifing,” SAE Preprints, n
    730642, 1973, 5p
    [25] R. D. Ervin, “Eliminating Yaw Instability in Tractor-Semitrailers during
    Conering,” HSRI Research Review (University of Michigan, Highway Safety
    Research Institute), vol.10, n 1, Jul-Aug, 1979, 17p
    [26] H. Wilkins, “Stability of articulated vehicles,” J Automot Eng, vol.2,
    n 3, Mar, 1971, pp.13-17
    [27] L. Palkovics, P. Michelberger, J. Bokor and P. Gaspar, “Adaptive
    identification for heavy-truck stability control,” Vehicle System
    Dynamics, vol.25, n Suppl ,1996, pp.502-518
    [28] T. Pilutti, A. G. Ulsoy and D. Hrovat, “Vehicle Steering Intervention
    Through Differential Breaking,” Proceedings of the American Control
    Conference, vol. 3, 1995, pp. 1667-1671.
    [29] J. H. Park, “H-infinity Direct Yaw-Moment Control with Brakes for Robust
    Performance and Stability of Vehicles,” JSME International Journal,
    Series C: Mechanical Systems, Machine Elements and Manufacturing, vol. 44,
    n2, 2001, pp. 404-413.
    [30] S. Mammar, T. Raharijaona, S. Glaser and G. Duc, “Lateral Driving
    Assistance Using Robust Control and Embedded Driver-Vehicle-Road Model,”
    Vehicle System Dynamics, vol.41, n SUPPL, 2004, pp. 311-320.
    [31] Y. Zeyada, D. Karnopp, M. El-Arabi and E. El-Behiry, “Combined Active-
    Steering Differential-Braking Yaw Rate Control Strategy for Emergency
    Maneuver”, Proceedings of the 1998 SAE International Congress &
    Exposition ,Feb 23-26 1998,980230, Vehicle Dynamics and Simulation,1998 ,
    pp. 97-120.
    [32] B. C. Chen and H. Peng, “Differential-Braking-Based Rollover Prevention
    for Sport Utility Vehicles with Human-In-The-Loop Evaluations,” Vehicle
    dynamics systems, vol.36, n4-5, November, 2001, pp. 359-389.
    [33] C. R. Carlson and J. C. Gerdes, “Optimal Rollover Prevention with Steer-
    By-Wire and Differential Braking,” American Society of Mechanical
    Engineers, Dynamic systems and Control Division DSC, vol.72,
    n1 ,Proceedings of the ASME Dynamic Systems and Control Division-2003,
    2003, pp. 345-354.
    [34] V. Trent and G. Michael, “A Genetic Algorithm Predictor for Vehicular
    Rollover,” IECON Proceedings (Industrial Electronics Conference), vol. 3,
    2002, pp. 1752-1756
    [35] K. Yi, T. Chung, J. Kim and S. Yi, “An Investigation into Differential
    Braking Strategies for Vehicle Stability Control,” Proceedings of the
    Institution of Mechanical Engineers, Part D: Journal of Automobile
    Engineering, vol.217, n12, 2003, pp. 1081-1094.
    [36] http://www.volvo.com
    [37] S. Brennan and A. Alleyne, “ Robust scalable vehicle control via non-
    dimensional vehicle dynamics,” Vehicle System Dynamics, vol.36, 2001,
    pp.255-277.
    [38] R. G. Longoria, A. Al-Sharif and C. B. Patil, “Scaled vehicle system
    dynamics and control: A case study in anti-lock braking,” International
    Journal of Vehicle Autonomous Systems, vol.2, 2004, pp.18-39.
    [39] K. Pushkin, “Setup for advanced vehicle control systems experiments in
    the flexible low-cost automated scaled highway (FLASH) laboratory,”
    Proceedings of SPIE - The International Society for Optical Engineering,
    vol.2591, 1995, pp.269-278
    [40] W. E. Travis, R. J. Whitehead, D. M. Bevly and G. T. Flowers, “Using
    scaled vehicles to investigate the influence of various properties on
    rollover propensity,” Proceedings of the 2004 American Control Conference
    (AAC), 2004, pp. 3381-3386
    [41] K. Kin, O. Yano and H. Urabe, “Enhancements in vehicle stability with
    slip control,” JSAE Review, vol. 24, 2003, pp.71-79
    [42] P. Lugner, P. Heinzl and M. Plochl, “Yaw moment control of a passenger
    car by unilateral braking or additional steering,” Proceedings of the
    Mini Conference on Vehicle System Dynamics, Identification and Anomalies,
    2000 , pp.23-24
    [43] C. MacAdam and M. Hagan, “A simple differential brake control algorithm
    for attenuating rearward amplification in doubles and triples combination
    vehicles,” Vehicle System Dynamics, vol. 37, n SUPPL., 2003, pp.234-245
    [44] Tractor Trailer Jackknife Prevention System, US Patent Issued on October
    17, 1993
    [45] S. N. Brennan, “On Size and Control : The Use of Dimension Analysis in
    Controller Design,” Urbana, Illinois.
    [46] A. G. Ulsoy and H. Peng, “VEHICLE CONTROL SYSTEMS,” Lecture Notes for
    ME 568.
    [47] 陳亮光, 許勝勇, “車輛安全系統研究之大型車輛翻覆預防,” 國立台灣科技大學機
    械工程系
    [48] http://www.southhutchauctionmarket.com/previous_auction_highlights.htm

    QR CODE