簡易檢索 / 詳目顯示

研究生: 郎洪笙
Hung-Sheng Lang
論文名稱: 在合作式感知無線電網路中聯合功率分配與子載波配對之混合型基因演算法
Joint Power Allocation and Subcarrier Pairing in Cognitive Relay Networks based on a Heterogeneous Genetic Algorithm
指導教授: 方文賢
Wen-Hsien Fang
口試委員: 林士駿
Shih-Chun Lin
賴坤財
Kuen-Tsair Lay
陳郁堂
Yie-Tarng Chen
丘建青
Chien-Ching Chiu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 60
中文關鍵詞: 基因演算法解碼傳遞合作式網路感知無線電功率分配子載波配對
外文關鍵詞: Genetic algorithm, decode-and-forward cooperative networks, cognitive radio, power allocation, subcarrier pairing
相關次數: 點閱:232下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 正交分頻多工是現今一種相當有潛力的無線網路傳輸技術, 搭配合作
    式網路能藉由使用者之間互相協助傳遞訊息至目的端來形成一個分散式
    天線陣列, 進而提供空間分集增益。 在網路資源有限的情況下, 感知無線
    電技術能有效率的使用頻譜資源, 在不干擾主用戶訊號太多的狀況下, 透
    過已知的通道訊息來做適當的資源分配, 將能有效提升系統的整體效能。
    在本論文中, 我們考慮一個合作式感知無線電暨正交分頻多工解碼傳
    遞的網路, 並在共同頻譜存取機制上做資源分配讓感知無線電使用者達到
    最佳的傳輸率。 此最佳化問題包含了功率分配與子載波配對, 其中功率分
    配的問題除了考慮在來源端與中繼端下有各自的最大功率限制外, 為了維
    持主用戶的通訊品質, 也必須保證對主用戶的功率干擾在一個預先設定好
    的門檻值下。 由於聯合功率分配與子載波配對是一個混合整數規劃問題,
    因此我們提出以混合型基因演算法來解決此問題。 在染色體的初始化步驟,
    我們提出了兩種產生染色體初始值的方案, 使得基因演算法在一開始能找
    到較好的初始值, 避免落入局部最小區域。 第一個方案為先將問題利用對
    偶方法來拆開, 已推導出的式子來產生染色體的初始值。 第二個方案為先
    利用邊界方法來計算染色體的初始化門檻值, 而染色體則是以隨機的方式
    產生, 若其計算值達到門檻則允入此染色體。 並針對感知無線電的特性在
    交配運算中提出新的子載波配對法與功率分配法。 基於當子載波數目越大
    時, 基因演算法較難收斂, 我們亦提出了一兩階段式低複雜度演算法, 其
    在第一階段, 先固定功率並使用基因演算法來求得子載波配對, 而在第二
    階段, 則將子載波配對代入問題, 並利用凸最佳化來求得最佳的來源端與
    中繼端的功率分配。 而為參考我們亦忽略了某些限制以求得系統的效能上
    限值。 相關模擬結果顯示在不同的限制考量下, 我們所提出之演算法相較
    於前人的方法, 能以較低的複雜度獲得更好的系統效能。


    In this thesis, we consider the resource allocation for cognitive
    decode-and-forward (DF) relay networks, where the concurrent spec-
    trum access model in cognitive radio (CR) systems is employed to
    improve the spectrum efficiency. Our objective is to maximize the
    sum rate of the CR users by appropriate power allocation and sub-
    carrier pairing under the individual power constrains at the source
    and the relay with the interference introduced to the primary user
    (PU) being kept below a tolerable range. Such a joint consideration
    leads to a mixed integer programming (MIP) problem, which calls
    for enormous amount of complexity. To resolve this MIP problem
    with reasonable cost, a heterogeneous genetic algorithm (HGA) is
    addressed. In the HGA, each chromosome is divided into an inte-
    ger string for subcarrier pairing, and a real number string for power
    allocation. In addition, new crossover and mutation operations are
    implemented for this new type of chromosomes. To facilitate the
    searching for the optimal solutions, two initialization schemes are
    also considered. Furthermore, in light of the low convergence of HGA
    when the number of subcarriers is large, a two-stage low-complexity
    implementation of the HGA is presented, which first uses the GA
    to determine the proper subcarrier pairs with equal power allocation
    and then devises the optimal power allocation at the source and the
    relay via convex optimization in the second stage. To evaluate the
    performance of the HGA, an upper bound which is determined by
    loosening some constraints in the optimization problem considered,
    is furnished as well. Conducted simulations show that the HGA and
    its two-stage implementation provide superior performance, yet with
    low complexity, compared with some representative previous works.

    第一章 緒論1 1.1 引言 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 1.2 研究動機與目的 . . . . . . . . . . . . . . . . . . . . . . . . . .3 1.3 內容章節概述 . . . . . . . . . . . . . . . . . . . . . . . . . . .4 第二章 相關背景回顧5 2.1 感知無線電 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 合作式網路 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6 2.2.1 合作式解碼傳遞網路 . . . . . . . . . . . . . . . . . .8 2.2.2 合作式正交分頻多工解碼傳遞網路 . . . . . . . .8 2.2.3 合作式感知無線電暨正交分頻多工解碼傳遞 網路 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9 2.3 子載波配對 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 2.4 各式數學規劃的介紹 . . . . . . . . . . . . . . . . . . . . . .13 2.4.1 凸函數最佳化 . . . . . . . . . . . . . . . . . . . . . . .13 2.4.2 對偶分解 . . . . . . . . . . . . . . . . . . . . . . . . . . .15 2.4.3 KKT 條件 . . . . . . . . . . . . . . . . . . . . . . . . . .16 2.4.4 基因演算法 . . . . . . . . . . . . . . . . . . . . . . . . .18 2.5 結語 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24 第三章 在解碼傳遞合作式感知無線電網路下聯合功率分 配與子載波配對之混合型基因演算法25 3.1 介紹 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25 3.2 問題陳述 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26 3.3 對偶問題 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29 3.4 混合型基因演算法 . . . . . . . . . . . . . . . . . . . . . . . .32 3.5 低複雜度兩階段式演算法 . . . . . . . . . . . . . . . . . . .41 3.6 上限值探討 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42 3.7 結語 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43 第四章 模擬分析與複雜度討論44 4.1 模擬分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44 4.2 運算複雜度分析與比較 . . . . . . . . . . . . . . . . . . . .46 4.3 結語 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48 第五章 結論及未來展望55 5.1 結論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55 5.2 未來展望 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55 參考文獻57

    [1] J. Mitola, G.Q. Maquire Jr., “Cognitive radio: Making software radios more
    personal,” IEEE Pers. Commun., vol. 6, no. 4, pp. 13-18, Aug. 1999.
    [2] E. Hossain and V. K. Bhargava, Ed. Cognitive Wireless Communication Net-
    works, Springer, 2007.
    [3] T. Weiss, J. Hillenbrand, A. Krohn and F. K. Jondral, “Mutual interference in
    OFDM-based spectrum pooling systems,” in Proc. IEEE Vehicular Technol.
    Conf., vol. 4, pp. 1873-1877, May, 2004.
    [4] T. Weiss and F. K. Jondral, “Spectrum pooling: an innovative strategy for
    the enhancement of spectrum efficiency,” IEEE Commun. Magazine, vol. 42,
    no. 3, pp. S8-14, Mar. 2004.
    [5] Y.-C. Liang, K.-C. Chen, G.Y. Li and P. Mahonen, “Cognitive radio network-
    ing and communications: an overview,” IEEE Trans. Vehicular Technology,
    vol. 60, no. 7, pp. 3386-3407, Sep. 2011.
    [6] P.-H. Lin, S.-C. Lin, H.-J. Su and Y.-W.P. Hong, “Improved transmission
    strategies for cognitive radio under the coexistence constraint,” IEEE Trans.
    Wireless Commun., vol. 11, no. 11, pp. 4058-4073, Nov. 2012.
    [7] A. Sendonaris, E. Erkip, and B. Aazhang, “User cooperation diversity-part I:
    system description” and “User cooperation diversity-part II: implementation
    aspects and performance analysis,” IEEE Trans. Commun., vol. 51, no. 11,
    pp. 1927-1938, 1939-1948, Nov. 2003.
    [8] K. J. R. Liu, A. K, W. S. Sadek, and A. Kwasinski, Cooperative Communi-
    cations and Networking. Cambridge University Press, 2008.
    57
    [9] Q. Zhang, J. Zhang, C. Shao, et al., “Power allocation for regenerative relay
    channel with rayleigh fading,” in Proc. IEEE Veh. Technol. Conf. Spring,
    pp.1167-1171, May. 2004.
    [10] L. Vandendorpe, R. Duran, J. Louveaux, and A. Zaidi, “Power allocation for
    OFDM transmission with DF relaying,” in Proc. IEEE Int. Conf. Commun.,
    pp. 3795-3800, 2008.
    [11] L. Vandendorpe, J. Louveaux, O. Oguz, and A. Zaidi, “Rate-optimized power
    allocation for DF-relayed OFDM transmission under sum and individual
    power constraints,” EURASIP J. Wireless Commun. Networks, Article ID
    814278, 2009.
    [12] Y. Wang, X. Qu, T. Wu, and B. Liu, “Power allocation and subcarrier pairing
    algorithm for regenerative OFDM relay system,” in Proc. IEEE Veh. Technol.
    Conf., pp. 2727-2731, Apr. 2007.
    [13] Y. Li, W. Wang, J. Kong, W. Hong, X. Zhang, and M. Peng, “Power allocation
    and subcarrier pairing in OFDM-based relaying networks,” in Proc. IEEE Int.
    Conf. Commun., pp. 2602-2606, May. 2008.
    [14] Y. Li, W. Wang, J. Kong, and M. Peng, “Subcarrier pairing for amplify- and-
    forward and decode-and-forward OFDM relay links,” IEEE Commun. Lett.,
    vol. 13, no. 4, pp. 209-211, Apr. 2009.
    [15] C. N. Hsu, H. J. Su, and P. H. Lin, “Joint subcarrier pairing and power
    allocation for OFDM transmission with decode-and-forward relaying,” IEEE
    Trans. Signal Proce., vol. 59, no. 1, pp. 399-414, Jan. 2011.
    [16] X. Li, Q. Zhang, G. Zhang and J. Qin, “Joint power allocation and subcarrier
    pairing for cooperative OFDM AF multi-relay networks,” IEEE Commun.
    Lett., vol. 17, no. 5, pp. 872-875, May 2013.
    [17] T. Wang, Y. Fang and L. Vandendorpe, “Power minimization for OFDM
    transmission with subcarrier-pair based opportunistic DF relaying,” IEEE
    Commun. Lett., vol. 17, no. 3, pp. 471-474, Mar. 2013.
    58
    [18] G. Bansal, M. J. Hossain, and V. K. Bhargava, “Optimal and suboptimal
    power allocation schemes for OFDM-based cognitive radio systems,” IEEE
    Trans. Wireless Commun., vol. 7, no. 11, pp. 4710-4718, Nov. 2008.
    [19] G. Bansal, M. J. Hossain, V. K. Bhargava, and T. Le-Ngoc, “Subcarrier
    and power allocation for OFDMA-based cognitive radio systems with joint
    overlay and underlay spectrum access mechanism,” IEEE Trans. Vehicular
    Technology, vol. 62, no. 3, Mar. 2013.
    [20] G. Zhao, C. Yang, G. Li, D. Li and A. Soong, “Power and channel allocation
    for cooperative relay in cognitive radio networks,” IEEE Journal of Selected
    Topics in Signal Proce., vol. 5, no. 1, pp. 151-159, 2011.
    [21] M. Shaat and F. Bader, “Asymptotically optimal subcarrier matching and
    power allocation for cognitive relays with power and interference constraints,”
    in Proc. IEEE Wireless Commun. and Networking Conference, pp. 663-668,
    Apr. 2012.
    [22] G. A. S. Sidhu, F. Gao, W. Chen, and W. Wang, “Joint subcarrier pairing
    and power loading in relay aided cognitive radio networks,” in Proc. IEEE
    Wireless Commun. and Networking Conference, pp. 669-673, Apr. 2012.
    [23] J.H. Holland, Genetic Algorithms. Sci. Am. 1992.
    [24] T. Yalcinoz and H. Altum, “Power economic dispatch using a hybrid genetic
    algorithm,” IEEE Power Eng. Rev., vol. 21, pp. 59-60, 2001.
    [25] H.-Y. Lu and W.-H. Fang, “Joint transmit/receive antenna selection in MIMO
    systems based on the priority-based genetic algorithm,” IEEE Antennas and
    Wireless Propagation Letters, vol. 6, pp. 588-591, 2007.
    [26] C.-T. Su and C.-S. Lee, “Network reconfiguration of distribution systems us-
    ing improved mixed-integer hybrid differential evolution,” IEEE Trans. Power
    Delivery, vol. 18, no. 3, pp. 1022-1027, July, 2003.
    [27] I. G. Damousis, A. G. Bakirtzis and P. S. Dokopoulos, “A solution to the unit-
    commitment problem using integer-coded genetic algorithm,” IEEE Trans.
    Power Systems, vol. 19, no. 2, pp. 1165-1172, May, 2004.
    59
    [28] K. Tang, K. Man, S. Kwong, and Q. He, “Genetic algorithms and their ap-
    plications,” IEEE Sig. Proc. Magazine, vol. 13, pp. 22-37, Nov. 1996.
    [29] W. Yu and R. Lui, “Dual methods for nonconvex spectrum optimization of
    multicarrier systems,” IEEE Trans. Commun., vol. 54, no. 7, pp. 1310-1322,
    July, 2006.
    [30] W. Yu and T. Lan, “Transmitter optimization for the multi-antenna downlink
    with per-antenna power constraints,” IEEE Trans. Signal Proc., vol. 55, no.
    6, pp. 2646-2660, Jun. 2007.
    [31] S. Boyd and A. Mutapcic, “Subgradient methods,” Lecture Notes of EE364b,
    Stanford University, Stanford, CA, Spring quarter 2007-2008.
    [32] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge Cambridge
    University Press, 2004.
    [33] H. W. Kuhn, “The hungarian method for the assignment problem,” in 50
    Years of Integer Programming 1958-2008. Springer Berlin Heidelberg, pp. 29-
    47, 2010.
    [34] M. Grant and S. Boyd, CVX: Matlab software for disciplined convex pro-
    gramming. 2008

    QR CODE