簡易檢索 / 詳目顯示

研究生: 黃宇白
Yu-bai Huang
論文名稱: 具人體模型之車輛主動式懸吊系統設計
Active Suspension Design for a Vehicle with Human Body Model
指導教授: 呂森林
Sen-lin Lu
口試委員: 劉見賢
Chien-hsien Liu
黃聰耀
Tsung-yao Huang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 124
中文關鍵詞: 主動式懸吊系統人體模型模糊控制理論遺傳演算法
外文關鍵詞: active suspension system, human body model, fuzzy control theory, genetic algorithms
相關次數: 點閱:294下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究引用人體機械模型進行1/4車輛模型與1/2車輛模型之主動式懸吊系統設計。文中以乘員頭部之垂直加速度均方根值做為舒適性之指標,並以ISO 2631-1(1985)之全身性振動極限做為人體長時間暴露於振動環境之規範。
在設計主動式懸吊系統時,導入遺傳演算法與模糊控制理論,運用遺傳演算法調整模糊控制器之控制參數,並以乘員頭部之垂直加速度及乘員頭部垂直加速度變化為控制器之回授,以降低乘員頭部加速度均方根值為設計目標。
數值模擬結果顯示,在特定車速及不規則路面下,以降低乘員頭部加速度為目標所設計之主動式車輛懸吊系統,其對於乘員身體其他部位及在不同車速亦有同等程度之改善成效。而且本主動式懸吊系統不論在不規則路面或步階路面上,對於乘員之舒適性皆有明顯之改善。


This thesis cites the human body mechanical model as the basis of the design of active suspension system using the 1/4 vehicle model and 1/2 vehicle model. The study considers the root mean square value of vertical acceleration of the passenger head as indicators of comfort referred to the whole-body vibration limit of ISO 2631-1(1985) to specify the human-body exposure to vibration environment.
The design of active suspension systems combines the genetic algorithm with fuzzy control theory. The genetic algorithm is used to adjust the control parameters of fuzzy controller. The fuzzy controller uses the vertical acceleration of passenger head, and its rate of change as feedback to reduce the mean square value of the vertical acceleration of passenger head.
The numerical results show that although the active suspension system of vehicle is designed mainly to reduce the passenger head acceleration at a specified speed travelling on an irregular road, it also provides the same improvement level for the other parts of body and different travelling speeds. And the active suspension systems have obvious improvements on the comfort of passengers regardless of the irregular road or the step road.

摘要 I ABSTRACT II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 XI 符號表 XIII 第一章 緒論 1 1.1 前言 1 1.2 懸吊系統的特性及類型 2 1.3 文獻回顧 6 1.4 研究動機與目的 10 1.5 論文架構 11 第二章 乘員舒適性評估方法與標準 13 2.1 前言 13 2.2 人體機械模型 14 2.3 全身性振動暴露規範 16 2.3.1 ISO 2631-1 (1985)全身振動暴露極限 17 第三章 遺傳演算法與模糊控制理論 18 3.1 遺傳演算法 18 3.1.1 遺傳演算法之基本流程 19 3.1.2 編碼與解碼 21 3.1.3 適應函數 22 3.1.4 基本運算子 22 3.1.5 菁英政策 25 3.1.6 停止準則 26 3.2 模糊控制理論 26 3.2.1 模糊集合 27 3.2.2 歸屬函數 28 3.2.3 模糊邏輯控制器 30 第四章 系統方程式和設計方法 35 4.1 系統方程式 35 4.1.1 1/4車輛模型 35 4.1.2 1/2車輛模型 38 4.2 模糊邏輯控制器之設計 42 4.2.1 歸屬函數之參數調整 43 4.2.2 模糊規則庫之參數調整 47 第五章 模擬和討論 49 5.1 1/4車輛模型 51 5.1.1範例一:車輛行駛於不規則路面 55 5.1.2範例二:車輛行駛於步階路面 69 5.2 1/2車輛模型 73 5.2.1範例一:車輛行駛於不規則路面 79 5.2.2範例二:車輛行駛於步階路面 102 第六章 結論與未來展望 108 6.1 結論 108 6.2 未來展望 109 參考文獻 111 附錄 116 作者簡介 124

【1】 M. Appleyard, P. E. Wellstead, “Active Suspensions : Some Background”, IEE Proceedings : Control Theory and Applications, Vol. 142, No. 2, pp. 123-128 (1995).
【2】 V. P. Tregoubov, “Problems of Mechanical Model Identification for Human Body Under Vibration”, Mechanism and Machine Theory, Vol. 35, No. 4, pp. 491-504 (2000).
【3】 R. Muksian, C. D. Nash, Jr., “A Model for the Response of Seated Humans to Sinusoidal Displacements of the Seat”, Journal of Biomechanics, Vol. 7, No. 3, pp. 209-215 (1974).
【4】 R. Muksian, C. D. Nash, Jr., “On Frequency-Dependent Damping Coefficients in Lumped-Parameter Models of Human Beings”, Journal of Biomechanics, Vol. 9, No. 5, pp. 339-342 (1976).
【5】 P. -E. Boileau, S. Rakheja, “Whole-Body Vertical Biodynamic Response Characteristics of the Seated Vehicle Driver Measurement and Model Development”, International Journal of Industrial Ergonomics, Vol. 22, No. 6, pp. 449-472 (1998).
【6】 T. E. Fairley, M. J. Griffin, “The Apparent Mass of the Seated Human Body : Vertical Vibration ”, J Biomechmics, Vol. 22, No. 2, pp. 81 -94 (1989).
【7】 L. Wei, J. Griffin, “Prediction of Seat Transmissibility from Measures of Seat Impedance”, Journal of Sound and Vibration, Vol. 214, No. 1, pp. 121-137 (1998).
【8】 P. -E. Boileau, X. Wu and S. Rakheja, “Definition of a Range of Idealizes Values to Characterize Seated Body Biodynamic Response Under Vertical Vibration”, Journal of Sound and Vibration, Vol. 215, No. 4, pp. 841-862 (1998).
【9】 Younggun Cho, Yong-San Yoon, “Biomechanical Model of Human on Seat with Backrest for Evaluating Ride Quality”, International Journal of Industrial Ergonomics, Vol. 27, No. 5, pp. 331-345 (2001).
【10】 M. K. Patil, M. S. Palanichamy, “A Mathematical Model of Tractor-Occupant System with a New Seat Suspension for Minimization of Vibration Response”, Applied Mathematical Modelling, Vol. 12, No. 1, pp. 63-71 (1988).
【11】 V. K. Tewari, N. Prasad, “Three-DOF Modelling of Tractor Seat-Operator System”, Journal of Terramechanics, Vol. 36, No. 4, pp. 207-219 (1999).
【12】 Y. Wan, J. M. Schimmels, “Optimal Seat Suspension Design Based on Minimum ‘Simulated Subjective Response’”, Journal of Biomechanical Engineering, Vol. 119, No. 4, pp. 409-416 (1997).
【13】 Seung-Bok Choi, Young-Min Han, “Vibration Control of Electrorheological Seat Suspension with Human-Body Model Using Sliding Mode Control”, Journal of Sound and Vibration, Vol. 303, No. 1-2, pp. 391-404 (2007).
【14】 O. Gundogdu, “Optimal Seat and Suspension Design for a Quarter Car with Driver Model Using Genetic Algorithms”, International Journal of Industrial Ergonomics, Vol. 37, No. 4, pp. 327-332 (2007).
【15】 M. Nagai, “Recent Researches on Active Suspensions for Ground Vehicles”, JSME International Journal, Series C: Dynamics, Control, Robotics, Design and Menufacturing, Vol. 36, No. 2, pp. 161-170 (1993).
【16】 H. D. Taghirad, E. Esmailzadeh, “Automobile Passenger Comfort Assured Through LQG/LQR Active Suspension”, Journal of Vibration and Control 4, pp 603-618 (1998).
【17】 A. Titli, S. Roukieh and E. Dayre, “Three Control Approaches for The Design of Car Semi-Active Suspension (Optimal Control, Variable Structure Control, Fuzzy Control)”, Proceedings of the IEEE Conference on Decision and Control, Vol. 3, pp. 2962-2963 (1993).
【18】 A. Zaremba, R. Hampo and D. Hrovat, “Optimal Active Suspension Design Using Constrained Optimization”, Journal of Sound and Vibration, Vol. 207, No. 3, pp. 351-364 (1997).
【19】 Seok-il Son, Can Isik, “Fuzzy Control of an Automotive Active Suspension”, Biennial Conference of the North American Fuzzy Information Processing Society – NAFIPS, New Frontiers in Fuzzy Logic and Soft Computing, pp. 377-381 (1996).
【20】 T. Yoshimura, K. Nakaminami, M. Kurimoto and J. Hino, “ Active Suspension of Passenger Cars Using Linear and Fuzzy-Logic Controls”, Control Engineering Practice, Vol. 7, No. 1, pp. 41-47 (1999).
【21】 M. V. C. Rao, V. Prahlad, “A Tunable Fuzzy Logic Controller for Vehicle-Active Suspension Systems”, Fuzzy Sets and Systems, Vol. 85, No. 1, pp. 11-21 (1997).
【22】 T. Yoshimura, A. Kume, M. Kurimoto and J. Hino, “Construction of an Active Suspension System of a Quarter Car Model Using the Concept of Sliding Mode Control”, Journal of Sound and Vibration, Vol. 239, No. 2, pp. 187-199 (2001).
【23】 R. Alkhatib, G. N. Jazar, M. F. Golnaraghi, “Optimal Design of Passive Linear Suspension Using Genetic Algorithm”, Journal of Sound and Vibration, Vol. 275, No. 3-5, pp. 665-691 (2004).
【24】 Li RenHou, Zhang Yi, “Fuzzy Logic Controller Based on Genetic Algorithms”, Fuzzy Sets and Systems, Vol. 83, No. 1, pp. 1-10 (1996).
【25】 A. Arslan, M. Kaya, “Determination of Fuzzy Logic Membership Functions Using Genetic Algorithms”, Fuzzy Sets and Systems, Vol. 118, No. 2, pp. 297-306 (2001).
【26】 Yi-Pin Kuo, Tzuu-Hseng S. Li, “GA-Based Fuzzy PI/PD Controller for Automotive Active Suspension System”, IEEE Transactions on Industrial Electronics, Vol. 46, No. 6, pp. 1051-1056 (1999).
【27】 Feng Jinzhi, Yu Fan and Li Jun, “An Investigation to Controller Design for Active Vehicle Suspension by Using GA-Based PID and Fuzzy Logic”, SAE TECHNICAL PAPER SERIES, No.2002-01-0983.
【28】 S. Y. Moon, W. H. Kwon, “Genetic-Based Fuzzy Control for Automotive Active Suspensions”, IEEE International Conference on Fuzzy Systems, Vol. 2, pp. 923-929 (1996).
【29】 陳健福,「具撓性車體汽車座椅系統之隔振設計」,國立台灣科技大學機械工程系碩士論文 (2004)。
【30】 M. H. Pope, D. G. Wilder AND M. Magnusson, “Possible Mechanisms of Low Back Pain Due to Whole-Body Vibration”, Journal of Sound and Vibration, Vol. 215, No. 4, pp. 687-697 (1998).
【31】 行政院勞工委員會勞工安全衛生研究所,「台北市計程車駕駛員累積性肌肉骨骼傷害調查及頸部活動度分析」,行政院勞工委員會勞工安全衛生研究所新聞稿 (2001)。
【32】 International Organization for Standardization, “ISO 2631-1 (1985). Evaluation of human exposure to whole-body vibration. Part 1: General requirements”.
【33】 J. H. Holland, Adaptation in Natural and Artificial System, University of Michigan Press (1975).
【34】 L. A. Zadeh, “Fuzzy Sets”, Information and Control, Vol. 8, pp. 338-353 (1965).
【35】 孫宗瀛、楊英魁,Fuzzy控制:理論、實作與應用,全華圖書股份有限公司 (1994)。
【36】 李允中、王小璠和蘇木春,模糊理論及其應用,全華科技圖書股份有限公司 (2004)。
【37】 周鵬程,遺傳演算法原理與應用-活用Matlab,全華科技圖書股份有限公司 (2005)。

QR CODE